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Absfracf- Aprocedure for rhe construction of 3D surfaces fmm range 
data in real-rime is here described and discussed. The main goal is ro 
observe the accuracy of rhr reconstrucrion rhmugh the phases of the 
30  model reconstruction. The p m e s c  is based on the connectionist 
model. named Hieradiical Radial Basis Funcriom Nehvork (HRBF), 
which Ius been proved effective in rhe reconstruction of smooth sur- 
faces from sparse noisy poinrs. TIE network goal is ro achieve a uni- 
form reconstrucrion ermz equal to measurement ermz by stacking 
non-complere grids of Gaussiuns at decreasing scales. The HRBF 
properties allow reconrtrucling meshes from range dara in real-time. 

Keywords - 30 scannrc Multi-scale surface, Noise filrrring, Real- 
lime meshing. 

I. INTRODUCTION 

The three-dimensional scanning of real objects is becoming 
a common technique used tn obtain a 3D model. The proce- 
dure is composed of two-step: the sampling of a set of range 
data points on the surface to he scanned and the generation of 
a 3D colored mesh. Although sampling can be indeed fast, 
the generation of a 3D mesh requires a considerable amount of 
time, as the processing chain, usually require combining a set 
of partial 3D scans to produce a complex 3D model. This is 
achieved by looping through three steps: view planning, align- 
ing the scans (registration) and reconstructing a unique surface 
(merging) [ 11. To produce results of good quality. human in- 
tervention at different stages is required both to provide initial- 
ization data and to evaluate the effectiveness of the operation. 
This registration I view planning cycle is very time consuming: 
automated registration procedure and a fast visual feedback. al- 
though not accurate, may speed up the object acquisition. 

The approach analyzed here uses a linear combination of 
Gaussians to represent the surface. The surface is supported 
by a 2D grid. and the parameters are computed through al- 
gebraic operations carried out locally on the data, and there- 

fore it is suitable to fast processing. Moreover, to add finer 
details of the surface, which are often circumscribed in few re- 
gions, a multi-scale adaptive scheme has been developed. This 
schema automatically identifies these regions and inserts clus- 
ters of Gaussians at smaller scales there. The model has been 
termed Hierarchical Radial Basis Function Networks (HRBF, 
[2]; [3]) .  The spatial-frequency locality property of the HRBF 
paradigm can he effectively exploited both in the contigura- 
tion procedure and in the registrationlfusion cycle. Besides. 
the differential propenies of the Gaussian allow using an er- 
ror prediction procedure to state an adaptive resampling of the 
surface, useful for the fast visual feedback purpose. Hence, the 
HRBF paradigm can be used through the whole surface recon- 
struction process. 

In this paper we will describe the surface reconstruction 
process chain based on HRBF with the main goal of observ- 
ing the reconstruction accuracy through the different phases of 
the process. 

11. THE HRBF MODEL 

Let us suppose that the set of range data, which can he 
expressed as a 2YzD data set, that is as  a height field: { z  = 

S(s, g)}. In this case. the surface will assume the explicit an- 
alytical shape: z = S(P) .  The output of a HRBF network is 
obtained by adding the output of a stack of hierarchical layers, 
nl(P),  at decreasing scale: 

A I  

.s(P) = al(P; 0 1 )  

I=O 

where U where nr determines the scale of the l-lh layer. and 
q > q + 1 holds. When the Gaussian, C ( . ) ,  is taken as basis 
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Fig. I. The model in pmnel (a) hm k e n  scanncd through rhr Auloscm 
digitizer 141 ohraining 3 dasrl of 16.851 rmge daw points reponed in pancl 

(b). 

function, the output o f  each layer can be written as: 

N 

ai(P;oi)  = wi.);G(P - f i , ) ; ; ~ ~ )  ( 2 )  
k=O 

The C(.)  are equally spaced on a 2D grid, which cover the in- 
put domain of the range data: that i s  the ( p i , k } s  are positioned 
in  the grid crossings. The side o f  the grid i s  a function of the 
scale ofthat layer: the smaller the scale, the shorler i s  the side 
length, the denser are the Gaussians and the tiner are the details 
which can he reconstructed. 

The shape ofthe surface in (2) depends on a set o f  parame- 
ters: the structuraiparumeters, which are the number, N, the 
scale, of ,  and the position, (P,,s} of the Gaussians, and the 
weights (wl ,~} .  Each grid, 1. rtxnlizes a low-pass filter, which i s  
able to reconstruct the surface up loa certain scale, determined 
by uf.  Some considerations, grounded on the signal process- 
ing theory, allow, given a certain scale, uf ,  to set the grid side, 
A q ,  and consequently N a n d  the (I3.k) [SI. 

The weights (w l ,k }  could be chosen equivalent to the sur- 
face height in the grid crossings: wf,h = S(I3.s) according 
to the scheme of digital tilten. As range data are usually not 
equally spaced, S(q,k.)  i s  not available and should he esti- 
mated. To the purpose a weighted average of the range points, 
{ P,,t} (where the weight is a value decreasing with the distance 
of P, from 4 . k )  could he adopted. The estimate can he car- 
ried out locally in space, by using only the range points lying 
in an appropriate neighborhood of 4 . r .  This neighborhood, 
called receptive licld, A(&), i s  choose as the square region 
centered in 4 , s .  of  side equal to 2AI3. A possible estimating 
function i s  reported in (3): 

Although the use o f  a single layer of very small scale Gaus- 
sian can be sufticient to reconstruct the finest details, this 
would produce an unnecessary dense packing o f  units in all 
those regions which feature a low scale. In these regions there 
might even he not enough points to get the estimate in (3). A 
better solution i s  to adaptively allocate the Gaussian units, with 
an adequate scale in the different regions o f  the range data do- 
main. This can he achieved as explained in the following. 

Thc first grid outputs a rough estimale of the surface, ai ( P )  
at a large scale as: 

nr ,. 
n l ( P : a )  = ~ ? r , l , k G ( P - P i . k : ~ i )  (4) 

k=O 

For each of the range data points, a residual i s  computed as the 
difference between the measured value of the surface and the 
reconstructed one: 

T(P,) = S(P,) - U I ( P , " ) .  (5) 

The details wi l l  he added in the higher layers, captured by 
pools o f  Gaussians at smaller scales (cf. Fig. 4). -To this 
scope a second grid, featuring a smaller scale than the first one 
i s  created. Somehow arbitrarily we choose uf+1 = ufJ2, as 
usually chosen in Wavelet decomposition. The Gaussians are 
inserted only where a poor approximation i s  obtained. T h i s  i s  
evaluated, for each Gaussian, !+, through an integral mea- 
sure of the residuals inside thc receptive tield of that Gaussian, 
A(P1.k). This measure, which represents the local Residual Er- 
ror, R(PL1 k ) ,  i s  computed as the L1 norm ofthe local residuals 

When R(4,s )  i s  over threshold (larger than the measured 
noise), the Gaussian i s  inserted in the corresponding grid cross- 
ing o f  the second layer. 

Grids are created one after the other until the Residual Er- 
ror goes under threshold, usually defined as standard deviation 
of the measurcment error, over the entire input domain. As a 
result, Gaussians at a smaller scale are inserted only in those 
regions where there are still some missing details, forming a 
sparse approximation (Fig. 2). Moreover, the number of layers 
i s  not given a-priori, hut i t  i s  the result o f  the configuration pro- 
cedure: the introduction of a new layer stops when the residual 
error i s  undcr threshold over the entire domain (uniform ap- 
proximation). 

111. FAST CONFIGURATION OF HRBF SURFACES I1 ", k - ,'.,I 112 
-i_ C s ( P , , ) ~  '7 

r,,, t A ( P t . r  1 S(&) = 1 1  P . r  ~ I ' . . ,  111 

" i  

(3) To obtain a fast processing scheme on a sequential machine 
locality has been fully exploited. The data are partitioned into 
voxels by a smart positioning of their coordinates in  memory. 

-I c e  
R . , € A ( P , . * )  
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Let us suppose that the range data points are stored into an ar- 
ray: they will he arranged such that their position in the array 
will reflect their position in space. In particular, points be- 
longing to the same voxel will lie close inside the array. Each 
voxel, V ,  will he a structure, which contains the numher of 
data points, which lie inside that voxel, N v ,  and a pointer to 
the position in the m a y  where the first point of that voxel is 
memorized, p t ~ v .  The arrangement of the data guarantees that 
all the data points which belong to that voxel lie in adjacent 
positions. All the points belonging to a voxel can be retrieved 
easily from N v  and ptTv. 

, .. ,-.- ....... --  

. . . .  . . . . . . .  . . .  
Fig. 2. Four hiemchical grids used 10 suppon the Gaussian wconsluction of 
B face. Circles represent the presence of a Gaussian unit in B crossing. Notice 
that the lint grid is complete. while the grids assaciatrd to smaller scales are 

morr dense but spmr 

This subdivision scheme can be efficiently used to compute 
the parameters in (3) and (6). If we accept the voxel as an ap- 
proximation of the receptive field, and we align the voxels with 
the grid mesh supports, the points which lie inside a voxel lie 
also inside the receptive field of a Gaussian. The same parti- 
tioning scheme can he iterated for the higher layers using some 
sort of octree suhdivision: each voxel (father) is subdivided 
into four voxels (sons) of half size, and the points beloning 
to each of these four voxels can he obtained by sorting only 
the points contained in the father voxel. The rcarrangcment of 
the points is obtained by an in-place partial sorting algorithm, a 
variant of Quicksort, in which the pivot value is the mean value 
of the cell 161. The partitioning schema is illustrated in Fig. 5 .  

This processing is quite efficient, as the computation of each 
point does not involve inore than (0 + 1)2 gaussians pcr laycr, 
where N is the ratio (usually equal to 2) bctween the receptive 
lield, RF( . ) ,  and a grid spacing A P .  

This pre-processing allow to obtain a processing lime of 
1.78 s averaged ovcr 20 trials on a Pcntium I11 I GHz machine. 

Fig. 3. The surfaces obtained by multi-layer HRBF recosluction with one 
(a), two (b), three (cj. and four (dj layers. 

The amount of overhead added by data partitioning was negli- 
gible, being the pre-processing time of one order of magnitude 
smallcr than network configuration time. 

1V. FROM HRBF SURFACES TO HRBF MESHES 

The output of the HRBF network is a multi-scale continuous 
surface. To be visualized by graphical hardware, this surface 
has to be digitized, that is converted into a multi-scale mesh. 
One possibility is to densely sample the surface and tessellate 
it. This would produce an un-necessary dense mesh. 

A better result, is to exploit the differential properties of the 
HRBF surface, and to produce mesh, which is denser in those 
regions where geometry contains more details. 

We start by sampling the reconstructed surface in the grid 
crossings of the first grid. These points, {F}, constitute a 
first ensemhle of mesh vertexes (cf. Fig. 4b and 48). No- 
tice that these points are obtained as sum of the outputs of 
all the four (and in general hJ) layers (Eq. (1)). The ad- 
equacy of the resulting mesh is evaluated by analyzing the 
approximation error: we will make the mesh denser (of ver- 
tices), where the approximation error is higher (cf. Fig. 4c- 
e and 4h.j). To the scope, the height of the reconstruct sur- 
face: is evaluated in the mid-points hetween two grid cross- 
ings: zb = S(Pb), Pb = (Pj.k + PJ+ l .h ) /2 .  i b  is then com- 
pared with the piece-wise approximation and the difference 
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1 4 ~ 1 0 5 x 1 1 3  I 4962 

Fig .  4. The meshes obwined by the fast remeshing schema. Nolice that the 
qualily of the face i s  already good at the second layer, while Ihe mouth and 

the nose is refined in the third and founh layers. 

points array 

Input space partitioning 
dau structure 

la& layer ltl 

Fig. 5 .  The implrmmwlion oilhe pmilioning schema into voxels 

3.40 1.58 3.01 

computed as: db = i b  - (S(P,,k.) + S(PJ+l ,~. ) ) /2 .  I f  this dif- 
ference is over-threshold, the point (Pb: z b )  i s  added as a vertex 
of the model. This schema i s  iterated at the higher layers and 
i t  produces the meshes in Figs. &-e. 

V. ACCURACY 

To implement and use the HRBF processing, the undcrlyn- 
ing theoretical foundations need to he relaxed by introducing 
suited approximation addressing feasihility and performance 
issues. 

In the processing chain ahovedescrihed, approximations are 
induced i n  the following stages: . residual computation. . resampling. 

In the computation o f  the residual stage (6),  we arbitrarily 
limit the effects of the gaussian in a square shaped neighhor- 
hood ofthe gaussian center. This has been i s  suggested to save 
computation time. I t  i s  worth noting that the the approximation 
error o f  a layer can he recovered by the next layer, sincc i t  i s  
included in the residual. 

In  resampling, we use a predictor to decide if the resampling 
should he more dense: if the prediction i s  comparable with the 
linear approximation, the region i s  no longer resampled. 

In order to observe accuracy in the HRBF processing chain, 
we compare the reconstruction obtained in each stage with re- 
spect to the original data set. To evaluate accuracy we adopt 
the root mean square error (RMSE) and the mean and stan- 
dard deviation of the absolute value o f  the reconstruction error 
(%~.ul and Gtd).  

TARLE 1 
THE KECONSTRUCTION PBKI'ORMACEOF TIIB ORIGINAL H R B F .  

27x29 2.73 1.97 
53x57 

105 x I I 3  

TABLE II 
THE RECONSTKUCTION PERFORMANCE OF THE FAST HRBF. 

1 layer I gridsize I used new I RMSF. I cmCIn I escd 1 

27 x 29 
53x57 

l 0 5 X t t 3  

TABLE Ill 
T H t  RECONSTRUCTION PERFORMACEOF THE FAST KEMESHING 

lnycr gridsize used neu- RMSE emcm cs,d 
r""S 

27x29 
53 x 57 

I 14x15 175 6.96 5.72 3.96 
2 27x29 635 4.18 2.87 3.03 

1 3 I 53x57 1 2133 I 3.52 I 1.87 I 2.98 I 

The tables I- Ill reports the figures of merit for the recon- 
struction obtained from the original HRBF algoritm (Gaus- 
sians with infinite domain), the HRBF trained with the fast 
schema (Gaussian with hounded domain). and the l is t  remesh- 
ing schema (predictor guided remeshing). The figures of merit 
of the first and the second reconstruction compare well with the 
measurement error of the data (0.7 mm). The fast remeshed re- 
construction prcsents errors higher than the othcrs due mainly 
to cslrapolation in the the boundary regions; however, the me- 
dian absolute error i s  0.240 mm. 
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Fig. 6. The rccmstmction rrmr of thc  fast rcmcshing schema 

VI. CONCLUSIONS 

The HRBF model was derived in the artificial intelligence 
domain, where the problem of fitting a mesh to range data is 
studied into the broad domain of multi-variate approximation 
[7]. Main characteristic of the model is the ability to recon- 
struct a 3D surface with no iteration on the data, therefore al- 
lowing fast computation of the configuration parameters. The 
closest approach to our is hased on stacking grids of B-splines 
[8]. The main difference is that. in the HRBF model. the grids 
in the superior layers are not complete, but Gaussian units are 
inserted in clusters where the residual is over threshold. This 
allows coping with range of different densities and different 
details content and to allocate units where these are mostly re- 
quested. 

Data pre-processing allows placing the data in the input ar- 
ray such that the points inside the receptive field of each Gaus- 
sian can he directly addressed without any sorting. This al- 
lows implementing efficiently the computation locally on the 
data and achieve real-time meshing on sequential machines. 
Computing time overhead is negligible being experimentally 
measured of one order of magnitude smaller than configura- 
tion time. 

Accuracy is not affected by the approximation introduced 
by the implementation choices, as shown in Tabs. I- 111. 

Errors that might be introduced by the implementation 
choices (e.g., the quantization error [Y], the approximations in- 
troduced in section Ill) do not decrese the reconstruction ac- 
curacy, since the constructive nature of the configuration algo- 
rithm. The figures of merit of the reconstruction error for tra- 
ditional and the fast configuration algorithms are in fact almost 
identical, as shown in tabs. I and II. The accuracy achieved 
by the fast remeshing schema is sufficient for previews of the 
reconstruction, which allow realtime quality assesmenc of the 
scanning. 

111 
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