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Abstract – The analysis of granulometry of substances is relevant in

a great variety of the research and industrial applications as such as

the pharmaceutical sector, the food sector, the basic materials produc-

tion and in the concrete and wood panel industries. This analysis is

important since many relevant properties of the materials can depend

on the distribution of the particles sizes/shapes during the production.

In this work we present an innovative method capable to estimate the

particles size distribution in an image without the use of segmenta-

tion techniques by using neural networks. The paper contribution is

twofold. The proposed method presents a set of techniques based on

wavelet analysis and image processing techniques suitable to extract

relevant features for the granulometry analysis. Then, the extracted

set of features is used as input to neural networks in order to achieve

the classification of each single pixel accordingly to the probability to

belong to a specific class of particles size (a single band in the his-

togram of the distribution of the particles size). The produced outputs

have been used to perform the estimation of the particle granulom-

etry contained in the image. Results are encouraging and show the

effectiveness of the proposed method.

Keywords – Granulometry analysis, neural networks, image process-

ing, wavelet filtering.

I. INTRODUCTION

The analysis of granulometric properties of substances is

relevant in a great variety of the research as well as in the in-

dustrial applications which can range from the pharmaceutical

sector to the food sector, papermaking and coating, basic mate-

rials production and in many innovative applications. In partic-

ular, the analysis of the granulometry analysis of the materials

can be very important since the properties and the character-

istics of the final products are strongly correlated to the distri-

bution of the shapes and sizes of the particles composing the

mixtures and ingredients used in the productions [1]. In addi-

tion, the granulometry analysis can also enlighten problems oc-

curred during the production operations (bias in the machines

working point, wearing of the tools, wrong or poor quality in

the basic materials, etc.) [2].

The distribution of the particles composing the basic mate-

rial and mixtures of a product can greatly affect the final quality

and properties. For example, in the wood panel production, a

Fig. 1. Typical setups for vision-based granulometric analysis and four image
examples. Upper subplots: (A) in-line scanning setup, by using a top view

camera and (B) free fall setup. Bottom images, from left to right: oil sands on
a moving conveyor belt, wood chips acquired with the setup A and B

respectively, coffee seeds acquired with the setup B.

mixture of chopped wood particles are glued and pressed in

order to obtain a suitable raw chip board. The proper value of

the glue/wood ratio is strongly related to the size and shape of

the particles composing the panel. This setup value affects the

final mechanical properties of the panel, its cost and the envi-

ronmental impact related to the presence of formaldehyde and

other pollutants contained in the glue inside the panel [3].

Up to now, the most common method to estimate the gran-

ulometry consists of a mechanical division of the particles by

using vibrating sifters, followed by a weighting operation of

the obtained partitions. This estimation suffers of many draw-

backs: the analysis is made by human experts on a single sam-

ple of the production, it is not rapid and its accuracy is hardly

standardizable due to the operator’s capabilities and the correct

application of the measurement procedures.

Some innovative systems exploit vision-based approaches

in order to estimates the distributions of the objects present in

a region of interest of the acquired image of the material. In

this case the procedures can occur without contact and the pro-

cedure can be fully automated. In this case, the systems can

work on single amount of the product extracted from the pro-

duction line (spin-off approaches) or directly on the production

line (in-line approaches). Figure 1 show two different setups

for in-line approaches.

Setups which exploit a top-view of the particles (setup (A)

in Fig. 1) are very simple and effective but the obtained images
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are far to be ideal since most of the time the particle are su-

perimposed. Free-fall setups (setup (B) in Fig. 1) allow for a

better separation of the particles in the region of interest of the

camera, but out-of-focus problems can occur and very short ex-

posure time are required in order to acquire proper still images

combined to an effective illumination system.

The paper shows that it is effectively possible to estimate

the particles size distribution in an image by using a global

approach based on neural networks without the use of segmen-

tation techniques. In particular, the proposed method presents

a set of techniques suitable to extract features from the input

image which are effective in the granulometry analysis. Then,

the extracted features have been used to train inductive clas-

sifiers (such as neural networks) to classify each single image

pixel in a set of size classes. Results are interesting and they

show that satisfactory accuracy can be obtained. The struc-

ture is the following. In the next section the state of the art is

presented, then the proposed method is presented. In the last

section it is presented the creation of a synthetic dataset, and

the experimental results of the proposed method are presented

and discussed.

II. PREVIOUS WORK

Vision-based systems estimate the distribution of the ob-

jects present in a region of interest of the acquired image by a

two-steps process: first a segmentation operation is processed

in order to locate each object in the image; in the second step,

the evaluation of the properties of the objects identified during

the segmentation is performed. The more objects have been

correctly measured, the more confident will be the estimation

of the particles size distribution.

Similar approaches have been used in biological applica-

tions in order to test the health of the human tissue/cells based

on successive structural openings of the segmented image [4]

[5] [6] [7], and in [8] is discussed the case of non-organic par-

ticles. The segmentation phase is typically present in the clas-

sical image-based granulometry analysis, and it represents the

most important contribution of errors in the estimation when

the setup is not controlled (e.g., when objects/particles are su-

perimposed, and/or the foreground has a non correct illumina-

tion). Moreover, a proper segmentation of a scene that is com-

plex and densely populated of superimposed elements is typi-

cally a quite computationally intensive task. To overcome this

problem, in [9] and in [10] global approaches have been pro-

posed without using segmentation applying the morphological

pattern spectrum and the Fourier spectrum.

More complex setups than a single camera can be also be

adopted. For example, in [11] a 3D laser scanner has been

used to detect the surface of wood chips on a conveyor belt on.

Unfortunately, the paper does not compare the results of the

proposed system with respect to the results based on a single

camera setup, hence is not possible to determine if the aug-

mented complexity of the setup is balanced with a higher ac-

curacy of the system.

In this paper we propose an innovative image-based granu-

lometric analysis technique which avoid the use of the segmen-

tation and its related problems above described.

III. THE PROPOSED METHOD

The granulometry problem can be formalized as follow:

given an image I(x, y), find out the distribution p(r) =
{P (an object depicted in I has size r)}, r ∈ R

+. Usually, for

practical application, the range of the objects’ size can be parti-

tioned in few intervals, defining a set of size classes {Ci | ri <

r ≤ ri+1} (for a set of suitable increasing values {ri, i =
0, . . . , M | ri < ri+1, r0 = 0}), moving the focus from p(r)
to p(Ci) = {P (an object depicted in I belongs to Ci)}.

Segmentation-based granulometry techniques identify an

ensemble of objects {Ok} in I(x, y) and obtain p(Ci) by mea-
suring the size of each object in {Ok}. Hence, the pixels of the
image are partitioned in regions (a region for each object) and

the size of the object is then measured over the pixels that form

the object itself (e.g., the distance of the most distant pair of

pixels).

We propose a method that works in another way: instead

of partitioning the image in objects, we estimate, for each

pixel (x, y) the size R(x, y) (or the class C(x, y)) of the
the object the pixel belongs to. Then, we obtain p(r) (or

p(Ci)) as a statistics of R(x, y) (or C(x, y)). Thus, we

obtain the distribution of an object’s property (e.g., the ob-

ject’s size) from the distribution of the pixels’ property (e.g.,

the object’s size the pixel belongs to). It should be noted

that from the knowledge of R(x, y) it is possible to esti-

mate p(R) = {P (a pixel of I belongs to R-sized object)}, but
some processing is needed to obtain p(r), as the number of
pixels taken up for a given object does not only depend on

the object’s size but also rely on its shape. For instance, for

a circular shaped object, the number of pixels that belong to

the object will be proportional to the square of the object’s ra-

dius, while for a needle shaped object, the number of pixels

will be proportional to the object’s length. Hence, some mild

a priori knowledge on the objects’ shape allows to avoid the

need of segmenting the image and allow to obtain the relation

between the object’s shape and its area that can be used for

transforming p(R) into p(r): p(r) = T (p(R)), or p(C) into
p(Ci): p(Ci) = T (p(C)). We will refer to the transformation

T as shape-based correction of the distribution.

If, for each pixel (x, y), the function R(x, y) was known,
the granulometry problem would be trivial. However, it is not

unreal suppose a partial knowledge of R(x, y) (or C(x, y))
(e.g., from manual measurement). This allows to reframe the

problem of estimating the distribution of the size of the objects

of a scene as a problem of function approximation (classifica-

tion) from examples. In the following we will consider only
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Fig. 2. Structure of the modules composing the proposed approach.

the classification case, as it is more interesting for practical ap-

plications.

The proposed method (Fig. 2) is based on the observation

that the persistence of an object in an image under the operation

of low-band filtering is proportional to the size of the object.

Hence, a multi-scale representation of the image can be used

to estimate the size of the objects depicted in the image.

The scale-space representation [12] of a signal is a col-

lection of blurred copies of the original signal, usually ob-

tained convolving the signal with a Gaussian filter. As the cut-

frequency of the filter increases, details at small scale fades

out.

Given the image I(x, y), the set of k features is given by:

Fi(x, y) = I(x, y) ∗G(x, y;σi) (1)

where G(·, ·;σ) is a Gaussian kernel whose width is σ (the

larger is σ, the more blurred is the filtered image). The set

{σ1, . . . , σk} determines the scales at which the image I is

analyzed (Fig. 4).

We propose to use a neural network to approximate the

function f such that:

C(x, y) = f (F1(x, y), . . . , Fk(x, y)) (2)

Summarizing, the granulometer presented in this paper

takes a bitmap as input and produce an histogram of the class

of the objects depicted in the input bitmap, by using the proce-

dure represented in Fig. 2. The input bitmap is processed for

obtaining its scale-space representation, then the correspond-

ing pixels in each feature bitmap is fed to the neural classifier

which predicts the class the pixel belongs to. Finally, from

the pixels’ classes histogram, the objects’ classes histogram is

obtained through shape-based correction.

Fig. 3. Creation of the feature vectors. The original image is filtered by a
bank of filter F1-F6, and the processed images are merged in order to

produce the feature vector used in input to the neural networks. Each pixel of
the original image is transformed in a 6 real-valued vector.

Fig. 4. Comparison of the real and synthetic images. From the left: real
dense and sparse free-fall distributions; an example of a synthetic image.

IV. EXPERIMENTAL RESULTS

In order to test the effectiveness of the proposed approach,

we generate a set of 12 bitmaps populated of black blobs on

white background (such as the third image in Fig. 4). The

bitmaps’ size is 512× 512 pixels, while the radius of the blobs

ranged from 1 to 50 pixels, partitioned in six classes, as in Ta-

ble I. Moreover, the class C0 has been added to describe the

background (i.e., the class to which belong to the pixel that do

not belong to any blobs).

The classes distribution, p(Ci) is reported in Table I. It has
been evaluated on the entire set of bitmaps because the distri-

bution of the classes may change from one bitmap to another.

For each bitmap, I , a set of seven features have been com-

puted (Fig. 3): the first feature, F0 has been defined as the

bitmap I itself, while the other features have been computed

as in (1), by using a set of σ defined as the mean blob’s size of

each class ({1.5, 3.0, 6.0, 11.5, 21.0, 38.5}).

For approximating the class function, C(x, y), in (2), we

used a RBF network trained with hybrid learning [13] (Neural-

Gas [14] was used to distribute the centers of the neurons).

The RBF network, composed by 50 Gaussian units, realizes a

R
k → R

M function, where k is the number of features, and M

is the number of the classes. For the setup we experimented,

both k and M are equal to 7. The M -valued RBF network
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TABLE I

CLASSES OF BLOBS’ SIZE (IN PIXELS) AND THEIR TRUE AND PREDICTED DISTRIBUTIONS.

p̂100(Ci) p̂1000(Ci)
Ci size range p(Ci) RBF LIN QUAD 1-NN 3-NN 31-NN RBF 1-NN

C0 0
C1 [1, 2] 0.557 0.552 0.601 0.826 0.607 0.609 0.611 0.561 0.545

C2 (2, 4] 0.261 0.261 0.318 0.168 0.240 0.237 0.222 0.259 0.302

C3 (4, 8] 0.125 0.123 0.0424 0.00528 0.0924 0.0941 0.113 0.126 0.103

C4 (8, 15] 0.0431 0.0490 0.0308 0.000465 0.0472 0.0461 0.0382 0.0396 0.0367

C5 (15, 27] 0.0110 0.0138 0.00699 3.82 10−6 0.0107 0.0107 0.0118 0.0117 0.00992

C6 (27, 50] 0.00256 0.00203 0.00130 1.83 10−5 0.00352 0.00371 0.00398 0.00242 0.00290

TABLE II

MEAN CONFUSION MATRIX OF THE RBF CLASSIFIER (100 EXAMPLES

PER CLASS).

C0 C1 C2 C3 C4 C5 C6

Ĉ0 2.26 10
5 0 0 0 0 0 0

Ĉ1 0.45 1790 128 0 0 0 0

Ĉ2 83.9 14.2 3110 405 0.273 0.364 0

Ĉ3 326 1.55 110 5580 789 0.545 0

Ĉ4 2790 1.64 14.7 378 6497 290 9.27

Ĉ5 789 0.364 7.09 66.0 763 6420 1330

Ĉ6 1.00 0 5.36 74.0 157 274 4130

TABLE III

MEAN CONFUSION MATRIX OF THE 1-NN CLASSIFIER (100 EXAMPLES

PER CLASS).

C0 C1 C2 C3 C4 C5 C6

Ĉ0 2.29 10
5 0 0 0 0 0 0

Ĉ1 0 1660 269 0 0 0 0

Ĉ2 0 117 2640 298 0 0 0

Ĉ3 0 4.18 317 4270 116 0 0

Ĉ4 47.4 18.2 137 1780 6500 337 2.45

Ĉ5 6.64 0.182 137 88.5 1410 5090 65

Ĉ6 171 2.18 6.36 65.7 177.8 1560 5400

output is then used to predict the class the input pixel belong

to by choosing the element of the RBF output that carries the

greater value.

One bitmap has been used for obtaining the training data

for the neural network, while the remaining 11 bitmaps have

been used as test set of the granulometer. In particular, 100

examples for each class have been sampled for composing the

training set.

The results are summarized in Table I, where the distri-

bution obtained from the predicted class function, Ĉ(x, y),
is compared with that obtained from the true class function,

C(x, y).

An accuracy comparison has been performed by compar-

ing the confusion matrix of different classical classifiers. In

our test we used a linear classifier (LIN), a quadratic classifier

(QUAD) and three different K-NN with K = 1, 3, 31 as ref-

TABLE IV

MEAN CONFUSION MATRIX OF THE 1-NN CLASSIFIER (1000 EXAMPLE

PER CLASS).

C0 C1 C2 C3 C4 C5 C6

Ĉ0 2.30 10
5 0 0 0 0 0 0

Ĉ1 0 1780 87.2 2.36 0.272 0 0

Ĉ2 0 20.3 3200 862 61.9 5.36 0

Ĉ3 0 0.828 70.0 4750 845 0.363 0

Ĉ4 0 0 12.4 752 6200 448 0

Ĉ5 0 0 1.73 70.2 954 5510 144

Ĉ6 0 0 3.45 59.7 150 1030 5320

erences. As overall figure of merit, we propose the weighted

mean error on the predicted distribution, ǫ, computed as fol-

low:

ǫ =

M∑

i=1

|p(Ci)− p̂(Ci)| (3)

The RBF classifier achieved ǫ = 2.48 10−3, while the more

accurate reference classifier has resulted the 1-NN, which
achieved ǫ = 1.82 10−2. In detail, the functioning of the classi-

fiers can be described by the confusion matrix, in which the cell

(i, j) reports the count of the pixels belonging to the class Cj

that the classifier assign to the predicted class Ĉi. In Tables III

and III the confusion matrices (averaged over the eleven test

datasets) of the RBF and 1-NN classifiers are provided. It is

evident that when the classifier makes a error, the predicted

class is mainly one of those closer to the true class (the confu-

sion matrix is close to be diagonal). Although the the number

of misclassification errors is relevant, they tend to compensate

each other, resulting in an accurate estimation of the classes

distribution.

In order to test the neural model with a proper ensemble

of reference classifiers, we limited the number of training ex-

amples to 100 per class, do to the computational resources re-

quired by the K-NN classifier with high value of K.

However, increasing the number of training examples does

not provide a relevant enhancement in accuracy. For exam-

ple, using 1000 training examples for class, the RBF classifier

achieved ǫ = 1.75 10−3, while the 1-NN classifier achieved
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TABLE V

MEAN CONFUSION MATRIX OF THE RBF CLASSIFIER (1000 EXAMPLES

PER CLASS).

C0 C1 C2 C3 C4 C5 C6

Ĉ0 229000 0 0 0 0 0 0

Ĉ1 5.18 1790 107 0 0 0 0

Ĉ2 153 7.18 3110 248 0.272 0 0

Ĉ3 27.3 0.636 130 5800 863 11.3 2.09

Ĉ4 807 0.454 17.6 316 6400 350 5.27

Ĉ5 17.8 0.181 4.64 54.7 746 6190 767

Ĉ6 0.0909 0.272 4.73 79.3 192 435 4690

ǫ = 1.40 10−2 (p̂1000 in Table I).

V. CONCLUSIONS

The paper presented an innovative image-based method

performing the granulometric analysis via neural networks.

In particular, the proposed method does not apply any seg-

mentation techniques, avoiding many drawbacks related to

this task. Moreover, it does not require any particular fore-

ground/background illumination and positioning of the parti-

cle, which are common in other techniques proposed in the

literature. Preliminary results on images with particles super-

imposed or attached each others are promising and suggest that

the method could be applied in real cases.

The proposed method presents a set of techniques based

on scale-space analysis and image processing techniques suit-

able to extract relevant features for the granulometry analysis.

Then, the extracted set of features is used as input of a neu-

ral network-based classifier in order to achieve classification

of each single pixel accordingly to the probability to belong

to a specific class of particle sizes and a direct estimation of

the local particle size of the pixel. The accuracy achieved on

the synthetic test image dataset is in the order of few fraction

of percents. Results are encouraging and the future work will

study the application of the proposed method to datasets of real

images and new method for extracting features.
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