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Online training of Hierarchical RBF

Francesco Bellocchio, Stefano Ferrari, Vincenzo Piuri and N. Alberto Borghese

Abstract-An online procedure for configuring the parame-
ters of a Hierarchical Radial Basis Functions (HRBF) network is
presented here. The proposed procedure has been implemented
and applied to a problem of real-time surface reconstruction.
Results show that the algorithm trained online well compares
with the batch version.

I. INTRODUCTION

Online learning is a widely diffused learning modality
in neural networks [1][2], used in two different domains.
The first, is non stationary problems, where the statistical
distribution of the input data changes with time [3][4]. The
second domain is real-time learning [5]. In this case, online
learning can be used to perform a reconstruction of the
data mani-fold, while data points are being sampled on the
mani-fold itself. This second domain, is less common in the
scientific domain; nevertheless it has interesting applications.
For instance, the real-time reconstruction of a 3D model
the artifact acquired with a 3D digitizer [6] would be of
great help to drive the sampling procedure to collect more
data points, where the details are missing [7]. Up to now,
methods based on splatting [8] have been mainly used to
this scope. Splatting displays an elliptical shape centered in
the data points and oriented as the local estimated normal of
the surface. If the cloud of data points is sufficiently dense, it
may provide the perception of a continuous surface, without
its mathematical description.

Different approaches have been proposed in the connec-
tionist domain to solve this problem [9], [10].
We propose here to solve it, through an online version

of the Hierarchical Radial Basis Functions network (HRBF)
model [11]. This can produce in real-time an accurate local
multi-scale reconstruction of the surface. This online version
can be used in all the domains of low dimensionality, where
real-time manifolds approximation is required.

In Section II the batch version of the HRBF training
procedure is reported, while the proposed online version is
reported in Section III. The algorithm has been implemented
and challenged in real-time surface reconstruction problem.
Results are reported in Section IV and discussed in Section
V.

II. THE HRBF MODEL

Let us assume that the manifold can be described as
a RD > R function. In this case, the input dataset can
be viewed as a height field: {(Pi,zi) zzi = S(Pi), Pi C
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lD, 1 < i< N}, and the manifold assumes the analytical
shape: z = S(P). The output of a HRBF network is obtained
by adding the output of a pool of Radial Basis Functions
(RBF) networks, organized as a stack of hierarchical layers,
each of which is characterized by a decreasing scale:

L

S(P) = Zal(P;(71)
1=1

(1)

where or, determines the scale of the l-th layer, with or, >
or, + 1. If we suppose that the units are equally spaced on a
grid support and a normalized spherical Gaussian function,

G(.; v) = 1
exp - 2 ), is taken as basis function,

the output of each layer can be written as a linear low-pass
filter:

(2)
Ml

al(P;crl) =Z,Wl,kG(l P-Pl,k1 (Jl)
k=l

where Ml is the number of Gaussian units of the l-th layer.
The G(.) are equally spaced on a D-dimensional grid, which
covers the input domain of the data points: that is the {Pl, }s
are positioned in the grid crossings of the l-th layer. The
side of the grid is a function of the scale of that layer: the
smaller the scale, the shorter is the side length, the denser
are the Gaussians and the finer are the details which can be
reconstructed.

The actual shape of the surface in (1) depends on a set of
parameters: the structuralparameters, which are the number,
M = El Ml, the scale ensemble, {oi }, and the position,
{ P1,k}; and the weights associated to each Gaussian: {Wl,k}.
Each RBF grid, 1, realizes a reconstruction of the surface up
to a certain scale, determined by or, (low-pass filtered recon-
struction). Considerations grounded on the signal processing
theory allow, given a certain scale, ui, to set the grid side,
AR1, as or, = 1.465 APR and to determine consequently M
and the {Pl,k} [12]. From these observations, the weights
{Wl,k} are set equal to the manifold height in the grid
crossings: Wl,k S(Pl,k).AP D. As the data set usually does
not include the {S(Pl,k)}, these values should be estimated.
We explicitly observe that, even if the S(Pl, k) were included,
they would be corrupted by noise and an estimate would be
the right solution. The data points that lie in an appropriate
neighborhood of Pl, k can be used to estimate S(Pl, k) as
a weighted average of such subset of data points, S(Pl, k).
This neighborhood, called receptive field, A(Pl, k), can be
chosen as a spherical region centered in Pl, k with the radius
proportional to the grid side, ARI. A possible weighting
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function is:
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which is strongly related to the Nadaraya-Watson estimator
and maximizes the conditional probability density when the
noise is normally distributed, zero mean [13] [14].

Although a single layer with Gaussians of very small scale
could reconstruct the finest details, this would produce an

unnecessary dense packing of units in all those regions which
feature large scale details. Moreover, there might even be not
enough points inside A(Pl,k) to get a reliable estimate of
S(Pl,k) in (3). A better solution is to adaptively allocate the
Gaussian units, with an adequate scale in the different regions
of the range data domain. This can be achieved by adding
and configuring one layer at time, proceeding from the layer
featuring the largest scale to the layer featuring the smallest
one. For sake of simplicity in the configuration stage, each
new layer will feature half the scale of the previous one.

However, arbitrary scales could be used for the different
layers.

All the layers after the first one will be trained to ap-

proximate the residual, that is the difference between the
original data and the actual output of the network output
by the already configured layers. Hence, the residual, rl, is
computed as:

ri (Pm.) = ri l (Pm.) - al (Pm.) (4)
and it is used for estimating the parameters of the l-th layer.
ro(Pm) = Zm is also assumed.

The Gaussians of a new layer are inserted only where
a poor approximation is obtained from the previous layers.
This is evaluated, for each Gaussian, Pl,k, through an integral
measure of the residuals inside the receptive field of that
Gaussian, A(Pi,k). This measure, which represents the local
residual error, R(Pl,k), is computed as the L1 norm of the
local residual as:

Irl_i(Pm)
R(Pl,k) =

eA(Pl,k) (5)

As the Gaussian function has an infinite support, the com-

putation of the output of each layer, a, may be computational
very expensive. However, as the Gaussian decreases very fast
to zero with the distance from its center, computational time
can be saved by allowing each Gaussian to contribute to the
computation of the residuals only for those points that belong
to an appropriate neighborhood of the Gaussian center. This
neighborhood has been called Influence Region.
When R(Pl,k) is over a given threshold, c, the Gaussian

is inserted in the corresponding grid crossing of the current
layer under construction. As a result, Gaussians at a smaller
scales are inserted only in those regions where there are still

some missing details, forming a sparse approximation of the
data. The introduction of new layers ends when the residual
error is under threshold over the entire domain (uniform
approximation).

This approach has been compared with classical multi-
resolution analysis through wavelet basis, and it has proved
superior when approximation of noisy data is required [15].

This batch HRBF training procedure exploits the knowl-
edge of the entire input dataset, and adopts local estimates
to setup the network parameters. The only preliminary in-
formation required is the position and dimension of the data
bounding box, which can be computed automatically from
the data set. The user may specify the scale of the first layer,
otherwise this can be determined by some heuristics on the
data bounding box or the data set density.

The learning is based on the following configuration rules:
. given the scale parameter of the first layer and the

bounding box, the grids associated to the higher layers
can be defined and the Gaussians, in turns, placed at
the grid crossings. Hence the number of Gaussians for
each layer, Ml, is also defined;

. if the grid scale is divided by two for all the higher
layers, their value is completely specified starting from
(71;

* the weight of each Gaussian is estimated through a local
weighted average of the input data for the first layer, and
through a local weighted average of the residuals for the
next layers (3).

Hence, knowing the entire dataset allows to correctly position
the Gaussians and to estimate the weights of the first layer,
and of the subsequent ones, with a fast configuration which
can be parallelized, but that has to wait that all the data points
are available.

III. ONLINE TRAINING PROCEDURE

When the data set is not entirely known, but grows with
time, the schema described in Section II cannot be applied.

In order to illustrate this statement, let us assume that a
HRBF has been already configured with a given data set
and that a new point, sampled over the manifold, is given.
In this case, the local estimate of the manifold height (as
in (3)) is not valid anymore and it should be carried out
again considering also this new point. This operation has
to be carried out for all those Gaussians of the first layer
whose Receptive Field contains the new point. This, in turns,
modifies the output of the first layer. As a consequence, the
residual for the points that belong to the Influence Region
of the updated Gaussians, changes, and the weights of those
Gaussians of the second layer, whose Receptive Field has a
non-empty intersection with the updated region, have to be
estimated again. This causes a chain-reaction that, at the end,
may involve an important subset of the units of the HRBF
network. The need of a new layer can also emerge.

The computational power can be easily not sufficient to
sustain the updating of the network parameters, and some
approximations have to be accepted to obtain real-time
configuration.



Fig. 1. Partitioning schema of the input space: the close neighborhood of
each Gaussian (centered in 'o') is partitioned by the close neighborhood of
four Gaussians of the next layer (centered in '+').

The algorithm proposed here is based on operating the
network parameters update every Q points (with Q << N).
In the first phase, Q points are collected and used to update a

few quantities associated to those Gaussians whose receptive
field includes the Q collected points. In the second phase,
the residual error, (5), is computed and new Gaussians are

inserted in the network accordingly. The two phases are

iterated as far as data points are sampled.

A. Data structures

For each layer, 1, input space is partitioned into squares,

{Cl, k}, each centered in a different Gaussian center, Pl, k.

As the points, which belong to {Cl, k } will be closer to Pl, k

than to any other Gaussian of the I layer, we call {Cl, k}

the close neighborhood of the Gaussian 1, k. It is clear that,
for each layer, 1, the set {Cl, k } constitutes a partition of the
input space.

A data structure, containing the data used for training,
is associated to each Gaussian, k, of the l-th layer. This
structure contains: the 3D coordinates of the Gaussian's
center, Pl, k, its scale parameter, (7, k, its weight, wl, k, the
numerator, nl, k and the denominator, dl, k, of (3) and the 3D
coordinates of the points which fall inside its close neighbor-
hood. As the distance between two adjacent Gaussians of the
same layer, APR, is half of that of the previous layer, APR-1,
the close neighborhood of each Gaussian of the l-th layer will
be formed by the close neighborhood of four Gaussians of
the I+ 1-th layer. This relationship, depicted in Fig. 1, is used
to organize in a quad-tree the Gaussians data structure: the
data of each Gaussian of the l-th layer, calledfather, points
to the data of the four Gaussians of the I + 1-th layer (its
children). Hence, from each Gaussian, (1, k), it is easy to
access the data of any other Gaussian whose center belongs
to C,k.
B. First phase: parameters adaptation
When a new point, P*, is acquired, the Gaussian of the

first layer, whose receptive field includes the new point, G1*

is selected to be updated. For each Gaussian, the numerator,
nl, k, and the denominator, d1, k, are modified according to
(3). This procedure is iterated on the next layers, considering
for the updating only those Gaussians that are children of
G Hence, the distance between P* and the Gaussians'
center is computed only for a small subset of the network
units. After updating the parameters, the coordinates of the
new point are inserted in the data structure ofthat Gaussian of
the higher layer, (1, k), whose close neighborhood contains
P*: P* C Cl,k.

C. Second phase: splitting
After parameters have been reasonably settled, the network

will not be able to improve the quality of the reconstruction
more as this is limited by the scale of the units inserted
in the actual higher layer. Therefore after Q points have
been collected, a splitting step is required. The reconstructed
manifold is examined in correspondence of the receptive
fields of those Gaussians which satisfy three criteria: they
have no children; at least a given number of sampled points,
K, have been collected inside their close neighbourhood, and
their close neighborhood includes at least one of the last Q
points processed.

For all the points which fall inside the close neighbourhood
of these Gaussians, the network output is computed again for
all the layers and, from this, the local residual error associ-
ated to these Gaussians (5) is derived and it is compared
with the error threshold. We build the residual starting from
the Gaussians at the lowest layer, moving towards the higher
layers. We explicitly remark that thanks to the quad-tree data
structure adopted, the Gaussians considered in each higher
layer can be directly accessed as they are children of the
corresponding Gaussian of the lower layer.

If the local residual error exceeds the error threshold
for the Gaussian (1, k), four Gaussians, featuring a scale
parameter ui+1 = oi/2, are inserted in the next layer, I + 1.
The points which fall inside Cl, k are removed from Cl, k,
sorted and partitioned into the data structure of these four
new Gaussians, such that each new Gaussian contains all the
data points which belong to its close neighbourhood, Cl+1, k.
For each of these new four Gaussians, n1+, k, and d1+1, k
are computed as well.

D. Initialization
The only a priori information needed is the bounding

box position and side of the input space to be sampled.
This information is used to set the parameters of the first
layer, which is composed by only one Gaussian. The scale
parameter of the first layer, (Xi will be proportional to the
maximum side length of the bounding box, B, namely
sigmal = 1.465 B, and the center of the Gaussian, PR, 1,
will be positioned at the center of the bounding box: the
close neighborhood of the Gaussian of the first layer, Ci,i,
is defined as the square centered in PR,i, having side length
equal to that of the bounding box.

The parameters of the online training algorithm are the
threshold error, c, the number of points of the network
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(a) (b)
Fig. 2. The data set used to test the online training procedure (a). The
range data has been acquired by the 3D scanner from the mask reported in
(b).

TABLE I

PERFORMANCE INDEXES AND PARAMETERS OF EACH LAYER OF THE

FINAL HRBF NETWORK

a

[mm]
403
201
101
50.4
25.2
12.6
6.29
3.15

#Gauss. #eff. Gauss. RMSE
[mm]

1 1 45.5
4 4 28.3
16 12 15.3
64 32 7.09
256 112 4.09
1024 405 2.60
4096 1342 1.78
16384 2410 1.45

emean

[mm]
14.0
13.0
8.67
4.30
2.70
1.94
1.37
1.20

estd
[mm]
43.3
25.2
12.7
5.64
3.07
1.73
1.13
0.810

adaptation phase, Q, and the minimum number of points
for splitting, K. These may depend on the application, as

they are related to the noise of the input data and to the
computational power of the processing system.

IV. RESULTS

We applied the neural model described in section III to
real-time surface reconstruction from data output by auto-
matic digitizers.

In particular, the data set reported in Fig. 2b, are con-

sidered here. It is constituted of a total 32,000 3D points
acquired by sampling one point after the other over the
surface of the object represented in Fig. 2a using the 3D
scanner described in [7]. The configuration parameters were

set as follows: Q = 100, K = 9, c = 0.8. c was set equal to
the digitizer accuracy.

Figure 3 reports the surface reconstructed at different
steps of the acquisition process: Fig. 3a features an early
reconstruction (after 1,000 points have been sampled), Fig.
3b-c present the surface in two intermediate steps (after 5,000
and 10,000 points, respectively), and in Fig. 3d the final
surface is reported.
We have first investigated the error produced by the

network and the number of units employed, and compared
it with the batch HRBF version. A total of eight layers
are created, with a scale of the final layer of 3.17 mm

Fig. 3. Surface reconstruction as the acquisition proceeds. Subfigures (a),
(b), (c), and (d) show the reconstruction after 1000, 7000, 18000, and 32000
points, respectively.

Online HRBF

1 1.5 2
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1.5 2
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(b)
Fig. 4. The number of allocated Gaussians with respect to the number of
acquired points for the final online HRBF (a), and the batch HRBF (b).

TABLE II

PERFORMANCE INDEXES AND PARAMETERS OF EACH LAYER OF THE

BATCH HRBF NETWORK

#layer

1
2
3
4
5
6
7
8

a

[mm]
403
201
101
50.4
25.2
12.6
6.29
3.15

#Gauss. #eff. Gauss. RMSE
[mm]

4 4 25.3
9 13 14.5
25 34 11.7
81 86 9.16
289 257 5.24
1089 847 2.68
4225 2922 1.52
16641 8400 0.919

(mean

[mm]
21.6
12.1
9.56
7.47
4.02
1.97
1.05
0.636

6std
[mm]
13.9
13.3
11.7
9.14
5.24
2.68
1.52
0.919

(a)
18000

(b)
32000

#layer

1
2
3
4
5
6
7
8 (c) (d)
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(Table I). In order to compare the online and the batch
approaches, the evaluation has been carried out creating
a new batch HRBF from scratch every 500 points. As it
can be seen, only a subset of the maximum number of
Gaussians is considered: for instance only 1,342 over 4,096,
and 2,410 over 16,384, and 12 over 65,53 are considered
for the last two layers. This produce a sparse approximation.
Comparing these figures with those in batch HRBF trained
using the while dataset (Table II), it is evident that the
online HRBF version adopts a more conservative Gaussian
allocating strategy. This consideration is evident in Figs. 4a
and b, where the number of Gaussian units allocated in the
network with respect to the number of the acquired data
points is shown for the online and batch versions. As it can
be seen, in the online version the number of units increases
linearly in the first stages to saturate around 25,000 points.
In the batch version, instead the number of units tends to
allocate more units and to saturate around 7,500 points.

The accuracy has been evaluated through the RMS error,
the mean of the absolute error, Emean, and its standard
deviation, c.td The figures from the online version (Table
I) and the batch version (Table II) are quite dissimilar, but
the batch HRBF uses nearly the double of the online HRBF.
For sake of comparison, we pruned the batch HRBFs in order
to obtaining a network with the same number of units of the
online HRBF. The pruning operation has been carried out
by removing the less significant units, i.e., the ones with the
smallest coefficients. The error evolution as a function of the
number of sampled points is shown in Figs. 5a, b, and c.

V. DISCUSSION

The key elements in updating the network parameters are
ni, k and di, k. These are initialized in the splitting phase,
when a new Gaussian and its data structure is created, and
they are updated every time a new sampled point falls inside
the Gaussian's, (1, k), receptive field, A(Pi, k).

During the parameters adaptation phase, it should be
remarked that, for sake of speed, the residual of a point
is computed only when it is sampled. For this reason the
residual on the previously acquired point can be biased and
therefore it can bias the local residual error of the associated
Gaussian. Therefore the associated weight can be biased
along with the local surface height estimate.

However, due to the non-orthogonality of their basis
functions, the HRBF network is able to recover from a poor
estimate of the surface in one layer, with the approximation
produced by the next layer.

Figure 5a shows that the reconstruction error decreases
when the network grows in the first stages of learning to
saturate when the model details have been captured, towards
the end of the acquisition session. This can be used also as
a stopping criterion for the acquisition process itself.
From Fig.s 5a and b it can be noticed that the recon-

struction error achieved by the online learning algorithm is
greater than the one achieved by the batch HRBF. This is
due to the different Gaussian positioning and the different

Online HRBF
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(c)

Fig. 5. Performance indexes with respect to the number of processed points.
The error figures (RMSE, mean and standard deviation of the absolute error)
are reported for the final online HRBF (a), the batch HRBF (b), and the
pruned batch HRBF.

units allocation policy, as the online HRBF can create



new Gaussians only in the region explored during the last
parameter adaptation phase (III-C). However, the comparison
with the pruned batch HRBF (Figs 5a and c) makes evident
that the units allocated by the online HRBF are the most
significant ones.

VI. CONCLUSION

An online training procedure for the HRBF model is pre-
sented here and applied to a real-time surface reconstruction
problem. The online HRBF model is being extensively used
to reconstruct artefacts' surfaces. Different parameters set
are under investigation to define optimal behavior. From the
preliminary data set obtained, the performance of the online
procedure results comparable with the performance achieved
by the batch version.
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