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Abstract - In this paper, a technique for classifying the working
condition of a Water Jet System is presented. The classifier is based
on the DFT of the electrical power signal. It is show that this
information can characterize the working condition of the system
and to predict the presence of (an incoming) faulty behaviour.
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I. INTRODUCTION

Water Jet and Abrasive Water Jet Technology (WJ/AWJ)
presents some particular characteristics which make it
suitable in application fields where particular manufacturing
operations on special material are required; machining
activities such as cutting hard to machine materials (e.g.,
steels, titanium alloys, aluminium alloys, brittle materials) or
carrying out operations such as turning and milling as well as
surface treatments such as peening, cleaning, decoating,
descaling represent some of the possible applications of
WJ/AWJ technology.
The AWJ cutting process has the peculiarity that it is a cold
process as the water takes heat away from the interested area
of the work piece. This characteristic is very important
because allows to work without damaging the metallic
material structure.

Starting from the simple consideration that the acquired
electric signals gives useful indications for diagnosis
purposes [1], it is a little step to consider a continuous non-
intrusive on-field monitoring activity during all the plant
components' life.

It is well known that a very important part for the
definition of the efficiency of these systems is the water
nozzle; in effects this component plays an important role in
the definition of the overall efficiency, measured as the ratio

between the available fluid-dynamic power and the electric
active power from the network. Hence, monitoring the
efficiency of the nozzle allows to predict the efficiency of the
overall AWJ system.

In the aforementioned paper a comparison between the
performances of different nozzles in terms of the electric
power necessary to carry out the same mechanical operation
has been reported. Different power consumptions lead to
differences, sometimes relatively large, in terms of cutting
performance and also of operating costs of the system.
Moreover, it is shown that it possible to extract information
on the behaviour of the plant from of the power signal; this
could allow to detect and foresee wrong operating conditions.
The aim of this paper is setting up a technique for

extracting information from the electrical power signal about
the working condition of the system. In particular, we are
interested in both identifying the nozzle type and its working
condition by means of a signature for each nozzle in each
working condition which allows the correct classification.

The availability of suitable signatures allows to build up a
nozzle footprints database. Such a database constitutes the
knowledge for the automatic recognition of the mounted
nozzle and its working condition. All these aspects will be
further discussed in the following sections.

II. SYSTEM ARCHITECTURE

The water jet technology is characterized by phenomena
belonging to different fields of physics. The utilized water jet
system will be here briefly described using the schema in Fig.
1. The main components of a water jet cutting system is
depicted. Considering a complete Waterjet cutting system,
electrical energy is provided at first to the 380 V - 50 Hz
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three-phase induction motor which pressurizes the oil by
means of the radial pistons oil pump. The pressure reaches a
value of 20 MPa in the oil circuit.
The oil provides its hydraulic energy to water by means of
the double-acting intensifier as depicted in Fig. 1: at this
stage the energy means of transport changes and, due to the
increasing of pressure (which reaches 400 MPa), the
compressibility of water has to be considered. An
accumulator reduces the water pressure fluctuations [1-6].
When water reaches the cutting head and it flows through the
orifice, the pressure energy changes into kinetic energy and
the jet is formed. Further, when abrasive water jet is
considered, solid particles join the water jet inside the mixing
chamber, being entrained by the air flow generated by the jet
itself. In this case, the kinetic energy of abrasive particles is
dramatically increased thanks to the exchange of momentum
with water inside the mixing chamber and the focusing
nozzle.

The AWJ cutting quality typically depends on the process
parameters selection (water pressure, abrasive mass flow rate,
abrasive granulometry, cutting head feed rate, stand off
distance), as well as on the fluid-dynamic parameters, such as
the orifice and focuser diameters and the mixing chamber
geometry. Besides the aforementioned parameters,
considered as directly valuable variables, some external
factors exist and play a non negligible role on the cutting
quality in terms of roughness and waviness (such as water
pressure fluctuation, due to the alternate motion of the
pumping system, abrasive mass flow rate fluctuation,
workpiece and fixturing system vibrations, granulometric
distribution of the abrasive particles).

In order to monitor the complete water jet cutting system,
a DSP-based system has been defined. In particular, the plant
has been equipped with sensors in order to acquire the signals
of the most relevant parameters describing its behaviour: oil
pressure, water pressure, and piston velocity.

Electrical motor signals are acquired by an Analog-to-
Digital conversion board with simultaneous sampling up to
200 kHz sampling rate on a single channel with a 16-bit
resolution.

Voltage and current transducers have been specially
realized in order to adapt the signal levels to the ADC and to
ensure an adequate insulation level among channels and
between the supply and measuring devices over a wide band.

III. PATTERN RECNOGNITION

Object recognition, description and classification are very
important tasks for the daily life [7], [8], [9]. In particular,
Pattern Recognition (PR) is the scientific discipline dealing
with methods for both object description and object
classification. Applications of PR techniques are numerous
and cover a broad scope of activities, for example: crop
analysis, soil evaluation, analysis of telescopic images,
automated spectroscopy, automated cytology, genetic studies,
traffic analysis and control, assessment of urban growth, fault
detection, character recognition, speech recognition,
automatic navigation systems, pollution analysis, seismic
analysis, analysis of electrocardiograms, analysis of
electroencephalograms, analysis of medical images, detection
and classification of radar and sonar signals, automatic target
recognition, identification of fingerprints, surveillance
systems an so on. It is important to note that the patterns to be
analysed and recognized can be signals, images or plain
tables of values. Pattern recognition approaches are based on
the notion of similarity: between two different object or
between an object (i.e., signal or image) and a reference
object (the target or prototype object).

The classification task is performed using the features or
attributes distinctive of the object. The collection of the
features that characterize the object of the classification is
called signature or footprint of the considered object.

Water pressure sensor

Oil circuit
(Pressure sensor
on the oil inlet)

Fig. 1 - Main components of the water jet cutting system (scheme in the middle by Ingersoll Rand; pictures by Politecnico di Milano).
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The aim of assigning an object to a class is an example of
classification task. In the present case it is possible to define a
vector with specific features:

X =][X( 12 ... N)
where x are the features and N is the number of them. In the
simple case where only two features are used the
classification task can be represented as in Fig. 2. The main
goal of a classifier is to divide the feature space in regions
assigned to a classification classes: the decision regions. In a
multiple class problem - as the discussed problem - several
decision surfaces can be presents and arbitrarily complex
decision regions can be expected; the separation of the
classes is achieved in essentially two ways: 1) absolute
separation when each class can be separated from all the
others; 2) pair wise separation when the classes can only be
separated into pairs. For sake of simplicity we would like to
use only a limited number of features and this task is obtained
thanks the previous knowledge of the object or problem. So if
the acquired signals can be patterns, measurements, attributes
or primitives derived from the acquired signals can be useful
features. The feature space is also called the "representation
space". The representation space has data-driven properties
according to the defined similarity measure.

As the footprint of an object is generally more simple and
compact than the object, processing in the features space is
computationally less expensive.

The choice of the features can be based on the domain
knowledge given by experts or can be made using some
feature selection technique. The deep knowledge of the
mechanics and the physics of the particular machinery used
may help to choose well performing features, but their use
may not be generalized to the class of devices.

1
/Type 1 Prototype
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IV. THE CLASSIFICATION TOOL WORKS AS A
DIAGNOSTIC TOOL

In [1] the authors have just shown the strict correlation of
the load current and instantaneous power signals to the water
pressure values and their behaviours; in this way any
operating conditions of the monitored system appears on the
main side as a variation in the motor current and, in the same
way, in the instantaneous power [10], [11]. In Fig. 3, in fact,
it is possible to note that the measured power profile shows a
modulation strictly correlated to the motion of the piston;
moreover, it is possible to observe that the shapes of the
power signal depend by the working condition. Signals
obviously depend also on the water pressure level and on the
changes of machine status.

Power [k
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Fig. 3. Reference signals for a specific nozzle; sampling rate: 3.2 kHz;
sampling period: 6 s.

For this reason, an analysis of the variation of the profiles
from the reference condition can be considered as a good
support for monitoring the efficiency and effectiveness of the
system.

In this work we explored a different method for
characterizing the power signal with respect to the different
working conditions. The proposed method is based on an
analysis of the shape of the Discrete Fourier Transform
(DFT) of the power signal. Hence, the characterizing features
of the power signal are obtained by a processing operated in
the frequency domain. The features, fi used for the analysis
are the first k coefficients of the DFT of the power signal:

fi w (i), i = 1, ..., k (2)
where

F = ||DFT(P)|| (3)
0

0 feature xi

Fig. 2. fi - f2 plane. Euclidian distance are also depicted on the plane.
Classification of object 1 or 2 is a simple task. However, classification of
point 3 is a more problematic task.

is the normalized DFT of the power signal, P. For this
application, we chose k = 20, as it allows to use the most
significant coefficients. It would be noted that a study
considering different (bigger) value for parameter k (such as k
= 30 for example) has been conducted. However, the
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obtained results are very similar to ones here obtained.
The experimental results are obtained considering many

case of study. For sake of simplicity, in this paper a reduced
set of tests are reported. In particular, the classifier, here
presented, has been configured using a dataset composed by
143 samples of the power signal in 12 working conditions
(two type of nozzle having an orifice of two different
diameter, for three different values of pressure).

For each class, j, identified by the triple composed by
nozzle type ('G' or 'T'), diameter of the orifice (20 and 30
for 0.20 mm and 0.30 mm respectively), and working
pressure (200, 250, and 300 MPa), we compute the class
footprint, f(j), as the average of the feature vectors, Fl,
(computed as in (3)) of the signals belonging to the class,

{PI 1

1ni
fi()W E,F,(i), i=1,.,k (4)

ni 1=1

where nj is the number of sample data for

ni = {PtI.
the j-th class,

G-20-300
x 104

3

2.5

The footprints of the classes G-20-300, T-20-300, G-30-
300, T-30-300 are reported in Figs. 4-7.

Observing these figures, it can be noticed the apparent
similarity between the signals which refer to the same orifice
diameter.
We choose to use the Euclidian distance as similarity

measure. Hence, when the classifier receives an unknown
power signal, s, as input, it computes the feature vector for s
as in (3) and classify it as belonging to the class, j, such that
the footprintf(j) is the closest to the feature vector of s.

In order to asses the ability of the classifier, we challenged
it on the dataset used for the configuration phase
(configuration error) and on new power signals, sampled in
different working conditions (test error). For the test case,
three samples for each working condition have been used.

The configuration error has been of 1.40% as 2 data out of
143 were erroneously classified (Fig. 7), while the test error
has been of 0%, as all the 36 data were correctly classified
(Fig. 8). These figures represent the histogram of the
classification, where each bin is identified by the indices of
the class from which the signal belongs to and the one of the
class predicted by the classifier.
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Fig. 4. Footprint of the class representing the G-20 (0.20 mm) nozzle
working at 300MPa.
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Fig. 6. Footprint of the class representing the G-30 (0.30 mm) nozzle
working at 300MPa.
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Fig. 7. Footprint of the class representing the T-30 (0.30 mm) nozzle
working at 300MPa.
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Fig. 5. Footprint of the class representing the T-20 (0.20 mm) nozzle
working at 300MPa.



The more the couples fall in the diagonal, the better the
classifier performs.
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Fig. 10. Different working conditions may be recognized by observing the
distance of the footprint of the actual power signal from the footprint of the
considered class with respect to the distribution of the distance of footprint in
normal working condition.

Fig. 7. Classification error in configuration: when challenged with the data
used in the configuration phase, the classifier erroneously classify 2 data out
of 143 (1.40%).
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Fig. 8. Classification error in testing: when challenged
the classifier correctly classify all the 36 test data (0%).
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with unknown data,

The classification tools can be utilized even for fault
recognition tasks. In fact, when working condition is known,
if the footprint of the correspondent power signal is not well
positioned in the "representation space" with respect to the
footprint of the same working condition, it leads
automatically to consider the possibility of the presence of a
faulty situation. These very important tasks can be demanded
to an automatic procedure. In Fig. 9 the footprint of a typical
malfunctioning case is compared to the footprint of the class
that, for the mounted nozzle and the working pressure, it
should belong to: it is evident that the distance of the fault
case from the class footprint is greater than the mean distance
of the footprint at normal working condition. This allows to
use, as a reference for fault diagnosis, the distribution of the
distance of the footprint of signals acquired during normal
working condition sessions from the footprint of the class
they belong to. Hence, during the configuration phase the
standard deviation of the distance of the footprint of the
signals of each class from the class footprint can be
computed, and used to enrich the classification response with
a measure of conformity to a standard working condition
(e.g., as in Fig. 10). It would be noted that the process mean
always shifts to the right hand side when the process is out of
control and this is well depicted in Fig. 10. In fact, the
distance of the actual footprint from the class footprint can be
only positive. These information can be used when a Control
Chart for process control must be realized.

[Hz]

Fig. 9. Example of Classification cases. Footprint is represented with the
largest line. An example of fault case is represented with dashed line and,
finally, non-fault cases are represented too. The non-fault cases footprints are

closer to the class footprint than the fault case.

V. CONCLUSIONS

The present work has the aim to show that the electrical
power signal is greatly influenced by the machinery setup and
the working conditions. As the measurement of this entity is
much more feasible than the direct measure of the other
parameters which influence the working conditions of the
system, the exploitation of its relation may lead to an

automated method for revealing the machinery state and the
presence of (an incoming) faulty behaviour.
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This fact can be suitably exploited to increase the
reliability and availability of the system, thanks to the defined
diagnostic algorithm. The simplicity of the proposed
approach lead to consider the possibility of realizing a low
cost real time diagnostic system.
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