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Abstract

Modern automatic digitizers can sample huge
amounts of 3D data points on the object surface in a 
short time. Point based graphics is becoming a
popular framework to reduce the cardinality of these
data sets and to filter measurement noise, without
having to store in memory and process mesh
connectivity.

Main contribution of this paper is the introduction of
soft clustering techniques in the field of point clouds
processing. In this approach data points are not
assigned to a single cluster, but they contribute in the
determination of the position of several cluster centres. 
As a result a better representation of the data is
achieved.

In Soft clustering techniques, a data set is represented 
with a reduced number of points called Reference
Vectors (RV), which minimize an adequate error
measure. As the position of the RVs is determined by
“learning”, which can be viewed as an iterative
optimization procedure, they are inherently slow. We
show here how partitioning the data domain into
disjointed regions called hyperboxes (HB), the
computation can be localized and the computational
time reduced to linear in the number of data points
(O(N)), saving more than 75% on real applications with 
respect to classical soft-VQ solutions, making therefore 
VQ suitable to the task. The procedure is suitable for a 
parallel HW implementation, which would lead to a
complexity sub-linear in N. An automatic procedure for 
setting the voxel side and the other parameters can be
derived from the data-set analysis.

Results obtained in the reconstruction of faces of both 
humans and puppets as well as on models from clouds 
of points made available on the WEB are reported and
discussed in comparison with other available methods.

1.  Introduction

Volumetric methods are becoming very popular in
the pipeline required to contruct a 3D mesh from the
clouds of 3D points acquired by modern digitizers [1,
2, 3, 4].

In this approach the volume occupied by the object 
is partitioned into voxels and all the data points
contained inside a voxel are substituted by a single
point obtained as a weighted average of these points.
This allows reducing the the number of data and
filtering the noise on them by local computation only
[1, 5, 6]. Moreover, it does not require any additional 
memory to store and process mesh connectivity [9].

This approach produce also a voxel subdivision of
the volume occupied by the scanned object, which is
suitable for simple and fast mesh construction
algorithms, like marching cubes or piece-wise
approximation [7, 8]. 

Improved versions of clustering algorithms have
been recently proposed [20]. In [22, 23] a hierarchical 
clustering approach is used, which is based on
recursively splitting the data set into clusters, which
are subdivided until a certain criterion is not met. In
the region growing approach, which has been
borrowed from the connectionist domain [21], at the
beginning, a point is randomly selected and a cluster is 
grown around it until a certain criterion is met.
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Afterwards, a second point is taken and a second
cluster is grown around it, by using only the remaining 
points. The procedure terminates when no data points 
are left. Both these approaches suffer from the
drawbacks offered by hard clustering of the data
points: this may lead to sub-optimal solutions with
poor visual quality [12, 21]. Morevoer, over fitting
and under fitting may occur.

It is shown here how Vector Quantization
techniques [11] can be used to obtain a robust solution 
for volumetric data processing. In this framework, a
set of M points, called Reference Vectors (RV), is
used to represent a set of N > M data points, such that
a certain cost function (e.g. reconstruction error) is
minimized. Since VQ is a NP-hard problem, sub-
optimal solutions are generally accepted. These can be 
obtained through iterative adaptation of the RVs
position [11, 12] and have been developed mainly in
the connectionist domain [Baraldi]. They are based on
combining soft-max strategies to move the RVs with a 
deterministic annealing scheduling for the parameters
[12, 13]. However, they share two main drawbacks for 
this application. The annealing-based optimization
procedure needs a long time to converge even to a sub-
optimal result, and parameter setting is critical.

In this paper it is shown how a regular subdivision
of the volume into disjointed regions, Hyperbox (HB), 
can be used to achieve a large speed up, which makes 
VQ compatible with mesh construction. Moreover a
procedure to determine automatically the optimal
voxel side along with the other parameters can be
derived [14]. The overall procedure has been termed
Enhanced Vector Quantization (EVQ). Results on the
reconstruction of 3D digital clones of human faces and
puppets from point clouds are reported and discussed.

2.  The methodology

In VQ techniques [11], a set of M reference vectors 
(RV), W = {wj ∈ RD}, are used to approximate an
input set of N data points, V = {vk ∈ RD}, with N > 
M. The RVs are distributed such that the following
reconstruction error, E(V,W): 
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is minimized. wj(vk) is the RV closest to vk or
“winning” RV. 

To determine the optimal position of the {wj(vk)}
RVs, different iterative techniques, based on soft-
adaptation, have been proposed mainly in the
connectionist domain [12]. At each iteration, t, a
sampled point, )(~ tv , is randomly extracted from the

input data set and the position of all the RVs {wj} is 
updated according to an updating-rule. Different
algorithms differ on their updating rule. Among these, 
“Neural-Gas” (NG) [17] has proven superior in
dealing with outliers, as it is not based on distances
but only on ranking, and it will be used here as
“computational engine” for VQ. 

In NG, the following soft-max rule is adopted to
update the RVs position:
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.kj ∈ {0, 1, 2, ..., M} is the ranking of wj with
respect to the actual data vector )(~ tv , measured

according to the Euclidean distance.
)()( ⋅thλ
 is the following weighting function:







−=

)(

)),(~(
exp)),(()( t

wtvk
wtvh jj

jt λλ
(3)

λ(t) controls the number of RVs which are
meaningfully updated by the data point )(~ tv . λ(t) and 

ε(t) decrease as optimization progresses according to:
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where Tmax is the number of iterations. The role of λ(t)
and ε(t) is to reduce the number of reference points
effectively displaced and the displacement amount
induced by )(~ tv  as optimization progresses.

With HB data partitioning, a good distribution of
the RVs can be obtained already at start, with a large
reduction in the number of iterations and in the
computational time.

2.1  Hyper-boxes and RV initialization

In the asymptotic condition, the statistical
distribution of the RVs is proportional to that of the
data points according to [5, 19]:

γ∝ρ )u(p)u( vw with
2+

=
D

Dγ (5)

where ρw (u) and p uv ( )  are the density respectively of

the RVs and of the data points, and D is the
dimensionality of the data space (γ = 0.6 for D = 3 as 
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in our case). Let us call τ the desired compression
rate:

NM
N

M ττ =⇒= (6)

and B the region of RD which contains all the data
points. Partitioning B into NH disjointed regions,
{Bk}, it holds:

with jkBB jk ≠∀∅=I (7a)
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where VB and Vk are the volumes respectively of B
and Bk. It results:
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where Nk and Mk are respectively the number of the
data points and the RVs inside Bk. Applying (5) to
each region Bk, the RVs mean density inside Bk is
derived:
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where
kw u)(ρ  and 

kv u)(ρ  are the mean density of the 

data points and RVs inside Bk. From (7) and (8)
follows that:
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The number of RVs to be inserted inside each
region Bk, Mk, is computed through (6), (9) and (10):
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Whenever B is a parallelepiped1 and the volume of 
all the sub-regions {Bk} is equal, (11) can be
simplified as:
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which does not depend on any volume measurement
but not on the data points inside each box. Function
(12) will be called partitioning function.

1 The partitioning schema can be applied, in principle, 
to boxes of any shape.

The HBs are arranged into a D-dimensional table
and the box associated to each data point (or RV) can 
be directly addressed.

2.2  Speeding-up VQ

HB processing has been used to speed-up the
iterative optimization phase in two ways. First, in VQ,
λ(t) ((3) and (4a)) has to be large at the beginning to
allow all the RVs to move through the data space and 
get to the region of their final destination [15].
Therefore, the first optimization steps are spent to
cluster the RVs around the centroid of the data
distribution and, only in a second phase, they are
distributed towards their final destination. With HB
processing instead, this first phase can be skipped as
the RVs are placed close to their final position already 
in the initialization phase. 

(a) (b)

(c) (d)
Fig.1. The mesh obtained connecting 100,000 points

digitized over a puppet face (a). The need of filtering is evident 
from panel (b). In panels (c-d), the same face is obtained
connecting 2,000 RV obtained through EVQ.
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=
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A much larger saving in computational time is
obtained from the analysis of (2). Here, sorting of all
the M RVs is required to compute the ranking kj2. This 
is an expensive operation, being of the order Mlog(M). 
However, the utility of displacing the {wj}, which lie
far from )(~ tv , can be questioned when the wj position 

is already close to their optimal one. A better schema
is proposed here, where only the RVs inside an
influence region, Rα( )(~ tv ), constituted of the box to

which the data point belongs and the adjacent ones is
considered. As a result, ordering the RVs does scale
anymore with Mlog(M), but it remains constant, equal 

to: 2D M  log(2D M ).
It should be remarked that if a different

compression rate is adopted, the computational time
per iteration due to the sorting procedure, does not
change. In fact, when the number of RVs increases
(larger value of M) Lk decreases and the number of

boxes increases consequently such as to keep M ≈
Mg constant (e.g. compare processing times to obtain
Figs.4).

3. Experimental results

This method has been extensively applied to the
reconstruction of 3D objects starting from clouds of
3D points sampled over them. A typical data ensemble 
sampled on a puppet face is reported in Figs. 1a,
where a total of N = 100,000 3D points have been
taken over the face reported in the bottom right panel. 
From fig. 1c, where a mesh is obtained connecting the 
data points, the need of filtering is evident. Moreover,
the huge number of triangles obtained (≈ 200,000)
calls for data reduction. The method presented here is 
successful in accomplishing both tasks as can be
appreciated in Figs. 1d-1e, where only 2,000 data (≈
4,000 triangles) are used to represent the same face.

Besides qualitative evaluation, a quantitative
evaluation is given. The reconstruction error after 5 N 
iterations (Tmax = 500,000) was 1.437 mm2. The same
figure was obtained after only 119,000 iterations (t = 
1.19 N) with EVQ. Overall the computational time
dropped from 2,660 s on a Pentium II, 350 MHz

2 Data sorting is required not only by most soft
quantization methods [13], but also by some volumetric
methods [10].

machine to only 77s. Therefore EVQ allows a large
increase in speed and/or accuracy. 

Similar results are obtained with different
compression rates and smaller data sets like those
produce by home-made scanners. In Figs. 2b, 2c and
2d, the mesh obtained with τ = 0.05, 0.1, and 0.15
respectively is reported for the face in Fig. 3a. This is 
built starting from N = 12,394 sampled points.

(a) (b)

(c) (d)

Fig. 2. Mesh constructed from a set of N = 12,394 data
points sampled on the face in panel (a) with three different
compression rates: (b), τ = 0.05; (c), τ = 0.1; (d), τ = 0.15. The
three reconstructions feature 1,213, 2,453 and 3,684 polygons.

HB processing is also particularly suitable to
increase the vertex density in selected areas. To the
scope only the initialization phase has to be modified. 
The user has only to define the windows inside which
the higher compression rate is required (Fig. 3a-b).

Let us suppose that we want to increase the
vertices density for the model in Fig. 3, in the areas of
the eyes, the nose and the mouth (Figs. 3a and 3b).
First, the number of RVs for each box is computed
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according to the partitioning function (12) with the
lowest compression rate, τ1. Then, the RVs, which
belong to the selected windows, are removed and
substituted with a second set of RVs, W2, such that
the desired higher compression rate, τ2, is achieved in 
these regions. No modification is required to the RVs 
outside these windows. Afterwards, the position of the 
RVs is optimized according to EVQ processing. 

(a) (b)

(c) (d)

Fig. 3. Multi-rate compression. In panels (a) and (b) the
points sampled on the face in Fig. 8a are reported along with the 
regions inside which the density of the RVs should be increased.
The sampled points have been compressed with τ1 =  0.025 (c) 
and τ1 =  0.0375 (d) except inside the selected regions around
the mouth, the eyes and the nose where the compression rate is 
three times τ1 (τ2 = 0.075 (c) and τ2 = 0.1125 (d) respectively) .
The meshes in panels (c) and (d) are constituted of 941 and
1,594 polygons respectively.

The localized character of EVQ computation
forces the RVs inserted inside the higher compression
rate windows to stay in the neighborhood. As a result, 
regions with different compression rates smoothly
overlap, but maintain their different RVs density. The
results are reported in Figs. 3c-d. In particular the face 

in Fig. 3c (τ1 = 0,025 and τ2 = 0,075) should be
compared with that in Fig. 2b and that in Fig. 3d (τ1 = 
0,0375 and τ2 = 0,1125) with Fig. 2d. The quality of
the reconstruction is higher as can be seen from the
better outline of the lips, the nose and the eyes.
Moreover, this has been obtained using less triangles:
only 941 instead of 1,213 in Fig. 4c, and 1,594 versus 
2,453 in Fig. 4d.

Similar results have been obtained with data made
accessible on the WEB and in particular by the
Stanford Computer Graphics Laboratory repository
[16]. Results on the dragon model (Fig. 4a),
constituted of 437,645 data points, are reported in Fig. 
4c-d. As expected the detail increases with the number 
of RVs, although the visual quality is already close to 
the original with a compression rate as low as the
10%. As discussed in Section 3., processing time is
almost independent on the number of RVs thanks to
the partitioning schema adopted, and it was measured 
as 3-4 minutes for a Pentium III, 1 Ghz, 320Mbyte
RAM, machine (see caption of Figures 4).

4. Discussion.

The reconstruction of a 3D mesh starting from a
set of 3D points is a complex process, which requires 
both noise elimination and data reduction. This
process is carried out usually on very large data sets
which makes the process extremely slow. EVQ is
introduced here as a pre-processing stage aimed to
reduce the number of points and reduce the
measurement noise in a reasonable amount of time.

4.1 Comparison with other approaches

The method proposed here can be applied
successfully in the field, which has been recently
termed “Point-based graphics” [17], where points
sampled over a mani-fold are processed without any
implicit or explicit information on the mani-fold itself.

Main contribution of this paper is the introduction
of soft clustering techniques to the field of point based 
graphics. These techniques do not associate a data
point to a unique cluster, but a single data point does
contribute to define the position of several cluster
centers.

This, in combination with a disjoint
partitioning of the data space into macro voxels,
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called Hyper box processing, allows overcoming
the problems encountered by the hard clustering
procedures used in the field up to now [1, 6, 19, 
20, 22, 23]. 

(a)

(b)

(c)

(d)

Fig. 4. The dragon data set [16] is constituted of 437,645
points (a). A close look to a detail of a paw and of the body is 
reported in panel (b). This same detail has been taken from the 
dragon compressed at τ = 10% 44,202 RVs were generated in
275,8s, (c) and 21,882 RVs were generated in 262,18s, τ = 5% 
(d).

Similarly to here, a partitioning of the data space
was also carried out at start in [1, 6]. However, the
scope of the partition was different from here. As a
single cluster center was generated for each voxel,
voxels have to be very small; for instance a voxel side 
of 0.5mm, which corresponds to half the range image
sampling, was suggested in [1] (for sake of
comparison, a voxel side of 12.2mm was defined for
the data in Fig. 1). This produces a regular spacing of 
the cluster centers, which does not reflect the local
differential properties of the mani-fold. Other
drawbacks induced by hard clustering procedures are
surface thickening [1, 6] and spurious discontinuities
[12], which are due to assigning close points to two
different (adjacent) clusters. This enhances
measurement noise as in the mesh construction phase
it produces a spurious local peaks and gradients on the 
surface.

In EVQ each box contains several cluster centers,
which are positioned such as to represent the data
locally that is those data, which lie inside their
Influence Region. As Influence Regions partially
overlap, thickening and surface discontinuities do not
occur. Moreover, the error function (1) forces more
RVs in those regions where surface is more variable
(|vk – wj| is larger), producing a denser set of RVs is
the most variable regions (cf. Fig. 1d).

4.2 Computational time

It can be shown [14] that the computational cost of 

EVQ is of the order O( M  log M ), a small fixed
quantity, independent of the total number of the RVs.
In fact, when the number of RVs is increased, the box 
side is automatically decreases, leaving the cost
unchanged. We remark explicitly that the cost does not 
depend on the total number of data points.
Experimentally this produces a speed-up of more than 
five times with respect to standard NG. This was
consistently observed on data sets of different sizes,
with different compression rates.
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The nice property of EVQ is the possibility of
deriving a fully parallel implementation. This would
lead to a complexity sub-linear in the number of RVs 
and could open the door to real-time implementation.
This property is shared with those hard clustering
techniques, which are based on a disjointed
partitioning of the data space, achieved both at start
[1, 6], or incrementally, through a progressive octree
subdivision, as clustering progresses [24],

The drawback of voxel based data processing is
extra-memory occupancy, which was acknowledged to 
be a large problem for those approaches based on
micro-voxels [1, 6]. In fact, efficient voxel partitioning
would require a table to immediately access to the
data. This requires one pointer per box, which
produces linear increase of the memory occupancy,
with the number of boxes per dimension and
exponentially with the space dimension, D. Therefore
solutions which are a trade-off between memory
occupancy and algorithm speed have been recently
proposed [1, 5, 19]. In these approaches, to avoid the
waste of memory constituted of the allocation for
those voxels which do not contain sampled points, a
list of the not empty voxels has been substituted to the 
table. However, the determination of the box
associated to a given sampled point becomes a search 
in a hash table, whose computational cost increases
linearly with the number of HBs. 

This problem is not as dramatic in HB processing, 
as macro voxels are used: memory occupancy of the
HB pointers is much smaller than the dimension of the 
data. For example, a total of 1,440 boxes were used
for the data in Fig. 1, with memory occupancy of
5,760 byte, and 104,811 for the data in Fig. 4 (with a 
compression rate of 50%3), with memory occupancy
of 420kbyte. Therefore the more efficient table
structure has been adopted here.

5.  Conclusion

An improved soft clustering technique combined
with macro-voxel data processing has been presented
here (EVQ). It allows reducing the cardinality of the
data clouds produced by modern 3D scanners
efficiently by eliminating measurement noise. The use

3 For sake of completeness, 109,120Kbyte for τ = 20% 
and only 14,400Kbyte for τ = 5%.

of soft clustering allows avoiding thickening and
surface discontinuities which may be obtained by hard 
clustering techniques deployed in the field of point
based graphics.
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