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Abstract - The Hierarchical Radial Basis Function (HRBF) Network is suitable to fast processing. The multi-scale adaptive scheme
is a neural model that proved its ability in surface reconstruction adds Gaussians only in those regions that features the details of
problem. The algebraic error is used to drive the HRBF configura- the surface, allowing a compact representation of the surface.
tion procedure andfor evaluating the reconstruction ability ofthe net- In its original formulation, the HRBF uses the algebraic er-
work. While forfunction approximation the algebraic distance is the ror between the dataset points and the actual approximation
appropriate error metric, for computer graphics applications, such for evaluating the presence of residual details and the need of
as model reconstruction by 3D scanning, the geometric distance is
a more suitable error metric. In this paper; we propose a modified adn e asin otentok sfrpatcluei
HRBFe which makes metric.erroros a measueeo computer graphics the accuracy of a model is better measured
the reconstruction accuracy. by means of the geometric error, the use of this error measure

in the HRBF configuration for surface reconstruction merits to
Keywords - Radial Basis Function Networks, HRBF, geometric dis- be investigated.
tance. In this paper, we will formulate a modified HRBF model

which makes use of the geometric error. In section II, the orig-
I. INTRODUCTION inal formulation of the HRBF model is described, while in sec-

tion III a variant is proposed. A comparison with the original
HRBF model is carried out for a problem of surface reconstruc-

A 3D scanning device measures the geometric properties of to nscinI.I eto h eut ftecmaio
a real object and produce a 3D model of the object itself. This

t

. . . . . .. ~~~~~~~~~are discussed, while in section VI conclusions are drawn.
digitizing procedure is performed in two step: the measuring
of the position of some points of the object (sampling) and the II HRBF NETWORKS
processing of the sampled data for obtaining a representation
of the surface of the object. In computer graphics, the most
used paradigm for representing the geometry of the model is Let us assume that the manifold to be approximated can be
the mesh of triangles. Subsequent processing may be operated described as a RD > R function. This allows to consider the
on the mesh to obtain a more sophisticated representation in input dataset as a height field: {(Pi, zi) zzi = S(Pi), Pi C
order to speed up processing such as editing or visualization or RD, 1 < i < N}, and the manifold, output by the network,
to diminish the size of the representation. will assume the explicit analytical shape: z = S(P). The

Multiresolution representations [1] [2] [3] [4] are widely used output of a HRBF network is obtained by adding the output of
for this scope: as they represent the surface at different level of a pool of Radial Basis Functions (RBF) networks, organized
detail, they usually allow to operate at the resolution required as a stack of hierarchical layers, each of which is characterized
by the specific application or to perform locally by processing by a decreasing scale:
only a small fraction of parameters that represent the surface. L

The Hierarchical Radial Basis Function (HRBF) model is S(P) = al (P; u') (1)
a neural network paradigm that can be used for surface recon- 1-
struction from a cloud of points affected by noise [5] [6]. It uses
a linear combination of Gaussians to represent the surface as an where orl determines the scale of the l-th layer, with 07l > orl+ 1.
explicit function defined in the I2 domain. As its configura- If we suppose that the units are equally spaced on a grid sup-
tion procedure is not iterative and uses only local operation, it port and a normalized spherical Gaussian function, G(.; X) =
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xp ,is taken as basis function, the output of sake of simplicity in the configuration stage, each new layer
ehaye ca will feature half the scale of the previous one. However, arbi-each layer can be written as a linear low-pass filter:

trr clscudb sd o h ifrn aestrary scales could be used for the different layers.
Ml All the layers after the first one will be trained to approx-

al (P; Jl) = 3 Wl,kG(lP - P1,k ui) (2) imate the residual, that is the difference between the original
k=1 data and the actual output of the network output by the already

where Ml is the number of Gaussian units of the l-th layer. The configured layers. Hence, the residual, rl, is computed as:

G(.) are equally spaced on a D-dimensional grid, which covers r (P.) r (P.) a (P.) (4)
the input domain of the data points: that is the {Pl,k}s are iPm -ii-Pm - m
positioned in the grid crossings of the l-th layer. The side of the and it is used for estimating the parameters of the l-th layer.
grid is a function of the scale of that layer: the smaller the scale, rO (Pm) = Zm is also assumed.
the shorter is the side length, the denser are the Gaussians and The Gaussians of a new layer are inserted only where a poor
the finer are the details which can be reconstructed. approximation is obtained from the previous layers. This is

The actual shape of the surface in (1) depends on a set of evaluated, for each Gaussian, Pl,k, through an integral mea-
parameters: the structural parameters, which are the num- sure of the residuals inside the receptive field of that Gaussian,
ber, M = El MVl, the scale ensemble, {uil}, and the po- A(Pi,k). This measure, which represents the local residual er-
sition, {Pl,k}; and the weights associated to each Gaussian: ror, R(Plk), is computed as the L1 norm of the local residual
{Wl,k}. Each RBF grid, 1, realizes a reconstruction of the sur- as:
face up to a certain scale, determined by ui (low-pass filtered S rli (Pm)
reconstruction). Considerations grounded on the signal pro- CA(P, k)
cessing theory allow, given a certain scale, ul, to set the grid R(Pl,k) A(P,k) (5)
side, AP1, as ol= 1.465 AP1 and to determine consequently A(Pl,k) (
M and the {Pl,k} [7]. From these observations, the weights As the Gaussian function has an infinite support, the com-
{Wl,k} are set equal to the manifold height in the grid cross- putation of the output of each layer, al may be computational
ings: wl,k = S(Pl,k) AP D. As the data set usually does very expensive. However, as the Gaussian decreases very fast
not include the {S(P,k)}, these values should be estimated. to zero with the distance from its center, computational time
We explicitly observe that, even if the S(P, k) were included, can be saved by allowing each Gaussian to contribute to the
they would be corrupted by noise and an estimate would be the computation of the residuals only for those points that belong
right solution. The data points that lie in an appropriate neigh- to an appropriate neighborhood of the Gaussian center. This
borhood of Pl, k can be used to estimate S(Pl, k) as a weighted neighborhood has been called Influence Region.
average of such subset of data points, S(Pi, k). This neigh- When R(Pl,k) is over a given threshold, e, the Gaussian is
borhood, called receptive field, A(P1, k), can be chosen as a inserted in the corresponding grid crossing of the current layer
spherical region centered in Pl, k with the radius proportional under construction. As a result, Gaussians at a smaller scales
to the grid side, AP1. A possible weighting function is: are inserted only in those regions where there are still some

12 missing details, forming a sparse approximation of the data.
S k - The introduction of new layers ends when the residual error is

E S(Pm) e 1 under threshold over the entire domain (uniform approxima-

S(Pl,k Pl,^k) IIP,k 112
(3

This approach has been compared with classical multi-
e resolution analysis through wavelet basis, and it has proved

PmCA(Pt,k) superior when approximation of noisy data is required [5].

which is strongly related to the Nadaraya-Watson estimator
and maximizes the conditional probability density when the III. REFINED HRBF
noise is normally distributed, zero mean [8] [9].

Although a single layer with Gaussians of very small scale Although the HRBF model can potentially reconstruct ev-
could reconstruct the finest details, this would produce an un- ery manifold that can be expressed as a function, it requires a
necessary dense packing of units in all those regions which low scale layer for reconstructing those regions that feature a
feature large scale details. Moreover, there might even be near vertical surface. In fact, from the functional representation
not enough points inside A(Pi,k) to get a reliable estimate of point of view, in those regions the function changes rapidly,
S(Pl,k) in (3). A better solution is to adaptively allocate the and, hence, they are characterized by a high frequency con-
Gaussian units, with an adequate scale in the different regions tent. As each layer plays as a low-pass filter with the cut-off
of the range data domain. This can be achieved by adding and frequency inversely proportional to the scale, or, of the layer,
configuring one layer at time, proceeding from the layer featur- a low scale layer is required to cope with a near vertical re-
ing the largest scale to the layer featuring the smallest one. For gion. It should be noted that it happens even if the region is
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Fig. 2. Computing the residual for the original and for the refined HRBF
model: for the same point (xp, yp), the original HRBF will consider the

point (xp, ra) as the residual, while the refined HRBF will consider (xg rg).

B. Geometric error in HRBF
The HRBF model considers the algebraic error as a measure

F1laic ,. mc , of fitting. This simplifies the formulation of the problem and
the implementation of the algorithm. However, for some ap-
plication such as 3D scanning, a more realistic model of error

flat, e.g., it does not feature low scale details However, this could be the geometric error.
error may be more apparent than real, as the surface can be In order to force the HRBF to fit the dataset along the nor-
closer to the data points than the reported error. This error may mal of the HRBF surface, we propose to modify the computa-
depend on the orientation of the data, as, if the data were prop- tion of the last layer by considering the projection of the resid-
erly rotated, probably the error achieved by the HRBF model uals onto the last configured layer surface, a,-,. As illustred
would be much smaller. The same consideration applies if the in Fig. 2, the residual points for the refined layer will be con-
domain of the HRBF, instead of being the 2 plane, would be stituted by points having the height equal to the geometric dis-
a 2D manifold suitably bended. tance from the surface (signed with respect to the normal to

the surface) and having the same coordinate of the projected
A. Algebraic error vs. geometric error points onto the surface of the previous layer. The last layer

of such an HRBF will have the surface of the previous layer
Two models of error can be used to express the distance as domain, instead of the dataset domain, giving the following

between a function, f: A -> B and a point, p = (Pa, Pb) E reconstruction:
A x B: the algebraic and the geometric error (Fig. 1). The
algebraic error, d, is used to express the error when the function L- 1
is given in explicit form, i.e., when a dependent variable can S(P) = 3z al (P; a7) + n'L-1 aL(P) (6)
be expressed in term of independent variable: d(p) = |Pbb-
f (Pa) l The geometric error, g, is used when the function is where . is the vertical unit vector (e.g., [0 0 1] for R2 >
given in implicit form (e.g., f (.) = 0), and it is defined as functions), and nk is the normal of the k-th layer. It should
the distance between a point and the closest point of a surface:

g minxf(x>op-f(x) be noted that this modification reframes the HRBF to be ag = mlnx z (X)=o P-Jfx) parametrized function, where the input domain act as the para-
Hence, the algebraic error is measured with respect to the pmetrizedo fnc the input domainat asthe para-

the point projected onto the domain of the function, while the merc doma2nthe RHRBFon
geometric error is measured with respect to the projection of space (e.g., R', for HThe projection of a point on a generic surface cannot be

Thepoint ont thgeurfaicerrof the ofunction.usedeveninappi obtained in closed form. However, an iterative procedure can
The use of algebraic error is oe use evenpin apcatio be used to compute an approximation of the projected point

where the geometric error would be more appropriate because ad ec h itnebtentepitadtesrae
its minimization can be operated by linear algorithm. The min- We oervetha distance cannotbe greater
imization of a geometric error is, in general, a non-linear prob- We observe that the geometr,c dfstance cannot be greater

'.' ~~~~~thanthe algebraic distance. Hence, for the point (P, z), its pro-lem, which requires iterative solutions (and a good starting jection point, (Q, S(Q)), on the surface S(.) have to be such
point). However, it worth to notice that in some fields (such that Q is in the spherical neighborhood of P having a radius
as computer vision) the geometric error has a physical inter- zD - S(P) Q C I (P, z - S(P) ). For a generic surface,
pretation and it is invariant under rototraslation. an extensive search should be performed, but the smoothness

of the HRBF surface may be exploited to compute efficiently a
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Given a point (P, z) and a HRBF with I layer, having output TABLE I. Performance Indexes and Parameters of Each Layer of the final
S(.), find the projection point ofP on S(.) with an accuracy HRBF Network
o:

1. c:= P; r:= zz-S(P) l := min(0.5 (71, 0.5 r); I ul #Gauss. #eff. RMSE 6std
2. while* > a, do: Gauss. [mm] [mm]

1 16 210 185 29.1 5.28
(a) T := sample (I(c, r), 5); common 2 8 754 582 5.96 2.44
(b) Q := argmintET (P, z) - (t, S(t)) ; original 3 8 754 499 3.00 1.73
(c) c := Q; r := min( z - S(Q)|, 0.6 r); d := min(0.5 refined 3 8 754 507 2.11 1.45

orl, 0.5 r);
3. return (c, S(c)); TABLE II. Performance Indexes and Parameters of Each Layer of the HRBF

Fig. 3. Pseudocode of the procedure for approximating the projection of a Networks
point on the HRBF surface. I_____#Gauss.__ eff__ RMSE____tdI sTl #Gauss. #eff. RMSE 6std

Gauss. [mm] [mm]
1 16 210 185 29.1 5.28

common 2 8 754 582 5.96 2.44
3 4 2850 1561 1.09 1.04

original 4 4 2850 705 0.669 0.809
refined 4 4 2907 679 0.515 0.709

ech pair has an increasin number of layers. The networks of
the same pair differs only by the last layer as the last layer of
the refined networks is configured using the geometric error,
while the last layer of the original network is trained with the
algebraic error. Both these layers features a scale equal to the
scale of the previous layer. The rational for this choice is that

(a) (b) the refinement layer is added for coping with the geometric
Fig. 4. The data set used to test the refined training procedure (a). The range error and not for providing lower scale details. For the original

data has been acquired by the 3D scanner from the dolly reported in (b). HRBF, the re-use of the same scale is equivalent to consider
a fraction of the high frequency information content that was
filtered out by the previous layer (and that would be recovered

reliable projection point: the surface can be iteratively sampled by the next lower scale layer).
in an appropriate neighborhood of the closest sampled point. The parameters of the networks and the performance in-
As the scale parameter, orl, gives a clue about speed at which dexes are reported in the Tables 1-111.
the surface can change, it can be used as starting sampling step Similar figure of merits are obtained if the last layer feature
for the searching procedure. At each iteration, the sampled
point closest to the given point, P, is chosen as the center of
the searching region, and the radius of the searching region and .

N etworks
the sampling step is decreased. The procedure can be iterated
until the sampling step does not reach a predefined accuracy, a. I a, #Gauss. #eff. RMSE 6std
The searching algorithm can be formalized as the pseudocode Gauss. [mm] [mm]

1 16 210 185 29.1 5.28in Fig. 3. 2 8 754 582 5.96 2.44
common 3 4 2850 1561 1.09 1.04

4 2 11187 2072 0.332 0.565
IV. RESULTS original 5 2 11187 578 0.285 0.519

refined 5 2 11187 511 0.249 0.482

We applied both the original and the refined HRBF model
to a problem of surface reconstruction from a cloud of sampled TABLE IV. Performance Indexes and Parameters of Each Layer of the HRBF
points. Network

The 3D input dataset, reported in Fig. 4b, is composed by
I a, #Gauss. #eff. RMSE 6std

16,000 range data acquired by sampling the surface of the ob- Gauss. [mm] [mm]
ject in Fig. 4a using the 3D scanner described in [10]. common 1 16 210 185 29.1 5.28

In order to test the effect of the refining, we configure three 2 8 754 582 5.96 2.44
pairs of networks, where each pair is composed by a network original 3 4 2850 1561 1.09 1.04
configured with the original algorithm and a refined HRBF, and refined 3 4 2850 1556 0.760 0.870
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half the scale of the second-last layer. For example, the results for converting existing mesh, while the HRBF configuration
for the 3 layer HRBFs are reported in Table IV. algorithm operates on a noisy cloud of points.

The refined HRBF algorithm requires the computation of
the projection of the points onto the HRBF surface where the VI. CONCLUSIONS
original HRBF requires only the computation of the HRBF sur-
face. The computation overhead increases with the number of Considering the geometric error as the measure of the
the Gaussians, and is inversely proportional to the scale of the HRBF network reconstruction ability and incorporating it in
last layer, ul, and the required accuracy, a. the configuration procedure makes the HRBF model more

For the networks reported in this sections, we experimented complex, but more powerful. The results showed that the ap-
the need of 141 HRBF sampling for each data point for a proximation ability increases both in terms of accuracy and
0.1 (a = 0.05 (X4), and the need of 237 HRBF sampling for uniformity.
each data point for a = 0.01 (a = 0.005 (X4). The properties of the HRBF allow to formulate some possi-

ble topics for future works.
V. DISCUSSION The HRBF surface computation allows to compute effi-

ciently also the derivative of the surface [6]. This information
From the data reported in Tabs. I-III, it can be noted that may be exploited in the projection algorithm (Fig. 3) in, at

both the RMSE and the standard deviation of the error dis- least, two ways: to speed up the minimization, approximating
tribution achieved by the refining layer are smaller than the locally the surface, and to better control the accuracy of the ap-
corresponding original layer: in particular, the RMSE is 12.6- proximation of the projection, by comparing the normal at the
29.7% smaller. surface in c and the vector P - c.

The computational cost of the refined HRBF configuration A full normal HRBF, i.e. a HRBF where each layer used
algorithm is dominated by the projection procedure and it is the previous layer as domain, can be investigated. In that case,
two order bigger than the original HRBF one. However it the need of parametrizing each layer of the surface may occur
should be pointed out that the procedure can be optimized by in order to avoid the stretching of the next layer. The compu-
allowing to store all (or a selection of) the sampled points. In tation of the derivative, and hence the curvature of the surface,
this case, the search of the projected point of a data paint may may facilitate the parametrization. It worth noting that an equi-
take advantages of the previously sampled points. For close spaced arrangement of points in a parametrized domain in gen-
data points, it can be a considerable saving. eral does not result in an equispaced set of points in the origi-

In the field of computer graphics, hierarchical surface repre- nal R3 domain. Hence, the use of the previous (parametrized)
sentation that make use of normal displacement to increase the layer as support for the next layer causes the use of non-radial
details of the representation are called normal meshes [3] [4]. and non-equispaced basis functions, with unpredictable resultsdetilsof he eprsenatin ae clle nomalmeses 3] 4]. in the approximation performance of the HRBF.Normal meshes [3] is a multiresolution representation con-
stituted by a base model (which represent the coarsest repre-
sentation of the surface) and a set of normal displacement. The REFERENCES
representation at higher scale is obtained by subdividing the
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