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Abstract – The Hierarchical Radial Basis Function (HRBF) Network

is a neural model that proved its suitability in the surface reconstruc-

tion problem. Its non-iterative configuration algorithm requires an

estimate of the surface in the centers of the units of the network. In

this paper, we analyze the effect of different estimators in training

HRBF networks, in terms of accuracy, required units, and computa-

tional time.

Keywords – Radial Basis Function Networks, HRBF, kernel regres-

sion.

I. INTRODUCTION

A 3D scanning device measures the geometric properties

of a real object and produce a 3D model of the object itself.

This digitizing procedure is performed in two step: measuring

the position of some points on the object surface (sampling)

and processing the sampled data to obtain a representation of

the surface. In computer graphics, the most used paradigm for

representing the geometry of the model is the triangles mesh.

Subsequent processing may be carried out on the mesh to ob-

tain a more sophisticated representation in order to speed up

operations such as editing or visualization, or to diminish the

size of the representation.

Multiresolution representation [1][2][3][4] is widely used

for this scope as it represents the surface at different levels of

detail; it usually allows operating at the resolution required by

the specific application or local processing by computing only

a small fraction of the parameters that represent the surface.

The Hierarchical Radial Basis Function (HRBF) model is a

neural network paradigm that can be used for surface recon-

struction from a cloud of points affected by noise [5][6][7]. It

uses a linear combination of Gaussians to represent the sur-

face as an explicit function defined in the R
2 domain. As its

configuration procedure is not iterative and uses only local op-

erations, it is suitable to fast processing. The multi-scale adap-

tive scheme of the HRBF model adds Gaussians only in those

regions of the input domain that contain the surface details,

allowing a compact representation of the surface.

The configuration procedure requires an estimate of the sur-

face height in some points of its domain. This can be appar-

ently a non-sense as the aim of the network is the reconstruc-

tion of the entire surface. However, due to the robustness of

the configuration algorithm [7], the exact value of the func-

tion is not required, and a good estimate is usually sufficient

for achieving an accurated reconstruction [5]. Besides, once

configured, the network is able to generalize and to reconstruct

the surface on the whole domain, not only in the given surface

points.

Although the choice of the estimator does not affect the

asymptotic behavior of the HRBF approximation [5], its effect

may be important for real applications, as it can impact on the

accuracy, as well on the computational time and the compact-

ness of the final network. In this paper, we investigate the effect

of different estimators on the HRBF machinery. In section II,

the original formulation of the HRBFmodel is described, while

in section III the most used estimation methods are introduced.

A comparison of the results obtained with the different estima-

tion methods is carried in section IV. In section V the results of

the comparison are discussed, while in section VI conclusions

are drawn.

II. HRBF NETWORKS

Let us assume that the manifold to be approximated can be

described as a R
D → R function. This allows to consider the

input dataset as a height field: {(Pi, zi) | zi = S(Pi), Pi ∈
R

D, 1 ≤ i ≤ N}, and the manifold, output by the network,
will assume the explicit analytical shape: z = S(P ). The

output of a HRBF network is obtained by adding the output of

a pool of Radial Basis Functions (RBF) networks, organized

as a stack of hierarchical layers, each of which is characterized
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by a decreasing scale:

S(P ) =
L

∑

l=1

al(P ;σl) (1)

where σl determines the scale of the l-th layer, with σl > σl+1.

If we suppose that the units are equally spaced on a grid sup-

port and a normalized spherical Gaussian function, G(·; σ) =
1√

πσ2
D exp

(

− ||·||
2

σ2

)

, is taken as basis function, the output of

each layer can be written as a linear low-pass filter:

al(P ;σl) =

Ml
∑

k=1

wl,kG(||P − Pl,k||;σl) (2)

whereMl is the number of Gaussian units of the l-th layer. The
G(·) are equally spaced on aD-dimensional grid, which covers

the input domain of the data points: that is the {Pl,k}s are
positioned in the grid crossings of the l-th layer. The side of the

grid is a function of the scale of that layer: the smaller the scale,

the shorter is the side length, the denser are the Gaussians and

the finer are the details which can be reconstructed.

The actual shape of the surface in (1) depends on a set

of parameters: the structural parameters, which are the total

number, {Ml}, the scale, {σl}, and the position, {Pl,k}, of
the Gaussians of the l-th layer; and the weights associated to
each Gaussian: {wl,k}. Each RBF grid, l, realizes a recon-
struction of the surface up to a certain scale, determined by

σl (low-pass filtered reconstruction). Considerations grounded

on signal processing theory allow, given a certain scale, σl, to

set the grid side, ∆Pl, as σl = 1.465∆Pl and to determine

consequently {Pl,k} and Ml (and, hence, the total number of

Gaussians, M =
∑

l Ml) [8]. From these observations, the

weights {wl,k} are set equal to the manifold height in the grid
crossings: wl,k = S(Pl,k) ·∆PD

l . As the data set usually does

not include the {S(Pl,k)}, these values should be estimated.

We explicitly observe that, even if the S(Pl, k) were included,
they would be corrupted by noise and an estimate would be the

right solution. The data points that lie in an appropriate neigh-

borhood of Pl, k can be used to estimate S(Pl, k) as a weighted

average of such subset of data points, S̃(Pl, k). This neigh-

borhood, called receptive field, A(Pl, k), can be chosen as a

spherical region centered in Pl, k with the radius proportional

to the grid side, ∆Pl. A possible weighting function is:

S̃(Pl,k) =

∑

Pm∈A(Pl,k)

S(Pm) e
− ||Pl,k−Pm||

2

σ2

l

∑

Pm∈A(Pl,k)

e
− ||Pl,k−Pm||

2

σ2

l

(3)

which is strongly related to the Nadaraya-Watson estimator

and maximizes the conditional probability density when the

noise is normally distributed, zero mean [9] [10].

Although a single layer with Gaussians of very small scale

could reconstruct the finest details, this would produce an un-

necessary dense packing of units in all those regions which

feature large scale details. Moreover, there might even be not

enough points inside some A(Pl,k) to get a reliable estimate of

S̃(Pl,k) in (3). A better solution is to adaptively allocate the

Gaussian units, with an adequate scale, in the different regions

of the input data domain. This can be achieved by adding and

configuring one layer at time, proceeding from the layer featur-

ing the largest scale to the layer featuring the smallest one. For

sake of simplicity in the configuration stage, each new layer

will feature half the scale of the previous one. However, arbi-

trary scales could be used for the different layers.

All the layers after the first one will be trained to approx-

imate the residual, that is the difference between the original

data and the actual output of the network output by the already

configured layers. Hence, the residual, rl, is computed as:

rl(Pm) = rl−1(Pm)− al(Pm) (4)

and it is used for estimating the parameters of the l-th layer.

r0(Pm) = zm is also assumed.

The Gaussians of a new layer are inserted only where a poor

approximation is obtained from the previous layers. This is

evaluated, for each Gaussian, Pl,k, through an integral mea-

sure of the residuals inside the receptive field of that Gaussian,

A(Pl,k). This measure, which represents the local residual er-
ror, R(Pl,k), is computed as the l1 norm of the local residual

as:

R(Pl,k) =

∑

Pm∈A(Pl,k)

|rl−1(Pm)|

|A(Pl,k)| . (5)

When R(Pl,k) is over a given threshold, ǫ, the Gaussian is
inserted in the corresponding grid crossing of the current layer

under construction. As a result, Gaussians at a smaller scales

are inserted only in those regions where there are still some

missing details, forming a sparse approximation of the data.

The introduction of new layers ends when the residual error is

under threshold over the entire domain (uniform approxima-

tion).

This approach has been compared with classical multi-

resolution analysis through wavelet basis, and it has proved

superior when approximation of noisy data is required [5].

III. KERNEL REGRESSION

In statistics, the estimate of the values of a function, g(·),
given a set of observations affected by noise, {(Xi, Yi) | i =
1, . . . , n, Yi = g(Xi)+ ǫi}, can be formulated as a regression
problem, i.e., g(x) = E(Y |X = x). Kernel regression is a
technique used for non-parametric regression, which estimates

the value of g(x) as a weighted sum of those observations that

belong to a suitable neighborhood of x. Different techniques
can be found in literature [11], which are characterized by the



way they use the observations for computing the weights. The

selected observations are weighted using a suitable function,

K(·), called kernel, usually monotonically decreasing, which
allows to contribute more to the observations closer to the es-

timation point. The size of the neighborhood is usually regu-

lated by a parameter, h, called bandwidth. Hence, h allows to

select the observations that will be used in the estimate. If h is

too small, few observations may be selected causing an unreli-

able estimate. On the other hand, if h is too high, observations

very distant from the estimation point will be considered, and

the estimate will results in an average of points that belong to

very different regions, loosing the local details. The choice of

a suitable value of h for a given set of observations is known

as the observations selection problem. For facing this problem,

variable bandwidth selection techniques have been investigated

[12].

Among all, we considered Nadaraya-Watson (NW), Local

Polynomial (LP), and Gasser-Müller (GM) techniques.

The NW estimator has the following general form:

ĝ(x) =

∑

i K(‖Xi − x‖/h)Yi
∑

i K(‖Xi − x‖/h)
(6)

The LP estimator is based on fitting a n-th degree poly-

nomial function, p̂(t; x), in the neighborhood of the estima-

tion point, x. For an univariate estimation, the estimator is

p̂(t; x) =
∑n

j=0 β̂j(x) (‖t− x‖)j , while for multivariate esti-

mation it can be expressed by a more complex formula. As we

deal with a surface reconstruction problem, we used a bivariate

polynomial regressor. In particular, we used a linear (n = 1)
and quadratic (n = 2) polynomial regressors, which we refer
to as LP1 and LP2, respectively. In the estimation point, x,
p̂(t; x) assumes the value of the constant term, ĝ(x) = β̂0(x)

(which is the value of p̂(·) for t = x). The parameters {β̂j(x)}
are computed minimizing:

∑

i

(Yi − p̂(Xi − x; x))2 K(‖Xi − x‖/h) (7)

The number of observation used in the estimation cannot be

less than the number of estimated parameters, which depends

on n and the number of variables of the polynomial (3 for LP1

and 6 for LP2).

The GM estimator has the form:

ĝ(x) =
∑

i

∫ si

si−1

K(‖x− u‖/h)duYi (8)

where si = (Xi + Xi+1)/2, (s0 = 0, and sn = ∞), and the

observations are sorted.

For each of these estimators we considered the following

kernels with unitary integral over their domains:

K1(u) =
3

2
(1− u2) I[0, 1](u) (9a)

K2(u) =
15

8
(1− u2)2 I[0, 1](u) (9b)

(a) (b)

Fig. 1. The real object (a) and the acquired dataset (b) used for the

experiments.

K3(u) =
π

2
cos

(π

2
u
)

I[0, 1](u) (9c)

K4(u) =
1

2
√

2π
e−

u2

2 I[0,∞)(u) (9d)

where IA is the indicator function of the set A.

It should be noticed that kernels K1, K2, and K3 use only

observations that belong to the h-spherical neighborhood of the
point x, while the support of the kernel K4 is not finite.

The statistical properties of the considered kernel regression

techniques have been widely studied [13][14]: in the asymp-

totic case, they all converge to the expected value, ĝ(x) =
E(Y |X = x), independently by the kernel, K(·), used. How-
ever, in practical applications, the choice of the kernel and es-

pecially the bandwidth parameter, h, turn out to be very criti-
cal, both for the accuracy and the computational resources re-

quired by the estimate [11]. Moreover, the effectiveness of

the considered estimation technique can depend on the char-

acteristics of the observed data set (e.g., measurement noise,

sampling density).

Although in the original formulation of the HRBF algorithm

the Nadaraya-Watson regressor (6) with theK4 kernel (9d) was

used, this choice could be questioned. For this scope, several

experiments have been carried out, as reported in the next sec-

tion, to assess if other regressors may produce better results.

IV. EXPERIMENTAL RESULTS

In order to assess the effectiveness of kernel regression and

HRBF with different regressors for the reconstruction of the

function S̃(·) in (3), we applied them to the problem of surface

reconstruction from points clouds.

We used two datasets, “Panda”, reported in Fig. 1, and

“Doll”, acquired by a 3D scanner [15][16]. From these

datasets we derived other two datasets, “Panda noise” and

“Doll noise”, obtained by injecting additional random noise



(Gaussian isotropic white noise, 1 mm of amplitude) to

“Panda” and “Doll” data, respectively.

For each regressor, the reconstruction has been evaluated in

terms of accuracy (mean absolute error), network compactness

(number of Gaussians used), and computational time (time re-

quired for configuring the network). In order to estimate the ac-

curacy, each dataset has been partitioned in a training (32000

points for “Panda”, and 16000 points for “Doll”) and a test

(1000 points) data set.

Two experiments have been carried out. In the first experi-

ment, 16 HRBF networks are configured using one of the four

considered regressors (NW, LP1, LP2, GM), and for each re-

gressor one of the four considered kernel function (K1, K2,

K3, K4). In the second experiment, we configured each layer

of the HRBF network by choosing the regressor-kernel combi-

nation that achieved the minimal residual error for that consid-

ered layer.

As the bandwidth parameter, h, operates as a selector of the
sampled points considered for the estimate, it has been set as

the receptive field size for the first three kernels, while it has

been set as one third of this value for the fourth kernel, K4.

This value has been chosen for uniformity with the other three

kernels: with this set up, K4 assumes a value close to zero for

points distant h from the estimate point, as the other kernels.

Besides, this value is quite in accordance with the regressor

used in the traditional HRBF setup.

The configuration algorithms have been implemented in

Matlab (R2007a) and the experiments run on an Intel Pentium

4 CPU, 2.40 GHz, 512 MiB RAM. The computational time

measurements reported in this paper have been obtained by the

cputime function of Matlab. To limit variability, time has

been measured as the average of 5 runs.

The performance of the network configured in the two ex-

periments in which the different regressors were used, has been

compared with that obtained through kernel regression. This

allows evaluating the convenience of using HRBF networks for

this kind of problems. Besides, it allows evaluating the behav-

ior of each regressor when applied to the considered datasets.

As mentioned above, one of the main problem in kernel re-

gression is the selection of a suitable value for h. For overcom-
ing the problem of the bandwidth selection, we implemented a

simple algorithm of variable bandwidth. We started with a size

of h equal to the receptive field size of the last layer of the

HRBF network, and doubling it until the number of points that

belong to the considered neighborhood is large enough for a

good estimate (6 for the LP1, 12 for LP2, and 3 for the other

regressors).

In Table I and Table II, results of the first experiment are

reported. As the error threshold, ǫ, is set to 0.4 mm for “Panda”

and 0.9 mm for “Panda noise”, the HRBF network with all

the regressors achieves the required reconstruction accuracy,

although the LP2 regressor allows a reconstruction error lower

than the others (about 5% lower than NW for “Panda”, 1% for

“Panda noise”). . More interesting is the number of Gaussians

TABLE I. Reconstruction with single regressor HRBF

Panda Panda with noise

Regressor E [mm] #gauss t [s] E [mm] #gauss t [s]

NW K1 0.410 10827 70.9 0.907 10671 70.6

NW K2 0.399 10683 70.4 0.903 10496 70.1

NW K3 0.408 10806 71.4 0.906 10649 71.0

NW K4 0.394 10572 70.9 0.901 10403 70.6

LP1 K1 0.410 10681 77.9 0.907 10484 77.2

LP1 K2 0.399 10563 77.4 0.902 10325 77.0

LP1 K3 0.408 10664 78.3 0.906 10460 77.8

LP1 K4 0.394 10471 78.0 0.900 10225 77.4

LP2 K1 0.376 10111 80.1 0.894 9855 79.5

LP2 K2 0.375 10085 80.1 0.894 9838 79.4

LP2 K3 0.376 10107 80.7 0.894 9848 80.0

LP2 K4 0.375 10062 80.6 0.894 9815 79.9

GM K1 0.392 10500 141.0 0.901 10329 141.0

GM K2 0.387 10386 158.0 0.899 10205 158.0

GM K3 0.391 10478 157.0 0.901 10308 157.0

GM K4 0.383 10296 308.0 0.898 10118 308.0

TABLE II. Reconstruction with single regressor HRBF

Doll Doll with noise

Regressor E [mm] #gauss t [s] E [mm] #gauss t [s]

NW K1 0.304 7243 38.4 0.849 7598 38.6

NW K2 0.295 6863 38.0 0.845 7325 38.5

NW K3 0.303 7176 38.7 0.848 7557 39.1

NW K4 0.292 6688 38.3 0.843 7185 38.6

LP1 K1 0.297 6541 41.7 0.845 7091 42.2

LP1 K2 0.291 6302 41.4 0.842 6935 42.0

LP1 K3 0.296 6502 42.0 0.844 7063 42.5

LP1 K4 0.288 6192 41.7 0.840 6830 42.2

LP2 K1 0.496 5855 42.5 2.709 6956 43.8

LP2 K2 0.497 5867 42.7 2.704 7014 44.0

LP2 K3 0.495 5851 42.9 2.708 6952 44.1

LP2 K4 0.494 5795 42.8 2.692 6954 44.1

GM K1 0.290 6380 70.6 0.842 7049 71.2

GM K2 0.285 6128 77.2 0.839 6877 78.2

GM K3 0.289 6336 77.7 0.841 7020 78.3

GM K4 0.283 5990 142.0 0.838 6769 143.0

(a) (b)

Fig. 2. Reconstructions of the “Panda” dataset performed by the LP2 K4 (a)

and NW K1 (b) HRBF networks.



TABLE III. Reconstruction with a layer-wise regressor choice of Panda

datasets

Panda Panda with noise

l #gauss E [mm] Regr. #gauss E [mm] Regr.

1 1 43.9 LP2 K4 1 43.9 LP2 K4

2 4 26.4 NW K4 4 26.4 NW K4

3 16 9.55 NW K3 16 9.62 NW K3

4 62 5.31 GM K4 62 5.39 GM K4

5 204 2.50 GM K4 204 2.65 GM K4

6 678 1.38 GM K4 678 1.61 GM K4

7 2339 0.640 GM K4 2347 1.04 GM K4

8 6995 0.383 GM K4 6810 0.898 GM K4

#gauss: 10298 #gauss: 10122

conf. time: 658 s conf. time: 655 s

rec. time: 0.462 s rec. time: 0.460 s

used, as the LP2 regressor allows saving about 5.6% Gaussians

with respect to the other regressors for the “Panda” dataset, and

6.3% in case of the “Panda noise” dataset.

However, as the LP2 regressor requires a high number of

points for a reliable estimate, when the dataset is not very

dense, as the “Doll” dataset, its performance dramatically de-

crease. As can be noticed in Table II, when challenged on the

“Doll” dataset, the HRBF networks using LP2 regressors have

less Gaussians than the other networks. This can be explained

as, in particular in the last layers where the neighborhoods are

small, the LP2 regressor is unable to operate due to the scarcity

of the data points. In the case of “Doll noise”, the estimate

tends to overfit to noisy data, causing a large increment in the

reconstruction error.

Qualitatively, there is only a slight difference between the

surface reconstructed by the HRBF with the LP2 K4 and the

NW K1 regressors (which achieved the lower and the higher

reconstruction error, respectively), as shown in Fig. 2. Besides,

it is apparent from Fig. 2a that the LP2 regressor may produce

an unsatisfactory reconstruction in the regions close to the bor-

der, where the data scarcity induce overfitting. However, in the

internal regions, the reconstruction is good for all the consid-

ered regressors.

The computational time required to configure the HRBF

with the GM regressors nearly doubles the time required by

the LP and NW regressors.

These results have been confirmed by using different

datasets.

The results of the second experiment are reported in Ta-

ble III. The use of the best approximator for each layer does not

improve the performance with respect to the networks config-

ured using the LP2 regressors (neither in accuracy, nor in com-

pactness), despite the computational time spent (2 to 9 times

the time required by the single regressor HRBFs). Similar re-

sults have been obtained for “Doll” and “Doll noise” datasets.

It should be noticed that for the considered datasets the

best regressor for each layer match those of the noisy versions

dataset. In particular, the GM regressor tend to be used in the

last layer.

TABLE IV. Results of the reconstruction operated by the variable bandwidth

kernels on Panda datasets

Panda Panda with noise

Regressor E [mm] time [s] E [mm] time [s]

NW K1 0.352 2.96 0.893 2.95

NW K2 0.346 2.95 0.901 2.95

NW K3 0.351 2.97 0.894 2.98

NW K4 0.343 2.96 0.907 2.97

LP1 K1 0.335 3.35 0.890 3.37

LP1 K2 0.330 3.34 0.898 3.37

LP1 K3 0.334 3.35 0.891 3.39

LP1 K4 0.328 3.36 0.904 3.38

LP2 K1 0.337 3.44 0.948 3.46

LP2 K2 0.344 3.43 0.971 3.47

LP2 K3 0.338 3.44 0.950 3.49

LP2 K4 0.341 3.45 0.972 3.48

GM K1 0.354 3.98 0.933 4.01

GM K2 0.358 4.15 0.954 4.19

GM K3 0.355 4.12 0.936 4.15

GM K4 0.364 5.75 0.978 5.81

TABLE V. Results of the reconstruction operated by the variable bandwidth

kernels on Panda datasets

Doll Doll with noise

Regressor E [mm] time [s] E [mm] time [s]

NW K1 0.279 1.57 0.871 1.57

NW K2 0.272 1.57 0.882 1.57

NW K3 0.277 1.57 0.871 1.58

NW K4 0.267 1.57 0.890 1.57

LP1 K1 0.225 1.96 0.858 1.95

LP1 K2 0.222 1.95 0.876 1.94

LP1 K3 0.224 1.95 0.860 1.95

LP1 K4 0.221 1.96 0.881 1.96

LP2 K1 0.229 2.06 0.954 2.07

LP2 K2 0.236 2.06 0.988 2.06

LP2 K3 0.229 2.07 0.957 2.08

LP2 K4 0.235 2.08 0.984 2.07

GM K1 0.293 2.24 0.924 2.24

GM K2 0.299 2.34 0.954 2.34

GM K3 0.293 2.33 0.929 2.33

GM K4 0.306 3.18 0.981 3.18

(a) (b)

Fig. 3. Reconstruction of the “Panda” dataset performed by the kernel

regression using LP1 with kernel K4 (a) and using GM with kernel K4 (b).



In Tables IV and V, the results for the reconstruction ob-

tained by different kernel regression techniques are reported.

Here the best results in terms of accuracy are produces by ker-

nel regression employing LP1, while the other two regressors

families achieve a quite small error. It can be noticed that, in

case of noise, the LP2 regressors tend to perform worse than

the other regressors.

However, as shown in Fig. 3, the reconstruction achieved is

not smooth in any case. Besides, the computational time re-

quired for processing the 1000 points of the test set is more

than 6 times the time required by the HRBF networks. Al-

though the HRBF network needs nearly 80 s for being config-

ured, when it is required to densely resample the surface, the

use of the HRBF can be convenient with respect to kernel re-

gression (not to mention the quality of the reconstruction, as in

Fig. 2).

V. DISCUSSION

Kernel regression techniques have been widely investigated

as a tool for function estimate [13][14][12]. One of the main

open problems is the selection of the bandwidth parameter.

Naive strategies for selecting the best local bandwidth, like

the one here implemented, give inaccurated estimation and are

sensitive to noise and data sparsity: a too large bandwidth wipe

out details, while a too small bandwidth produce overfitting.

This is particularly true for LP2 regressors (or polynomial of

higher order) that are very sensitive to data scarcity.

The same problem can occur in RBF networks, where sev-

eral strategies have been studied for adapting the size of the

Gaussian units during the learning phase [9][17]. HRBF make

use of a kernel regression technique for a first estimate of the

surface height in the center of the Gaussians, but thanks to its

hierarchical structure, is able to overcome the problem of the

bandwidth selection.

In the experiments we described in section IV, the best re-

gressors are usually those that belongs to the LP family. This

can be explained because they performs well when a high num-

ber of observations are available, as it happens in the first lay-

ers, and the filtering action of the Gaussians allows to temper

possible local bad estimates. However, it should be noticed

that NW regressor require less computational time.

Computing more than one network per layer, as in the sec-

ond experiment in section IV, is computationally expensive.

However, the cost is not linear in the number of regressors, as

the regressors have different computational cost and they can

share a considerable amount of operations. Hence, the method

can be improved selecting few regressors that features comple-

mentary characteristics. In that case, when one regressor fails

the estimate the surface (e.g., when few points are available), a

second one (e.g., one which requires less points for a reliable

estimate) may provide an alternative estimate. This strategy

requires a longer configuration time, but may worth the effort.

VI. CONCLUSIONS

In this paper, the use of different regressors for HRBF con-

figuration has been investigated. Four kernel regression tech-

niques and four kernels have been combined for being used in

HRBF networks, and have been extensively challenged in the

problem of surface reconstruction.

Results show that, although the HRBF performance is ro-

bust with respect to the regressor used, the use of LP2 regres-

sors may generally improve the accuracy and the compactness

of the network with respect to the traditional NW regressor.

As the performance of each regressor depends by the ob-

servation set, the use of more regressors with complementary

characteristics may grant an advantage with respect the use of

a single one. Future works will be focused on the selection of

few regressors that may used to recover each other in case of

bad estimation.
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