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Abstract - In this paper, a technique for assessing both working and
healthy condition of Water Jet System Nozzles is presented. The
proposed classifier is based on the DFT of the electrical power
signal. At this aim it will be shown that the electrical power signal
support all necessary information to characterize the working
condition of the system and to predict the presence of an incoming
faulty behavior. For the sake of clearness, a brief description of a
Water System is also presented.
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I. INTRODUCTION

Water Jet and Abrasive Water Jet Technology (WJ/AWJ)
is often used in application fields where particular
manufacturing operations on special material are required
such as cutting hard to machine materials or carrying out
operations such as turning and milling. In fact, the AWJ
cutting process is a cold process as the water takes heat away
from the interested area of the work piece. In every situation
where it is necessary to carry out operation without damage
the metallic material structure of the piece under work the
aforementioned technology is very useful and in many case
the use of it is mandatory.

The efficiency of the Water Jet system is influenced by the
status of the water nozzle. This component plays an important
role in the definition of the efficiency, measured as the ratio
between the available fluid-dynamic power and the electric
active power from the network. Starting from this
consideration it would be noted that a monitoring activity
devoted to evaluate the efficiency of the nozzle is mandatory
to predict the efficiency of the AWJ system.

Starting from the simple consideration that the acquired
electric signals gives useful indications for diagnosis
purposes [1], it is a little step to consider a continuous non-
intrusive on-field monitoring activity during all the plant
components' life.

It would be shown that different power consumptions lead
to differences, sometimes relatively large, in terms of cutting
performance and also of operating costs of the system.
Furthermore, it is shown that it is possible to extract
information on the behavior of the AWJ system from of the

power signal and this could allow to detect and foresee wrong
operating conditions.

The aim of this paper is setting up a technique for
extracting information from the electrical power signal about
the working condition of the system. In particular, the interest
is focused in both identifying the nozzle type and its working
condition by means of an ad hoc developed signature for each
nozzle in each working condition which allows the correct
classification.

The availability of suitable signatures allows to build up a
nozzle footprints database. Such a database constitutes the
knowledge for the automatic recognition of the mounted
nozzle and its working condition. All these aspects will be
further discussed in the following sections. In particular in
Section II a brief description of a WJ/AWJ system has been
presented, in Section III an introduction concerning Pattern
Recognition has been presented. The classification tool is
presented in Section IV while the Section V is devoted to
report the experimental results.

II. PROPOSED SYSTEM ARCHITECTURE FOR
CLASSIFICATION POURPOSE

The AWJ is characterized by phenomena belonging to
different fields of physics and a brief discussion, using the
schema in Fig. 1, could be useful to the reader. So, for the
sake of clearness, the technical basis of the AWJ technology
is briefly recalled here even if it was reported even in
previous papers [1-12]. Considering a complete Water-jet
Cutting System, electrical energy is provided at first to the
400 V - 50 Hz three-phase induction motor which pressurizes
the oil by means of the radial pistons oil pump. The oil circuit
pressure could reach a value of 20 MPa. The oil provides its
hydraulic energy to water by means of the double-acting
intensifier, as depicted in following Fig. 1. It would be noted
that, in this application, the energy means of transport
changes and, due to the increasing of pressure (which reaches
400 MPa), the compressibility of water has to be considered.
An accumulator reduces the water pressure fluctuations [1-6].
When water reaches the cutting head and it flows through the
orifice, the pressure energy changes into kinetic energy and a
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water jet is formed. Moreover, when abrasive water jet is
considered, solid particles join the water jet inside the mixing
chamber, being entrained by the air flow generated by the jet
itself. In this particular case, the kinetic energy of abrasive
particles is dramatically increased thanks to the exchange of
momentum with water inside the mixing chamber and the
focusing nozzle.

The AWJ cutting quality typically depends on the process
parameters selection (water pressure, abrasive mass flow rate,
abrasive granulometry, cutting head feed rate, standoff
distance), as well as on the fluid-dynamic parameters, such as
the orifice and focuser diameters and the mixing chamber
geometry. Besides the aforementioned parameters,
considered as directly valuable variables, some external
factors exist and play a non negligible role on the cutting
quality in terms of roughness and waviness (such as water
pressure fluctuation, due to the alternate motion of the
pumping system, abrasive mass flow rate fluctuation,
workpiece and fixturing system vibrations, granulometric
distribution of the abrasive particles).
A DSP-based system has been designed, realized and

tested in order to measure the interesting parameter of the
complete water jet cutting system such as oil pressure, water
pressure, and piston velocity and so on.

Furthermore, an Analog-to-Digital conversion board with
simultaneous sampling up to 200 kHz sampling rate on a
single channel with a 16-bit resolution has been utilized in
order to acquire electrical motor signals.

Voltage and current transducers have been specially
realized in order to:

1) adapt the signal levels to the ADC and,

2) ensure an adequate insulation level among channels
and between the supply and measuring devices over a
wide band.

III. PATTERN RECNOGNITION

Object recognition, description and classification are very
important tasks for the daily life [7], [8], [9]. In particular,
Pattern Recognition (PR) is the scientific discipline dealing
with methods for both object description and object
classification. Applications of Pattern Recognition
Techniques are numerous and cover a broad scope of
activities, ranging, for example, from satellite images analysis
to biological signal classification, from traffic analysis and
control to biometric recognition, from seismic analysis to
surveillance systems. It is important to note that the patterns
to be analyzed and recognized can be signals, images, plain
tables of values or, finally, even an ad hoc developed
signature evaluated starting from acquired signal from the
field. Pattern recognition approaches are based on the notion
of similarity: between two different object or between an
object (i.e., signal or image) and a reference object (the target
or prototype object).

In the present work the Pattern Recognition activity is
performed by means a pre-elaboration of the instantaneous
power signal. A diagram of this signal is depicted in Fig. 2.
Starting from these considerations, the classification task is
performed using the features or attributes distinctive of the
object, i.e. load current signal during a well specified working
condition. The collection of the features that characterize the
object of the classification is called signature or footprint of
the considered object.

The aim of assigning an object to a class is a typical
example of a classification task. In particular, in the present
case it is possible to define a vector with specific features,
such as:

X = [X1 X2 ... XN I (1)

with N features named x. A simple example could be useful

Fig. 1. Main components of the water jet cutting system (scheme in the middle by Ingersoll Rand; pictures by Politecnico di Milano).



to make this concept clear. For example, if only two features
are used during the classification task, the situation can be
represented on a plane as shown in Fig. 3. In general, a
feature vector is a point in the feature space.

The main goal of a classifier is to divide the feature space
in regions assigned to a classification classes: the decision
regions. In a multiple class problem - as the discussed in the
present work- several decision surfaces can be present and
arbitrarily complex decision regions can be expected. In this
situation it is not possible to use a simple graphical
representation due to the fact that a multidimensional space
would be necessary. The configuration of the classifier has to
enforce the separation of the classes. It can be obtained in
essentially two ways: (1) absolute separation: in this case the
features are selected in such a way that each class can be
separated from all the others, such as reported in Fig. 4 for a
simple two dimensional example; (2) pair wise separation:
when the features are selected considering the separation of a
pair of classes. This last approach can be used to refine an
already configured classifier which presents an overlapping
pair of classes, e.g., as the situation represented in Fig. 5.

As the footprint of an object is generally more simple and
compact than the object itself, processing in the features
space is computationally less expensive. Hence, a feature
extraction procedure has to be operated on the considered
objects. This task is carried out exploiting the previous
knowledge of the object or problem. Patterns, measurements,
attributes or primitives derived from the acquired signals can
be useful features. The feature space is also called the
"representation space". The representation space has data-
driven properties according to the defined similarity measure.

The choice of the features can be based on the domain
knowledge given by experts or can be made using some
feature selection technique. The deep knowledge of the
mechanics and the physics of the particular machinery used
may help to choose well performing features, but their use
may not be generalized to the class of devices.
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Fig. 5. Pair wise separation: the overlapping classes have to be separated.

IV. CLASSIFICATION AND DIAGNOSTIC TOOL

In [1] the authors have just shown the strict correlation of
the load current and instantaneous power signals to the water
pressure values and their behaviors; in this way any operating
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conditions of the monitored system appears on the main side
as a variation in the motor current and, in the same way, in
the instantaneous power (see the aforementioned Fig. 2). In
fact, it is possible to note that the measured power profile
shows a modulation strictly correlated to the motion of the
piston; moreover, it is possible to observe that the shapes of
the power signal depend by the working condition. Signals
obviously depend also on the water pressure level and on the
changes of machine status.

For this reason, an analysis of the variation of the profiles
from the reference condition of the instantaneous power
signal can be considered, and it has been so considered in that
paper, as a good support for monitoring the efficiency and
effectiveness of the system.

In the present work we explored a different method for
characterizing the power signal with respect to the different
working conditions. The proposed method is based on an
analysis of the shape of the Discrete Fourier Transform
(DFT) of the power signal. Hence, the characterizing features
of the power signal are obtained by a processing operated in
the frequency domain. The features, fi used for the analysis
are the first k coefficients of the DFT of the power signal:

fi FFi), i=l,...k (2)

where

F IIDFT (P )II (3)

is the normalized DFT of the instantaneous power signal, P
(an example of the Power signal is shown in the previous Fig.
2). For this application, we chose k = 15, as it allows to use
the most significant coefficients (the performance of the
system does not change for a greater value of k).
For each class, j, identified by the type of orifice, its diameter
and the working pressure, we compute the class footprint,f(j),
as the average of the feature vectors, Fl, (computed as in (3))
of the signals belonging to the class, {P1 }:

I nj

fi (i) = F, ( i), i = 1,...... . .......,k(4)
ni 1=1

where nj is the number of sample data for the j-th class,

n = {Pjj (5)

The ensemble of the class footprints constitutes an Euclidean
classifier: when a new signal has to be classified, its footprint
is compared to each class footprint and the new signal will be
assigned to the class whose footprint will result the closer to
the new signal footprint. In particular, the classifier task is
realized using a minimum distance criterion. The utilized
classifier is a linear task and it can be therefore simply
implemented on simple industrial microcontroller for
example. This is mandatory incase of application in industrial

environment where simplicity and low cost are very
important, even if in the present case this constrain are not
mandatory.

Two kind of classification error may, obviously, occur in
this activity:

Type 1 error: when a signal belonging to a given class, i,
has a footprint more similar to the footprint of a different
class, j;

Type 2 error: when a signal belongs to an unknown class.

The first type of misclassification occurs when the classes are
overlapped in the features space, and can be usually avoided
using more features (or more meaningful features). This
statement do not means that in any case it is possible to
obtain classes with a separation region. The second type of
misclassification is harder to cope with. A common approach
is to exploit the data used for the configuration of the
classifier for obtaining a more accurate description of the
region of the space occupied by each class. We chose to store
in the classifier not only the average of the signals' footprint,
Fl, but also the mean and the standard deviation of the
distance of the class footprint from the signals footprint, 9,
and o,, respectively. This allows to estimate the region
occupied by the l-th class as the (hyper)sphere centred in F1
having the radius equal to 5, + Au, (for an appropriate value
of 2); when a footprint will result external to each of these
sphere, the corresponding signal will be classified as
unknown.

Observing the signal which refers to the same orifice
diameter (Fig. 6), it is apparent that they share the same
pattern warped by an unknown scaling operator that depend
on the pressure. In the frequency domain, this behaviour
results essentially in a scaling of the frequency components,
and hence, in the scaling of the features position. Hence, it is
possible to devise only a class for each orifice, whose
footprint will be constituted by a surface, instead of a vector.
Such feature surface can be constructed by distributing the
feature signals along the pressure axis, as reported in Fig. 7.a,
and properly interpolating this signal. The simpler feature
surface can be obtained by linearly interpolating the class
signatures (Fig. 7.b and Fig. 7.c). The points belonging to the
resulting feature surface can be described as Sj(p), where the
index i refers to the DTF coefficient (i = 1,...,k ), while p is
the value of the working the pressure.

For matching a sample, s, (which is a polyline) with the
classifier surface, Sj(p), (which is a linear mesh) the sample
can be translated over the surface along the pressure axis and
the distance of the sample from the surface can be defined as
the sum of the distance of the vertices from the surface:

Pbest = min(s - Si (p))2
p

(6)



This formulation allows to compute efficiently the best
matching pressure, by decomposing the optimization problem
in (6) in the linear optimization problems given by
considering the linear interpolation of two subsequent
signature. In fact, given two signatures a and b, referring to
the working pressure Pa and Pb, respectively, and an unknown
signal feature vector, s, the pressure that optimize (6), Pbest, is:

E di (Si - ai) + di Pa
Pbest Zd2 (7)

wei
i

where

di (bi - ai)

(Pb Pa,)

It would be note that the feature surface allows to classify
a signal for a known nozzle for an unknown pressure. This
feature is very important. In fact, even if a deep experimental
activity is mandatory, it is not possible to acquire data from
all possible values of pressure. The typical situation, in
industrial application, is the availability of data at 5-10
different working pressure, including the max pressure level.

The ability of the classifier to interpolate the non available
situation is mandatory and it is verified in different case of
studies as discussed in the following Section V.

V. EXPERIMENTAL RESULTS

The experimental results are obtained considering many

different case of study. For sake of simplicity, in this paper a

reduced set of tests are reported.
We tested the two kind of classifier described above

(Section IV): the single signature (with threshold) classifier
and the surface classifier. The dataset available for
configuring the classifiers is composed of 130 samples of the
power signal in 10 working conditions: nozzle with an orifice
of two different diameters (0.20 mm and 0.30 mm) for five
different values of working pressure (100, 150, 200, 250, and
300 MPa).

The test set has been composed by 2 sample for each of
the working conditions. Besides, to test the ability of the
single signature classifier to catch unknown working
conditions, we added six samples of an orifice made by a

different producer, operating in similar working conditions
(specifically, 0.20 mm/150 MPa, 0.20 mm/250 MPa, 0.30
mm/150 MPa). For the estimation of the hypersphere radius
we set A = 1.

The configuration error (i.e., the measure of the
misclassification occurred for the configuration dataset) has
been of about 0.77% (1/130), stating that a good separation of
the classes has been achieved. Furthermore, all the unknown
data were correctly classified as unknown, while all other
test samples error has been correctly classified (0% test
error).

To test the ability of the surface classifier to recognize
patterns that belong to the same orifice, but that operate in an
unknown working condition, we used, for each orifice
diameter, only the data related to the 100, 200, and 300 MPa.
Hence, the surface classifier is constituted by two surfaces,
similar to the one reported in Fig. 7.b. The test set has been
composed by 20 samples, 2 for each working condition
(including the intermediate pressures, 150 and 250 MPa).

Only 1 of 20 test samples were misclassified (wrong
diameter, although the relative error in the pressure
estimation has been of 3.57%). The mean absolute error on
the pressure estimation has been 8.81 MPa (with a standard
deviation of 8.67 MPa). Overall, the relative error in the
pressure estimation for the samples of working conditions
directly used in the classifier configuration (i.e., 200, and 300
MPa) has been 2.75%, while for the intermediate working
condition the mean relative error has been 9.79% (the only
misclassification belongs to this subset). This fact may
indicate that the linear interpolation of the class signatures
does not reliably describe the real features surface.

VI. CONCLUSIONS

In the present work we had shown that the electrical power
signal is greatly influenced by the machinery setup and the
working conditions. As the measurement of this entity is
much more feasible than the direct measure of the other
parameters which influence the working conditions of the
system, the exploitation of its relation may lead to an
automated method for revealing the machinery state and the
presence of (an incoming) faulty behavior.

This fact can be suitably exploited to increase the
reliability and availability of the system, thanks to the defined
diagnostic algorithm. The simplicity of the proposed
approach lead to consider the possibility of realizing a low
cost real time diagnostic system. Further develop in this
direction are now in progress.

The surface classifier may be improved by using a more
complex surface approximating technique.
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Fig. 6. The samples (a) and the footprints (b) of the same nozzle at different
pressures.

Fig. 7. The footprints of the same nozzle (see Fig. 6) at different
pressures may be used to build a pressure-independent footprint of
the nozzle.
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