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Abstract—A multi-kernel Support Vector Machine model,
called Hierarchical Support Vector Regression (HSVR), is
proposed here. This is a self-organizing (by growing) multiscale
version of a Support Vector Regression (SVR) model. It is
constituted of hierarchical layers, each containing a standard
SVR with Gaussian kernel, at decreasing scales. HSVR have
been applied to a noisy synthetic dataset. The results illustrate
their power in denoising the original data, obtaining an effective
multiscale reconstruction of better quality than that obtained by
standard SVR. Furthermore with this approach the well known
problem of tuning the SVR parameters is strongly simplified.

Index Terms—Support Vector Machine, Support Vector Re-
gression, Kernel functions

I. INTRODUCTION

Support Vector Machines (SVM) have been introduced as

a powerful method for classification [1][2]. They are based

on setting the classification boundary such that the distance

between the data points with different labels that are closest

to the boundary is maximized. The boundary between classes

is a hyperplane defined by a linear combination of a subset of

the data points to be classified, called Support Vectors (SV).

To determine the solution to the problem, that is to identify

the SVs and their associated coefficients, the problem is

reformulated as a quadratic optimization problem that, being

convex, guarantees the uniqueness and the optimality of the

solution. Moreover, standard optimization algorithms can be

used to find the solution.

It was soon recognized that, as such, the method was able

only to classify the data that exhibit local linear separability

property, that was not sufficient for many applications. For

this reason, a mapping machinery that transforms the classi-

fication problem inside the native space into a classification

problem inside a higher dimensional space, called feature

space, was developed. Goal of this mapping is to obtain

local linear separability in this higher dimensional space.

This machinery makes use of kernel functions to represent

the internal product of two data vectors projected into this

higher dimensional space, that is, the inner product of the

projected data. As such, the kernel output gives a measure

of similarity of the data pairs.

One of the most used kernel is the Gaussian function

that realizes a mapping into an infinite dimensional space.

This is an obstacle for the computation of the solution,

but the optimization procedure does not need the explicit

mapping values to compute the SVM solution. Instead, the

optimization procedure requires only the internal product
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Information Technology, Università degli Studi di Milano, Italy e-mail
{francesco.bellocchio,stefano.ferrari,vincenzo.piuri}@unimi.it

of the mapped data pairs; therefore the mapping is only

implicitly computed (this advantageous scheme is known as

“kernel trick”).

The SVM approach has been more recently extended to

regression problems [3], domain in which this approach has

been named Support Vector Regression (SVR).

In the standard approach to SVR, a single kernel function

is used, with one single shape and set of parameters. Like the

other methods based on kernels, the quality of the regression

depends on the proper choice of the kernel function and

of its parameters, that must be suitable to represent the

data. Generally, this choice, also known as kernel selection

[4], is a difficult task: the function is often chosen by trial

and error, through genetic optimization or by resorting to

the experience of the people designing the software for the

particular regression (or classification) task.

Besides this, the choice of a single kernel function can

be questioned. In fact when the data are characterized by a

different frequency content over the input domain, the use of

a single kernel is not able to produce satisfying results and

multiple kernel approaches have been recently investigated

[5][6]. In these approaches the kernel effectively used in

the solution is computed during the optimization phase as a

linear combination of a given set of kernels. However, even

in this case, all the SVs of the solution will feature the same

kernel, although its shape was the result of optimization.

The problem of using a single kernel is highlighted in

the examples reported in Fig. 1. The data points have been

sampled on the curve h(·)

h(x) = sin(2πx4) + x (1)

whose local frequency content increases with x. The sam-

pling step is decreased with the local frequency according to
1

120x . The regression computed with a large kernel fails in

reconstructing the details as shown in Fig. 1b. On the other

side, using a kernel with a small scale, such as the one used

in Fig. 1c, the regression will be prone to overfitting and lack

of generalization in scarcely sampled regions.

We present here a novel approach that allows adapting

automatically the kernels parameters to the local frequency

content of the data. This approach is based on a multi-layer

structure, where each layer contains SVs that have the same

kernel function with the same parameters, but the different

layers feature SVs still having the same shape but with

different parameters. The output of the whole architecture is

the sum of the output produced by each layer and we have

therefore termed this approach Hierarchical Support Vector

Regression (HSVR). Being the different layers composed

of kernels that are different, this approach can be in fact

considered a multi-kernel approach.
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Fig. 1. (a) A function with non-stationary frequency content, and (b)–(c)
some single kernel SVR with two different scale parameters, σ. (b) A large
scale kernel provides smooth regression, but is unable to reconstruct the
details, while (c) a small scale kernel suffers of overfitting providing poor
generalization.

II. SUPPORT VECTOR REGRESSION

Let S = {(x1, z1), ..., (xn, zn)} be the set of n examples

that constitute the training set, where xi (1 ≤ i ≤ n) is

a vector belonging to an input space X ⊆ R
D and zi ∈ R.

The vectors xi are called examples or instances and zi labels.

Aim of a SVR is to find a regression function, f : X → R

of this type:

f(x) = ωTφ(x) + b, (2)

where ω is the weight vector of the features space, φ(x) is
a suitable mapping of data point x in the features space,

and b ∈ R is a threshold constant. ω and b can be found

solving the optimization problem:

min
ω,b

1
2ω

Tω + C
∑n

i=1 ξ
+
i + C

∑n

i=1 ξ
−

i (3)

s.t. zi − ωTφ(xi)− b ≤ ǫ+ ξ+i

ωTφ(xi) + b− zi ≤ ǫ+ ξ−i

ξ+i , ξ−i ≥ 0, i = 1, . . . , n

where ǫ ≥ 0 determines a “tube” around the regression

curve inside which the points do not contribute to the

cost function (3) (ǫ-insensitive loss function). Therefore ǫ

controls the accuracy of the regression curve. The parameter

C adjusts the trade off between the regression error and

the regularization on f . ξ+ = {ξ+1 , . . . , ξ
+
n } ∈ R

l and

ξ− = {ξ−1 , . . . , ξ−n } ∈ R
l are slack variables for relaxing

the approximation constraints, and measure the distance of

each data point from the ǫ tube.

Introducing Lagrange multipliers α+
i on constraints corre-

sponding to ξ+i and α−

i on constraints corresponding to ξ−i ,

the dual problem of (3) can be written as:

max
α+,α−

− 1
2 (α

+ − α−)TK(α+ − α−) (4)

−ǫ
∑n

i=1(α
+
i + α−

i ) +
∑n

i=1 zi(α
+
i − α−

i )

s.t.
∑n

i=1(α
+
i − α−

i ) = 0

α+
i , α

−

i ∈ [0, C], i = 1, . . . , n

where α+ = {α+
1 , . . . , α

+
n } ∈ R

n and α− =
{α−

1 , . . . , α
−

n } ∈ R
n are the dual variables, and K ∈ R

n×n

is the kernel matrix evaluated from a kernel function k :
X × X → R, Ki,j = k(xi, xj). Solving α+, α−, and b

using the Karush-Kuhn-Tucker (KKT) conditions in (4), and

introducing βi = α+
i − α−

i , the regression function of (2)

becomes:

f(x) =

n
∑

i=1

βi k(x, xi) + b (5)

where f(·) is expressed as a linear combination of replicas of
the kernel function, k(·, ·) (instead of the mapping function,
φ used in (2)), centered in each training sample. For the KKT

conditions the βi coefficients have to satisfy the following:

|βi| =











0, ‖yi − f(xi)‖ < ǫ

[0, C], ‖yi − f(xi)‖ = ǫ

C, ‖yi − f(xi)‖ > ǫ

(6)

The points that have non-zero β coefficients are called

support vectors (SV); the SVs that lie outside the ǫ-tube are

called “bounded” and the absolute value of their associated

β is set equal to C. As a result, the linear combination in (5)

can be limited only to the SVs.

Among others, the most commonly used kernel for regres-

sion is the Gaussian kernel, whose width is characterized by

its scale parameter, σ:

k(x, xi) = G(||x − xi||;σ) = exp

(

−
||x− xi||

2

σ2

)

(7)

The parameter σ affects the extension of the influence of

each support vector, xi, in its neighborhood, and hence it is

related to the resolution of the regression. Using Gaussians

of very small scale would allow reconstructing the finest

details, while a large scale kernel will provide a rough

approximation. However, the use of a single scale kernel

may not be the best choice when the dataset is sampled

from a non stationary source, which presents slow varying

regions alternated with rapid variation (Fig. 1a). In fact,

when operating with a small scale kernel, the reconstruction

of flat regions may induce, in the best case, a waste of

computational resources, but, when the training samples are

too spaced with respect to the scale parameter, the resulting

regression will provide a poor generalization. On the other



hand, when a large scale kernel is employed, detailed regions

could be reconstructed only using a very large number of

SVs.

An approximation scheme that allows to adapt, for each

SV, the scale of the kernel to the frequency content of

the region in which the SV is situated, represents a better

solution. In the next Section, we describe the Hierarchical

Support Vector Regression (HSVR) approach presented here.

It is based on a hierarchical scheme to achieve a multi-scale

approximation using a pool of SVMs which operate at a

different scale.

III. THE HSVR MODEL

The output of the HSVR model is the sum of the output of

a pool of single-kernel SVRs, {al}, organized as a hierarchy
of layers, each of which is characterized by a different scale:

S(x) =

L
∑

l=1

al(x, σl) (8)

where L is the number of layers and σl determines the scale

of the kernel of the l-th layer. The scale decreases increasing

the layer number, that is σl ≥ σl+1 holds.

When the kernels are Gaussian functions, the output of

each layer can be written as:

al(x;σl) =

Ml
∑

k=1

βl,k G(||x− xl,k||;σl) + bl (9)

where Ml is the number of SVs, βl,k is the coefficient of the

k-th SV and bl is the bias of the l-th layer.

Each SVM layer, l, realizes a reconstruction of the target

function up to a certain scale, determined by σl. The training

of the hierarchical structure is obtained by adding and

configuring one layer at a time, proceeding from the layer

featuring the largest scale to that featuring the smallest one.

The first layer is trained such that the distance between

the regression curve produced by the layer and the data is

minimized (3). All the other layers are trained to approximate

the residual, that is the difference between the original

data and the output of the HSVR model produced by the

already configured layers. For each layer, the residual, rl, is

computed for each data point as:

rl(xi) = rl−1(xi)− al(xi) (10)

where r0(xi) = zi is assumed.

The value of the scale parameter of the first layer, σ1, is

somehow arbitrary. For instance it can be chosen proportional

to the size of the input region (e.g., the length of the diagonal

of the input data bounding box). New layers are added during

training until a given stopping criterion is satisfied (e.g.,

when the validation error does not decrease anymore).

Two other parameters are defined for each layer: Cl,

the trade-off between the regression error and the regressor

smoothness, and ǫ, that controls the accuracy of the regressor

itself.

The parameter Cl is computed, for each layer, as J times

the range of the residuals used to configure that layer:

Cl = J (max
i

rl−1(xi)−min
i

rl−1(xi)) (11)

where J has been experimentally set to 5. Moreover, we

notice that as Cl is the value assumed by the Lagrange

multipliers associated to the SVs of the l-th layer (4), its

value represents the maximum weight that can be associated

to each Gaussian kernel. For the regions of the input space

where the SVs have no significant overlap (this depends

on the Gaussian scale parameter), the value of Cl is ap-

proximately the maximum value that the regression curve

can assume in those regions, given that the Gaussian kernel

maximum amplitude is equal to one. For this reason, Cl

should be large enough to allow the regression curve reaching

the maximum or minimum value of the data points inside the

whole input domain. On the other hand, a too large value of

Cl could favor overfitting. The value set in (11) represents

a trade-off between these two requirements.

Hence, the only parameter that cannot be estimated from

the data set is the parameter ǫ. This should be proportional to

the accuracy required for the regression, as its optimal value

is linearly related to noise amplitude [7].

A. Training set selection

In general, the regression curve obtained with HSVR is of

better quality with respect to standard SVR. The drawback

of this scheme is the total number of SVs used, that is

significantly higher than in standard SVR.

Moreover, in HSVR the layers with a large value of σ

have a number of SVs similar to the layers with a small σ.

This appears in contrast with common sense, as fewer units

should be required to realize a reconstruction at a large scale

than those necessary to realize a reconstruction with a fine

level of detail. This is due to the fact that all the data points

distant from the regression curve by more than ǫ are selected

as SVs (6). Hence, in the first layer, when the regression

curve has a low frequency content, many data points will

result distant from the curve and will be selected as SVs,

thus leading to an unnecessary high number of SVs in the

first layers that features the largest scale.

To avoid this, after the configuration of each layer, a se-

lection step is carried out on the training data as described in

the following. We first notice that the distance of the training

points from the regression curve measures the suitability of

the curve to describe the information conveyed by the data

points. In this sense, the points the are too distant from the

regression curve cannot be ”explained” by the regression

curve computed up to that layer and their utility can be

questioned. This intuition has been confirmed experimentally

as we observed that the quality of the regression at a given

scale does not degrade by considering only the points close

to the estimated regression curve.

The configuration phase of each layer is then structured in

two training steps: the first one, carried out considering the

residual of all the training points, provides the best regression

curve at the considered scale, while the second one, carried



out only on the subset of the data that have been selected,

realizes an efficient approximation of the same regression

curve (the actual output of the layer).

To this aim, after the first step, the distance of the data

points from the current regression curve is analyzed and

only those points that are sufficiently close to the curve are

selected for the second step in which this subset of data

is used for the final configuration of the layer. To further

reduce the number of SVs used and the computational time,

we observe that the SVs inside the ǫ-tube do not contribute

to the regression [3]. At the same time, the points that are

very distant from the ǫ-tube can be considered as outliers

and rarely give meaningful contribution to the estimate of

the curve. For these reasons, an acceptable approximation of

the regression can be obtained using only those points that

lie close to the border of the ǫ-tube.

We explicitly remark that, similarly to [8][9] any recon-

struction error due to the reduction of the training set, will

increase the residual that is used to configure the next layer

of the architecture. Therefore such error is not critical, as it

will be taken care by the next layer.

IV. RESULTS

We explored the HSVR model with the space-varying

function, h : R → R, defined in (1) and plotted in Fig. 1a.

In order to simulate the effect of measurement noise, the

training dataset has been obtained sampling 252 points from
the function ĥ(·), computed from (1) as:

ĥ(x) = h(x) + u[−0.1, 0.1] (12)

where u[−0.1, 0.1] is a random variable uniformly distributed

in [−0.1, 0.1]. The performance has been evaluated using a

test set and a validation set, each composed of 500 points

sampled from h(·) using a uniform distribution.

The model has been evaluated in terms of accuracy of

the regression through the root mean square error (RMSE),

the mean absolute error (Errmean) and its standard deviation

(Errstd) computed over the test set, the number of SVs,

and the computational time. We have also compared the

performances of the hierarchical model (with and without

training set reduction) with the standard SVR.

The optimization problem in (4), that arises for both the

hierarchical and the standard SVR model, was solved through

LibCVM Toolkit Version 2.2 [10]. This software has shown

the same accuracy of SVMlight [11] (that is one of the most

used software packages for SVM) with a substantial saving

of computational time.

To decide when to stop the learning procedure, the valida-

tion error at the end of the configuration phase of each layer

is monitored. When it does not decrease for two consecutive

layers, learning is stopped; the last two layers in which

validation error increased are then discarded as they are

supposed to produce overfitting.

For sake of comparison we have chosen the best HSVR

model and the best SVR model, in terms of final validation

error. To this aim, we analyzed the results produced by a
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Fig. 2. Reconstruction provided by HSRV (a) and HSRV with SV reduction
(b) using ǫ = 0.075. The dashed lines limit the ǫ-insensitive region (i.e.,
the data points that lie in this region do not increase the cost function (3)).

TABLE I
PERFORMANCE

Errmean Errstd RMSE #SVs time [s]

HSVR 0.0254 0.0239 0.0349 1462 0.475

HSVR (red.) 0.0228 0.0212 0.0311 206 0.644

SVR 0.0979 0.171 0.197 163 0.595

SVR with all the possible combinations of the following

parameters, ǫ, σ, and C:

ǫ ∈ {0.0, 0.01, 0.025, 0.05, 0.075, 0.1, 0.2} (13)

σ ∈ {0.015, 0.0313, 0.0625, 0.125, 0.25, 0.5, 0.75, 1, 1.5, 2}
(14)

C ∈ {0.5, 1, 1.5, 2, 5, 7, 10, 20} (15)

and consider the model that produced the lowest validation

error. HSVR was configured only for the different possible

values of ǫ, considering the value of C set by (11) and σ set

equal to the size of the input domain.

Table I reports the accuracy of the different models and

the associated reconstruction is shown in Figs. 2a-b, and 3.



0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

2

2.5

3

SVR (ε = 0.05, σ = 0.0313, C = 20)
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Fig. 4. Comparison of the performance of the SVR and HSVR models, in
terms of (a) mean test error, and (b) number of SVs used with respect to the
value of ǫ. For reference, the value of ǫ has been reported as a dot-dashed
line.
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Fig. 5. Reconstruction operated by the different layers of the HSVR with
reduction as obtained after the first (dashed line) and second (continuous
line) configuration steps. The points of the residual (i.e., the training points
for the layer) are reported as dots. The SV reduction has the effect of
smoothing the regression in the first layers, but it tends to disappear in the
last layer, where the two curves are almost coincident.

The accuracy and the number of SVs as a function of ǫ

are shown in Fig 4. Notice that the Errmean is smaller than

the ǫ value; this means that the data points, on average, lie

inside the ǫ-tube around the curve.

To further investigate the behavior of the hierarchical

models, we analyzed the reconstruction operated by each

layer and reported in Table II. The regressor obtained at

the different layers is plotted in Fig. 5. Lastly, the impact

of the reduction of the SVs number in each layer is also



TABLE II
DETAILS OF THE HSVR MODELS (ǫ = 0.075)

HSVR HSVR red.

# Layer Errmean Errstd RMSE #SVs (tot.) Errmean Errstd RMSE #SVs (tot.)

1 0.463 0.341 0.575 237 (237) 0.475 0.363 0.597 4 (4)

2 0.455 0.339 0.567 239 (476) 0.454 0.346 0.570 5 (9)

3 0.405 0.375 0.552 231 (707) 0.463 0.339 0.573 6 (15)

4 0.352 0.367 0.508 216 (923) 0.408 0.367 0.549 9 (24)

5 0.284 0.366 0.463 195 (1118) 0.340 0.423 0.543 14 (38)

6 0.197 0.321 0.377 160 (1278) 0.233 0.356 0.426 35 (73)

7 0.0759 0.179 0.194 115 (1393) 0.100 0.256 0.275 63 (136)

8 0.0254 0.0239 0.0349 69 (1462) 0.0228 0.0212 0.0311 70 (206)
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Fig. 6. Evolution of the test error achieved by the HSVR models as the
layers are inserted.

shown in Fig. 5, where the reconstruction before and after

the reduction is reported. The test error in the two cases as

a function of the number of layers is reported in Fig. 6.

V. DISCUSSION

The actual dataset used to explore the model has been

chosen because it is very difficult to obtain a good gen-

eralization using a single scale function as the basis for

the approximation space. In fact, as shown Table I, the

best regression curve obtained with the best combination of

C, σ and ǫ provided by the single scale SVR achieves a

test error of 0.0979, while the HSVR models reach 0.0228

and 0.0254 (with and without SVs reduction, respectively)

with an accuracy improvement of 429% with respect to the

standard SVR.

The source of the higher error of SVR is evident compar-

ing Fig. 3a, which reports the best regression curve obtained

by SVR, with Figs. 2b, which report the best regression curve

obtained by the hierarchical models. It can be clearly noticed

that the SVR fails in generalizing the behavior of the dataset

both in the smooth (but scarcely sampled) and in the highly

variable regions, as the scale of its kernel (σ = 0.0313)
causes overfitting in the smooth region, while it is unable

of approximating the points when the frequency content of

the dataset increases. On the other hand, the two HSVR

models provide very similar regression curves, as it can be

noticed comparing Figs. 2a and 2b. Besides, as the average

test error is below the ǫ value used in the configuration phase

(ǫ = 0.075), most of the training points are enclosed into the
ǫ-tube. Namely, they are 183 and 181 (without and with SV

reduction, respectively) while in the SVR model, only 89 are

contained inside it. Similar results are obtained also for the

test set, where 478 for both HSVR models lie into the ǫ-tube.

As shown in Fig. 4a, the test error of the HSVR models is

well below the error of the SVR for every value of ǫ tested:

the accuracy of the HSVR model is clearly higher at all the

values of ǫ, even considering the best combination of C and

σ for the SVR for each value of ǫ.

Fig. 4b depicts the efficiency of SVs reduction. In fact,

the number of SVs employed by the HSVR model drops of

about 1/7-th of the number of SVs used when SVs reduction

is not applied. The saving in the number of SVs, is paid with

an increase in the computational time. However, as shown in

Table I, the increase of 36% in the configuration time is worth

a 610% saving in the number of SVs. Moreover, both the

number of SVs and the computational time compares well

with the corresponding figures of the traditional SVR (Ta-

ble I) when SVRs reduction is applied. These considerations

are confirmed by the data reported in Table II. The layer-

by-layer average test errors of the HSVR with and without

reduction are similar and do not exceed the value of ǫ. The

number of SVs of all but the last layer is much larger when

SVs reduction is not applied. Hence, it is clear that most

of the SVs employed in the first layers, when no reduction

is applied, is wasted in the vain attempt of approximating

details with a kernel that operates at a too large scale.

On the contrary, as can be noticed by observing Fig. 5, the

reduction of the SVs smooths the reconstruction operated by

each layer. However, the difference between the regression

curve obtained with and without reduction is added to the

residual, which is passed to the next layer and it is therefore

recovered by higher layers. This difference becomes smaller

and smaller as new layers are added, and, in the last layer,

the two curves are almost coincident.

These qualitative considerations are confirmed by the plot



in Fig. 6. Here, with a continuous line, the test error obtained

by the HSVR, in which all the layers are configured without

the SVs reduction is used as a reference. This accuracy is

very similar to that obtained by applying SVs reduction in

the previous layers but not in the current one (dashed line).

This accuracy is higher in the intermediate layers, than that

obtained by reducing layer by layer the SVs.

In this respect, the number of layers may be critical. Differ-

ent strategies can be used to stop the learning procedure. If no

a-priori information is available, validation error guarantees

that good generalization capability is obtained. Otherwise,

we can stop learning when the error on the residual drops

below the given threshold: this can be for instance associated

to measurement noise [9].

The value of C has been set according to the range

of the regression curve in (11). The factor J has been

experimentally set analyzing different data set. Although its

optimal value depends on the particular data set, it has been

verified that results are robust with respect to variations of

J , while its value is much more critical for standard SVR.

We are currently investigating the applicability of HSVR

to real-data models both of dense data points like those

available from [12] and sparse multi-variate data points like

those contained in [13]. Preliminary results show that these

observations still hold. The HSVR model outperforms the

SVR model, when the data has different frequency contents

in different regions. In this situation, exploiting multiscale

regression results into a large saving in resources, better

approximation , and large saving in computational time as

it avoids the exploration of the parameter space. Otherwise,

the use of our model still allows to save computational time,

while accuracy and number of SVs is comparable.

In principle, the learning schema can work with kernels

other than the Gaussians. However, the Gaussian kernel

has two main properties: the scale parameter, σ, allows

shaping the kernel such that the SVs are sensitive to different

frequency ranges, and the non orthogonality, which allows to

recover in the next layers the possible reconstruction error

left by the previous layers. Besides this, most optimization

engines like LibCVM, used here, suppose Gaussian kernels.

Although in principle other kernels that enjoy the above

mentioned properties could be used, adequate optimization

engines should be developed, that goes beyond the aim of

this work. The use of different kernels will be investigated

in future works.

VI. CONCLUSION

A Hierarchical Support Vector Regression model is here

presented and applied for generalizing a noisy synthetic

dataset. The proposed hierarchical model allows a more

accurate reconstruction thanks the use of a set of kernels

at different scale. Moreover, the HSVR can be enriched by

a SVs reduction procedure which allows for obtaining the

desired regression curve without substantially increasing the

computational resources required by a standard SVR model.

Besides with the presented model the problem of choosing

the parameter of the SVR is heavily reduced.
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