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Abstract – The analysis of granulometry of substances is relevant in

a great variety of the research and industrial applications. Unfortu-

nately, image-based algorithms for granulometry analysis are difficult

to tune and validate. In a typical setup, one or more cameras acquire

images of a scene with a great number of objects or particles that

must be measured. The distribution of the sizes/shape characteristics

of the elements are the common output of such systems. The creation

of supervised image database where the coordinates of all elements

are known is very important and it allows for testing in a suitable

manner the final size/shape distribution of particles produced by the

image processing system with respect to the real distribution. Due to

the great amount of objects or particles in the images, it is not often

convenient, or even impossible, to individually measure each single

objects in order to test the capability of the image processing system

to locate and measure the elements (creation of a supervised dataset).

One possible solution encompasses the creation of a synthetic image

dataset where the position of each elements is known a priori. In this

paper we propose a virtual environment to create and test an image-

based granulometric system based on the 3D engine Blender. Results

are encouraging and show the effectiveness of the proposed method.

Keywords – Granulometry analysis, virtual environment, synthetic

image creation.

I. INTRODUCTION

Granulometry analyzes a population of particles in order to

estimate the distribution of the sizes of the particles. This task

has a relevant importance in a great variety of industrial ap-

plications and in many research fields. Applications of granu-

lometry analysis can range from the medical and pharmaceu-

tical sector to the food sector, papermaking and coating, basic

materials production and in many innovative applications [1]

[2] [3] [4]. Often, the properties and the characteristics of the

final products are strongly correlated to the distribution of the

shapes and sizes of the particles composing the mixtures and

ingredients used in the production [5] [6].

Up to now, the most common method to estimate the granu-

lometry is performed by a mechanical division of the particles

using vibrating sifters, followed by a weighting operation of

the obtained partitions. As the analysis is made by human ex-

perts on a single sample of the production, this kind of estima-

Fig. 1. Examples of input images for vision-based granulometry analysis.
Clockwise: desert sand, falling pine tree chips, falling coffee seeds, red and
white blood cells from microscope imaging system, oil sands on conveyor

belt, heterogeneous wood chips for wood panel production.

tion suffers of many drawbacks: (i) it is slow and (ii) it presents

a not standardized accuracy due to the operator’s capabilities or

the correct application of the measurement procedures.

Vision-based systems face the problem of the granulometry

analysis by estimating the distributions of the objects present

in a region of interest of the acquired image. In this case, the

procedures can operate without contact and the analysis can

be fully automated. Commonly, the systems can work on sin-

gle amount of the product extracted from the production line

(spin-off approaches) or directly on the production line (in-line

approaches). One typical setup of this systems encompasses a

camera placed directly above the surface where the elements to

be acquired are deposed (e.g., a top view of a conveyor belt).

Different setups can acquire the particles during a short free-

fall from a surface to another. Fig. 1 shows examples of im-

ages taken during granulometry analysis in different applica-

tions using the top-view and free-fall setups, and an example

of the distribution of cells in a classical microscope blood im-

age. It should be noted that the classical granulometry images

present some elements of complexity: for instance, the objects

can be superimposed and their shapes have an high degree of

variability.

Most of the times, it is practically unfeasible to locate and
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measure all the objects present in the scene. Hence there is no

proper reference to estimate the accuracy achieved by an im-

age processing algorithm applied to the granulometry analysis.

Therefore, a proper comparison of different algorithms is hard

to be performed.

In order to test image-based granulometric systems, we pro-

posed to generate a dataset of synthetic images containing re-

alistic particle distributions. In particular, the paper describes

how it is possible to set up a virtual 3D experiment which al-

low for creating a complex and realistic particle disposition on

a surface, where the positions and the size of every particle

at the end of the synthetic simulation are known. Then, it is

possible to shoot a picture of the virtual scene addressing the

production of a image where the coordinates and the properties

of each objects are known. Hence, the produced image dataset

is a proper tool that allow to tune and test any algorithm for an

image-based granulometric analyzer.

The structure of the paper is the following: in the next sec-

tion the previous works available in literature are discussed,

then the proposed method is presented, and in the last section

the experimental results are analyzed.

II. PREVIOUS WORKS

In most vision-based granulometric systems the process of

the acquired image is structured in two steps: in the first step,

the image is segmented, producing a description of the objects

that compose the scene depicted in the acquired image, while

in the second step the objects’ properties are evaluated, obtain-

ing an estimation of their distribution. The more objects have

been measured, the more confident will be the estimation of

the size distribution of the particles [3][6]. In biological ap-

plications similar approaches are used, and they are based on

successive structural morphological openings of the segmented

image [1][2][4].

The image-based granulometry systems must face with two

main problems:

• The particles distribution is measured as the number of

objects which belongs to a specific size range expressed

in pixels (size granulometry), but, more commonly, the

distribution is expressed as the weight fraction of the ob-

jects which belongs to the specific range of sizes (weight

granulometry).

• The accuracy of such systems is difficult to be estimated

under realistic conditions or assumptions.

Concerning size granulometry, the solution requires a proper

calibration algorithm capable to correctly map the pixels of

the acquired image into the real size of the particles, taking

into account perspective deformations and the optic aberra-

tions. Then, if weight granulometry is requested, it is needed a

proper model capable to map the selected objects in the image

in the corresponding weight, taking into account the shape of

the particles and the density of their material. This additional

step can be a valuable source of errors in the final estimated

Fig. 2. Examples of manual classification of input images by using a
graphical user interface. The zoom subplot on the right enlightens the

difficulty of correctly identify the terminal points of elements the scene is
composed by, which introduces measurement error.

distributions. In the following of the paper we assume the size-

to-weight model as given and we focus our attention on the size

granulometry.

The difficulty to obtain proper supervised data concerning

the coordinates and the measurements of all the objects present

in the scene, often produce the absence of a a proper reference

to estimate the accuracy of the proposed systems. That is true

also for the segmentation phases (identification of the single

elements with respect to the background), as like as for the

measurement phase of the properties of the elements (such as

sizes or area).

In some cases the reference dataset can be create by man-

ually locating the elements in the image by using a Graphical

User Interface, but this approach is very unfeasible for a large

image dataset. Besides important errors can be introduced.

Fig. 2 shows the application of the manual approach in the case

of wood chips. It is notable that the identification of elements

is not a trivial task and identification errors can happens (miss-

ing elements, false positive and negative identifications, errors

in the objects’ edge identifications).

The usage of synthetic images for the validation of image-

based granulometry algorithms has been introduced in [7]

where a very simple approach has been used for obtains im-

ages of a group of superimposed elements. In this case, only

the spherical shape has been introduced, and only the final dis-

tribution of element’s radii has been considered in the valida-

tion phase.

In the following we present a complete methodology to ob-

tain a dataset of realistic synthetic images where all the pa-

rameters of objects are available for the validation phase and

capable to dispose the elements in a natural fashion as it can be

commonly found in granulometric applications.

III. THE PROPOSED METHOD

In this section a method to create a photorealistic image

dataset for granulometric analysis is presented. In our method

we use a system that simulates an experiment where numerous

particles fall on a flat surface (Fig. 3) and generates a picture
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Fig. 3. Virtual experiment for the creation of one synthetic image.

of the resulting scene when the particles reach a stable state.

The produced images represent a set of numerous particle, dif-

ferent in size and shape superimposed on a flat surface. Each

synthetic image aims to reproduce a real image acquired in a

typical granulometric analysis setup.

A. The procedure and the simulated environment

The proposed method produces the granulometric image

dataset by following four main steps:

1. the definition of the statistical distribution for each fea-

ture defining the elements composing the scene (sizes,

shapes, surfaces and materials);

2. the generation of the set of elements and their initial po-

sitioning in the scene;

3. the dynamic simulation of the set of elements created in

the previous step;

4. the photorealistic rendering of the resulting scene ob-

tained when the particles reach a stable state.

In the first step, the user defines the properties of the mate-

rial which is interested to analyze. All the features that will

be used in the creation of the elements can be directly enumer-

ated. When this approach is unfeasible due to the large number

of elements required, the statistical distribution of the elements

features can be described by the user by using a model of the

probability density. For example, the user may require 10000

elements with the major axis length, L ∼ |N(µ, σ)|, for suit-
able values µ and σ. Similarly, the user may specify the sta-

tistical laws that rule the other axes length, or other elements’

features. The second step consists in the generation of the geo-

metrical models of the elements and their positioning in a scene

in a format suitable for the following simulating step (Fig. 3).

That can be considered as the initial condition of the particles

set for the next step: a dynamic simulation modifies the in-

put scene by applying to the elements a gravitational force and

taking into consideration the collision interactions. When the

scene simulation reaches a stable state, it is possible to ren-

der the scene (the last step of our method). There are many

rendering options valuable for the granulometry analysis; they

mimic the acquisition techniques and setups used in real image

processing application. Among them it worth to mention the

following.

• Stereoscopic views: the images are captured from two or

more different point of views, allowing to reconstructing

the z-axis of an object of the scene by using the disparity

in the position of the object in the captured images.

• Stroboscopic views: the images are captured from a single

point of view using different light conditions; this tech-

nique allows to disambiguate the shadows and reflexes

from the darker and the lighter parts of the objects.

• Range images: this type of image are produced by 3D

scanners; each pixel of a range image represents the dis-

tance of the captured object from the acquisition device.

The presented method is general and it allows for a wide range

of simulation conditions. As a consequence, it is capable to

test a large variety of image-based algorithm for granulometry

analysis reproducing the specific physical situation exploited

by the different methods.

B. The implementation of the method

The first two steps of the method described in Section A can

be implemented by using different description paradigms and

tools. Among them, an ad-hoc graphical tool would probably

be the best solution, as it would provide usability and inter-

activity, but it has the drawback of being rigid. Several envi-

ronment and programming language oriented to mathematical

and statistical computation (such as Matlab, Mathematica, R)

can be also used to describe the statistical distribution and the

geometrical properties of the elements of the scene. At the

end, the scene may be generated by a program written in any

scripting or programming language: this solution allows the

maximum flexibility for describing the statistical law that rules

the elements’ aspect and properties, but has the drawback of

necessitating programming skills and may require more time

for subsidiary activities (e.g., for debugging).

The third step can be performed by any decent physical sim-

ulator. Factors that should drive the choice of the simulator are:

(i) the efficiency and (ii) the accuracy of the computation, and

(iii) the ability of interacting with the tools that implement the

other steps of the method. This last point includes the possibil-

ity of importing and exporting the scene description in formats

suitable to be processed by the other tools.

The fourth step can be implemented by using a render en-

gine for creating photorealistic images. Valuable features of

the renderer are the variety of the available rendering tech-

niques (e.g., photorealistic, shadowless, or depth-map), and

the possibility of using it as a tools of an 3D modeling envi-

ronment, as it simplify the setting up of the virtual lights and

cameras.
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(a) (b)

Fig. 4. Objects’ size distributions. In panel (a), a cubic shaped population
that has the axes’ size uniformly distributed. In panel (b), a spherical shaped

population that has the axes’ size proportional.

We chose to implement the system using Blender [8], an

open source suite for creating 3D contents. Blender’s inter-

esting features comprises the Blender Python [9] API, a col-

lection of Python modules that allows to access to part of the

Blender’s internal data and functions, and an integrated physics

simulations engine, Bullet [10]. Exploiting the capabilities of

Blender, is possible to implement all the four steps that com-

poses the proposed method.

The first two steps of the proposed method (proper genera-

tion of the objects and the scene) has been realized by a Python

script that can be called from the Blender environment. The

script can be easily customized and extended. A GUI allows

to set the main parameters of the procedure and the follow-

ing objects’ properties: the objects’ shape, the cardinality of

the objects, the objects’ size distribution, the container’s size,

and the physical properties of the objects. It should be noted

that, although in principle there are no limits to the complex-

ity of the shape of the objects, it impacts on the computational

cost and the accuracy of the simulation. For this reasons, we

used only cubic or spherical shaped objects. However, this is

not a limit for the effectiveness of the methodology. Another

factor that can increase the computational cost of the simula-

tion (which is usually the more time demanding phase of the

methodology) is the number of objects.

The statistical law that rules the distribution of the objects’

size allows to control both the similarity of the objects of the

scene and the volume of the objects (Fig. 4). In particular,

we chose to control the similarity of the population by regu-

lating the variability of the proportions of the three axes of the

objects, while the volume of the objects is regulated by the

distribution of the main axis’ length. These laws are highly

customizable for covering a large spectrum of working condi-

tions and materials. We experiment two distributions of ob-

jects’ size: uniform and inversely proportional to the volume.

The populating script generates a scene with the objects po-

sitioned at different heights over a proper container. The pur-

pose of the container is to bound the objects when they fall

during the simulation. When the scene has been generated, it

is automatically loaded in the Blender environment; this allows

to visually inspect the initial scene (Fig. 5).

The evolution of the scene during the simulation is governed

Fig. 5. After the generation of the scene.

by the physical properties of the objects. In particular, the two

main properties are the object’s mass (which impacts on the ef-

fect of the forces during the simulation) and its bounding shape

(usually simpler than the object’s shape) used by physical en-

gine to detect the object collisions (which impacts on the accu-

racy of the simulation). Although Blender supports the simu-

lation of elastic bodies, we choose to set all the objects as rigid

bodies.

Once the scene in Blender is populated by the objects, the

third step of the method (simulation) can be performed. The

user can start the simulation and record the trajectory of the

objects using the proper Game functions. The 3D graphical

interface allows to observe the evolution of the scene from dif-

ferent points of view. It should be noted that Blender simpli-

fies the use of the Bullet simulator. However, if a fine tuning

of the simulation parameters would be necessary, Bullet can be

used as stand-alone simulator which can be fed by the scene

exported from Blender in the COLLADA format [11].

When the objects in the scene reach a stable equilibrium, the

user can stop the simulation and generate the synthetic images

according to desired type of output (fourth step, rendering).

Several elements affects the rendering results: lights, virtual

cameras, virtual material, and rendering algorithm. Several

acquisition techniques can be easily simulated. Stereoscopic

images can be acquired rendering the final scene from to dif-

ferent positions (e.g., using two virtual cameras). Similarly,

stroboscopic images can be taken by switching on several light

sources, one for each image (Fig. 6). Range images can be

obtained from the Z-depth channel of the rendered image.

Properly mixing virtual material, light sources and render-

ing algorithm allow to obtain images of the same scene at dif-

ferent degrees of photorealism (Figs. 7 and 8). For instance,

non-realistic rendering can be useful for generating shadow-

free images which can be used for investigating the robustness

of a granulometric system to the environmental conditions. Be-

sides, shadeless material may used for obtaining images where

the size of the object is encoded in the color of the object itself

(which can be useful when occlusions occur).

Finally, as the 3D coordinates of each object are known,

it is possible to exactly locate all the particles from the top

view, and, for instance, evaluate the performance of the manual
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Fig. 6. The same scene illuminated with two different light sources simulates
the acquisition of a pair of stroboscopic images.

(a) (b)

Fig. 7. Two different synthetic images generated from the same scene. (a)
Non photo-realistic rendering. (b) Marble textured objects.

classification of the rendered images.

IV. CONCLUSIONS

The paper presented an innovative virtual environment for

the creation of supervised datasets of synthetic images for tun-

ing and verifying the accuracy of image-based granulometry

systems. The implemented system produces images by simu-

lating an experiments with numerous particles falling on a flat

surface. Exploiting the capability of the 3D engine Blender to

simulate the interaction of the moving elements of the scene,

it is possible to simulate the final configuration of particles de-

posed by the simulation on the surface. Then we discussed

how to setup a proper illumination and how to shoot virtual

pictures of the final configuration of the particle. Since the 3D

coordinates of all particle are known, it is possible to exactly

locate those ones are visible from the top view. The obtained

dataset of images is very realistic, and the relative supervised

coordinate data can be effectively useful to test and tune image-

based system for granulometry analysis. Besides, the method-

ology allows to obtain images of the same scene as they were

captured using different acquisition techniques, allowing the

proper comparison of the performances of granulometric sys-

tems based on different image processing techniques.
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Fig. 8. A photo-realistic rendering of the final scene. In the bottom panel, the
real particles size distribution (left) and the manual estimated one (right) are

reported.
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