IMTC 2004 - Instrumentation and Measurement
Technology Conference
Como, ltaly. 18-20 May 2004

The Accuracy of the HRBF Networks

S. Ferrari!, I. Frosio®3, V.

Piuri', N.A. Borghese?

Department of Information Technologies,
University of Milano,
via Bramante, 65 — 26013 Crema, ltaly
E-mail: {ferrari, pivri} @ dti.unimi.it.

2 Department of Computer Science
University of Milano,
via Comelico, 39/41 — 20135 Milano, ltaly
E-mail: {{rosio. borghese} @dsi.unimi.it.

3Department of Bioengincering, Politecnico of Milano.

Abstract — A procedure for the construction of 3D surfaces from range
data in real-time is here described and discussed. The main goal is to
observe the accuracy of the reconstruction through the phases of the
3D model reconstruction. The process is based on the connectionist
model, named Hierarchical Radial Basis Functions Network (HRBF),
which has been proved effective in the reconstruction of smooth sur-
Jaces from sparse noisy points. The network goal Is to achieve a uni-
Jorm reconstruction error, equal to measurement erroy, by stacking
non-complete grids of Gaussians at decreasing scales. The HRBF
properties allow reconstructing meshes from range data in real-time.

Keywords — 3D scanner, Multi-scale surface, Noise filtering, Real-
time meshing.

I. INTRODUCTION

The three-dimensional scanning of real objects is becoming
a common technique used to obtain a 3D model. The proce-
dure is compesed of two-step: the sampling of a sct of range
data points on the surface to be scanned and the generation of
a 3D colored mesh. Although sampling can be indeed fast,
the generation of a 3D mesh requires a considerable amount of
time, as the processing chain, usually require combining a set
of partial 3D scans to produce a complex 3D model. This is
achieved by looping through three steps: view planning, align-
ing the scans (registration) and reconstructing a unique surface
{merging) {1]. To produce results of good quality, human in-
tervention at different stages is required both to provide initial-
ization data and to evaluate the effectiveness of the operation.
This registration / view planning eycle is very time consuming:
awtomated registration procedure and a fast visual feedback, al-
though not accurate, may speed up the object acquisition,

The approach analyzed here uses a linear combination of
Gaussians to represent the surface. The surface is supported
by a 2D grid, and the parameters are computed through ai-
gebraic operations carried out locally on the data, and there-
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fore it is suitable to fast processing. Moreover, to add finer
details of the surface, which are often circumscribed in few re-
gions, a multi-scale adaptive scheme has been developed. This
schema automatically identifics these regions and inserts clus-
ters of Gaussians at smaller scales there. The model has been
termed Hierarchical Radial Basis Function Networks (HRBF,
[2); [3]). The spatial-frequency locality property of the HRBF
paradigm can be effectively exploited both in the configura-
tion procedure and in the registration/fusion cycle. Besides,
the differential properties of the Gaussian allow using an er-
ror prediction procedure to state an adaptive resampling of the
surface, useful for the fast visual feedback purpose. Hence, the
HRBF paradigm can be used through the whole surface recon-
struction process.

In this paper we will describe the surface reconstruction
process chain based on HRBF with the main goal of observ-
ing the reconstruction accuracy through the different phases of
the process.

II. THE HRBF MODEL

Let us suppose that the set of range data, which can be
expressed as a 244D data set, that is as a height field: {z
S(x,)}. In this case, the surface will assume the explicit an-
alytical shape: z = S(P). The output of a HRBF network is
obtained by adding the output of a stack of hierarchical layers,
a;(P), at decreasing scale:

Z

M

s(P) = a(P;a)

=0

(1}

where ¢ where oy determines the scale of the !-th layer. and
oy > o; + 1 holds. When the Gaussian, G{-), is taken as basis



(a) {b)

Fig. 1. The model in panel (a) has been scanned through the Autoscan
digitizer [4] oblaining a dasel of 16,851 range dala points reported in pancl
(b).

function, the output of each layer can be written as:

N

afPror) = > w1 G(P - Py o) 2
k=0

The (-} are equally spaced on a 2D grid, which cover the in-
put domain of the range data: that is the { P, 1. }s are positioned
in the grid crossings. The side of the grid is a function of the
scale of that layer: the smaller the scale, the shorter is the side
length, the denser are the Gaussians and the finer are the details
which can be reconstructed.

The shape of the surface in (2) depends on a set of parame-
ters: the structural paramerers, which are the number, NV, the
scale, o1, and the position, {Pjﬁ of the Gaussians, and the
weights {w; +}. Bach grid, i, realizes a low-pass filter, which is
able to reconstruct the surface up toa certain scale, determined
by o;. Some considerations, grounded on the signal process-
ing theory, allow, given a certain scale, oy, to set the gnid side,
AP, and consequently IV and the {F; . } [5].

The weights {uy 1} could be chosen equivalent to the sur-
face height in the grid crossings: wir = S{P ) according
to the scheme of digital filters. As range data are usually not
equally spaced, S({P, ;) is not available and should be esti-
mated. To the purpose a weighted average of (he range points,
{ P} (where the weight is a value decreasing with the distance
of P, from P} ;) could be adopted. The estimate can be car-
ried out locally in space, by using only the range points lying
in an appropriate neighborhood of F ;. This neighborhood,
called receptive ficld, A(F &), is choose as the square region
centered in P, of side equal to 2AFP,. A possible estimating
function is reported in (3):

1y — P2

> S(Pu)e -7

) P € A(Pry)
S(Px) = .

8% g = Pree 112
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Although the use of a single layer of very smali scale Gaus-
sian can be sufficient to reconstruct the finest details, this
would produce an unnecessary dense packing of units in all
those regions which feature a low scale. In these regions there
might even be not enough points to get the estimate in (3). A
better solution is to adaptively allocate the Gaussiaa units, with
an adequate scale in the different regions of the range data do-
main. This can be achieved as explained in the following.

The first grid outputs a rough estimate of the surface, a1 P)
at a large scale as;

N
a1 (P: o) = ZkaG(P — Py io1) 4

k=0

For each of the range data points, a residual is computed as the
difference between the measured value of the surface and the
reconstructed one:

1(Pn) = (P} — 01(P)- (5)

The details will be added in the higher layers, captured by
pools of Gaussians at smaller scales (cf. Fig. 4), -To this
scope a second grid, featuring a smaller scale than the first one
is created. Somehow arbitrarily we choose opy, = /2, as
usually chosen in Wavelet decomposition. The Gaussians are
inserted only where a poor approximaticn is obtained. This is
evaluated, for each Gaussian, Py, through an integral mea-
sure of the residuals inside the receptive field of that Gaussian,
A{P; ). This measure, which represents the local Residual Er-
ror, R(PL, k), is computed as the L norm of the local residuals

as:
> (Pl
minRF(F;,
R(PLY) = ax(Pa) - Z00 (®)
IRF (£ k)

When R(P, ;) is over threshold (larger than the measured
noise), the Gaussian is inserted in the corresponding grid cross-
ing of the second layer.

Grids are created one after the cther until the Residual Er-
ror goes under threshold, usuaily defined as standard deviation
of the measurement error, over the entire input domain. As a
result, Gaussians at a smaller scale are inserted only in those
regions where there are still some missing details, forming a
sparse approximation (Fig. 2). Moreover, the number of layers
is not given a-priori, but it is the result of the configuration pro-
cedure: the introduction of a new layer stops when the residual
crror is under threshold over the entire domain {uniform ap-
proximation).

[I. FAST CONFIGURATION OF HRBF SURFACES

To obtain a fast processing scheme on a sequential machine
locality has been fully exploited. The data are partitioned into
voxels by a smart positioning of their coordinates in memory.
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Let us suppose that the range data points are stored into an ar-
ray: they will be arranged such that their position in the array
will reflect their position in space. In particular, points be-
tonging 1o the same voxel will lie close inside the array. Each
voxel, ¥V, will be a structure, which contains the number of
data points, which li¢ inside that voxel, Ny, and a pointer to
the position in the array where the first point of that voxel is
memoerized, ptry. The arrangement of the data guarantees that
all the data poings which belong to that voxel lie in adjacent
positions. All the points belonging to a voxel can be retrieved
easily from Ny, and piry.

E—) = e

Fig. 2. Four hierarchical grids used to support the Gaussian reconstruction of

a face. Circles represent the presence of a Gaussian unit in a crossing. Notice

that the first grid is complete, while the grids associated to smailer scales are
more dense but sparse.

This subdivision scheme can be efficiently used to compute
the parameters in (3) and (6). If we accept the voxel as an ap-
proximation of the receptive field, and we align the voxels with
the grid mesh supports, the points which lie inside a voxel lie
also inside the receptive ficld of a Gaussian. The same parti-
tioning scheme can be iterated for the higher layers using some
sort of octree subdivision: each voxel (father) is subdivided
into four voxels (sons) of half size, and the points beloning
io ¢ach of these four voxels can be obtained by sorting only
the points contained in the father voxel. The rearrangement of
the points is obtained by an in-place partial sorting algorithm, a
variant of Quicksort, in which the pivol value is the mean value
of the cell [6]. The partitioning schema is illustrated in Fig. 5.

This processing is quite efficient, as the computation of each
point does not involve more than (v + 1)? gaussians per layer,
where « is the ratio (usually equal to 2) between the receptive
field, RF(-), and a grid spacing AP,

This pre-processing allow to obtain a processing time of
1.78 s averaged over 20 trials on a Pentium 111 1 GHz machine.

(a) (b)

©

Fig. 3. The surfaces obtained by multi-layer HRBF recostruction with one
(a), two (b), three (¢), and four (d) fayers.

(d)

The amount of overhead added by data partitioning was negli-
gible, being the pre-processing time of one order of magnitude
smaller than network configuration time,

TV. FROM HRBF SURFACES TO HRBF MESHES

The output of the HRBF network is a multi-scale continuous
surface. To be visualized by graphical hardware, this surface
has to be digitized, that is converted into a multi-scale mesh.
One possibility is to densely sample the surface and tessellate
it. This would produce an un-necessary dense mesh.

A better result, is to exploit the differential properties of the
HRBF surface, and to produce mesh, which is denser in those
regions where geometry contains more details.

We start by sampling the reconstructed surface in the grid
crossings of the first grid. These points, {V1}, constitute a
first ensemble of mesh vertexes {cf. Fig. 4b and 4g). No-
tice that these points are obtained as sum of the outputs of
all the four (and in general ALY layers (Eq. (1)). The ad-
equacy of the resulting mesh is evaluated by analyzing the
approximation error: we will make the mesh denser (of ver-
lices), where the approximation error is higher (cf. Fig. 4c-
e and 4h-j). To the scope, the height of the reconstruct sur-
face: is evaluated in the mid-points between two grid cross-
ings: z, = S(Fp}, Po = (P + Piyux)/2. 2 is then com-
pared with the piece-wise approximation and the difference
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Fig. 4. The meshes obtained by the fast remeshing schema. Notice that the
quality of the face is already good at the second layer, while the mouth and
the nose is refined in the third and fourth layers.
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Fig. 5. The implementation of the partitioning schema into voxels.

computed as: dy = 25 — (S(P; 1) + S(P;41,4))/2. If his dif-
ference is aver-threshold, the point (P, z;) is added as a vertex
of the model. This schema is iterated at the higher layers and
it produces the meshes in Figs. 4c-e.

V. ACCURACY

To implement and use the HRBF processing, the underlyn-
ing theoretical foundations need to be relaxed by introducing
suited approximation addressing feasibility and performance
issues.

In the processing chain above described, approximations are
induced in the following stages:

» residual computation.

« resampling.

In the computation of the residual stage (6), we arbitrarily
limit the effects of the gaussian in a square shaped neighbor-
hood of the gaussian center. This has been s suggested o save
computation time. It is worth noting that the the approximation
crror of a layer can be recovered by the next layer, since it is
included in the residual.

In resampling, we use a predictor to decide if the resampling
should be more dense: if the prediction is comparable with the
linear approximation, the region is no longer resampied.

In order to observe accuracy in the HRBF processing chain,
we compare the reconstruction obtained in each stage with re-
spect to the original data set. To evaluate accuracy we adopt
the root mean square error (RMSE) and the mean and stan-
dard deviation of the absolute value of the recoastruction error
{Emean aDd €5d).

TABLE 1
THE RECONSTRUCTION PERFORMACE OF THE ORIGINAL HRBF.

layer | gridsize | used neu- | RMSE | emean €qd
rons
1 14x15 175 | 5.91 4.66 3.63
2 27%x29 635 | 2.73 1.89 197
3 33x57 2133 1.32 0796 | 1.05
4 105% 113 4962 | 0.761 0397 | 0.649
TABLEII

THE RECONSTRUCTION PERFORMANCE OF THE FAST HRBF.

layer grid size aused neo- | RMSE | cmen [
ons
1 14x 15 177 | 576 4.61 346
2 27x 29 635 | 2.56 1.77 1.85
3 53x57 2171 1.26 0.756 1.00
4 105x113 5104 | 0.748 0.411 |} 0.625
TABLE II!
THE RECONSTRUCTION PERFORMACE OF THE FAST REMESHING.
layer | gridsize | used neu- | RMSE | €mean Esut
rons
1 14x 15 175 | 0.96 572 3.96
2 27x29 635 | 418 2.87 3.03
3 53%x57 2133 | 352 1.87 298
4 165x113 4962 3.40 1.58 3.01

The tables I- III reports the figures of merit for the recon-
struction obtained from the original HRBF algoritm (Gaus-
sians with infinite domain), the HRBF trained with the fast
schema (Gaussian with bounded domain), and the fast remesh-
ing schema (predictor guided remeshing). The figures of merit
of the first and the second reconstruction compare well with the
measurement error of the data (0.7 mm). The fast remeshed re-
construction presents errors higher than the others due mainly
lo estrapolation in the the boundary regions; however, the me-
dian absolute error is 0.240 mm.
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Fig. 6. The reconstruction error of the fast remeshing schema.

VI. CONCLUSIONS

The HRBF model was derived in the artificial intelligence
domain, where the problem of fitting a mesh to range data is
studied into the broad domain of multi-variate approximation
[7]. Main characteristic of the model is the ability to recon-
struct a 3D surface with no iteration on the data, therefore al-
lowing fast computation of the configuration parameters. The
closest approach to our is based on stacking grids of B-splines
[8]. The main difference is that, in the HRBF model, the grids
in the superior layers are not complete, but Gaussian units are
inserted in clusters where the residual is over threshold. This
allows coping with range of different densities and different
details content and to allocate units where these are mostly re-
quested.

Data pre-processing allows placing the data in the input ar-
ray such that the points inside the receptive field of each Gaus-
sian can be directly addressed without any sosting. This al-
lows implementing efficiently the computation locally on the
data and achieve real-time meshing on sequential machines.
Computing time overhead is negligible being experimentally
measured of one order of magnitude smaller than configura-
tion time.

Accuracy is not affected by the approximation introduced
by the implementation choices, as shown in Tabs. I-TI1.

Errors that might be introduced by the implementation
choices (e.g., the quantization crror [9], the approximations in-
troduced in section IH) do not decrese the reconstruction ac-
curacy, since the constructive nature of the configuration algo-
rithm. The fgures of merit of the reconstruction error for tra-
ditional and the fast configuration algorithms are in fact almost
identical, as shown in tabs. I and II. The accuracy achieved
by the fast remeshing schema is sufficient for previews of the
reconstruction, which allow realtime quality assesment of the
scanning.

(1

4

[5]

[6]
7

(8]

[
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