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Abstract — Hierarchical Radial Basis Functions Networks
(HRBF) have been recently introduced as a tool for
adaptive multiscale image reconstruction from range data.
They are based on local operation on the data and are able
to give a sparse approximation. In this paper HRBF are
reframed for the regular sampling case, and they are
compared with Wavelet Decomposition. Results show that
HRBF, thanks to their constructive approach to
approximation, are much more tolerant on errors on the
parameters when errors occurs in the configuration phase,
while they are more sensitive to the errors which occurs
since the network has been configured.

I. INTRODUCTION

Multi-resolution techniques are widely used in signal
processing as they are able to analyze the signal properties
and produce a local description both in temporal and in
frequency domain. This feature is of fundamental importance
when a continuos measurement field has to be recovered
from spot measurements.

Wavelet Decomposition [1] is the most used tool for multi-
resolution analysis thanks to the fast machinery adopted to
compute its coefficients. An interesting alternative is offered
by multi-scale approximation through Gaussian bases. In [2,
3] Hierarchical Radial Basis Functions Neural Networks
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(HRBF) have been introduced, and it is shown that, although
they do not perform a Wavelet Decomposition, they do enjoy
the same asymptotic approximation properties. Moreover,
HRBF are able to better achieve a given approximation error.
This is useful, when measurement noise characterization is
available.

Aim of this work is to reframe the HRBF configuration
procedure for regular sampled data and compare the accuracy
in the reconstruction of a given signal through HRBF and
Wavelet Decomposition when error, due to numerical
representation of their parameters, is introduced.

II. METHODOLOGICAL BACKGROUND

A. Multi-Resolution Analysis

A Multi-Resolution Analysis (MRA) is a sequence of
function spaces {V}.,, where each space completely
includes the previous ones. These spaces are completely
characterized by a single function ¢(-), called scaling
function, as each space V; is spanned by the set of functions

{0 | k € Z} where @, (x)=+27 (2’ x—k). Thanks to

the scaling factor 2, the scale of ¢(-) doubles every layer.
Approximations at a given scale are obtained as a linear
combination of ¢(-) and are contained in the corresponding
V.. As the union of {V}} is dense in L,, every signal f-) in L,

1056



(which are all the common ones) can be reconstructed with
an arbitrary accuracy. Therefore, it is possible to define a set
of spaces {W} such that they complement {V;} in {V,}: V,
=V, @ W,. The {W)} are the function spaces which contain
the details: the portion of f{:) which is contained in V,, but
not in V,. A single function y(-), called wavelet, characterizes
the spaces { W }: each space W, is spanned by the base {y/,(-)

| k € Z}, where Vi (x)=\/2_f_1//(2fx—k). The details are

therefore represented as a linear combination of (equally
spaced) translated copies of yA-), whose scale also doubles
every layer. The coefficients can be obtained by projecting
the measured signal onto the wavelets and the scaling
functions. When the signal is digitized, MRA theory allows
to design a fast algorithm for Wavelet Decomposition, the
cascade algorithm, which decomposes the signal by
convolving it with two (suitable) mirror quadrature Finite
Impulse Response (FIR) filters [4]. To obtain the multi-
resolution description, the convolution is iterated on the
coefficients which are obtained at each pass of the
convolution.

More formally', given a sequence f obtained by regularly
sampling the signal f{-), the approximation coefficients of the
first layer are obtained as @, = l2(f+g), and the detail

coefficients as d, = l2(fxh), where g and h are

respectively the lowpass and the highpass decomposition FIR
filters (called dual filters) correspondent to the considered
MRA. {2() is a subsampling operator: it discards one every
two samples. The procedure is iterated in the higher layers
using the coefficients computed in the previous layer: a,
=~L2(aj_l* g)andd = i2(aj_l* I ). After n iterations the signal
f is represented by the following collection of coefficients
{a, d,, ..., d,}. Given a, and d,, the approximation at a
higher resolution level can be computed as a,, = T2(a,,)*g +
T2(d)+h, where g and h are the lowpass and highpass
reconstruction FIR filters, and T2() is a supersampling
operator which insert zeros in between the coefficients. The
filters g and k are related by orthogonality or biorthogonality

to g and k.
Analitically, the original signal f{x) can be represented as:
~ n
Fx)=a,(x)+ ¥ d;(x) (1
j=1

where a () is the approximation at the n-th level of
resolution, a(x) = X, a,, ¢,(x). Similarly, the details
functions, d(-), are a linear combination of the wavelet

! In order to simplify the notation, vectors will be typed in italics bold, while
function and scalars in italics plain.

functions: df(x) = X, d, ¥, (x). Substituting the previous
expressions in (1), it turns out:

F6)= an0n )+ 33 d, w4 (x) @
k j=l k

B. Hierarchical Radial Basis Functions

In their original formulation, HRBF networks have been
designed for range data (sparse data); their configuration
algorithm is reframed here to the regular sampling case.

A HRBF network is composed of a hierarchical set of
subnetworks, {a(-)}, called layers. The j-th layer is
composed of regularly spaced Gaussian units, with the same
variance 0, and the output of the layer is constituted of a
linear combination of them:

aj(x)zzaj.kgj,k (x):
=;aj'k exp(—(x—kij)z/ojz)/(\/;Gj)D

where D is the input space dimension.

3

The ensemble of the Gaussian units of each layer, j, can
therefore be seen as a function basis, which spans the input
space at the scale j. The first layer, a,(-) features the largest
scale and it captures only the average behavior of the
measurement field. The higher layers feature smaller scales
and are devoted to reconstruct the details. To the scope, a
residual function is computed at the output of each layer j, as
the difference between the signal and the sum of the sum of
the outputs of the first j layers:

rj(x)=f(x)_iaj(x) @
k=0
The configuration procedure is depicted in Fig 1c.

Equation (2) can also be regarded as a low-pass Gaussian
filter. Under this perspective, it is possible to determine a
relationship between the scale ¢, and the spacing between the
units, Ax, by giving a maximum attenuation in the pass band
and a maximum amplitude in the stop band [5].

Moreover, linear filtering theory can be used to design a non-
iterative configuration algorithm. The simplest choice is to
substitute the residual values r,_(-), sampled in the points
k»ij, times 4Ax, to the coefficients a@,, in (2). This is a poor
choice when samples are affected by noise. Exploiting the
correlation between neighbor data, a better result can be
obtained. We propose here a new schema to compute the
coefficients a,, which takes full advantage of the regular
spacing of the data points. This is based on projecting the
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Fig. 1: Analysis and Synthesis with MRA and HRBF. (a) MRA determination of the coefficients; (b) MRA Reconstruction; (c) HRBF determination of the
coefficients; (d) HRBF Reconstruction.

sampled data on the same Gaussian basis j and then down-
sampling the result. The a,, are therefore computed as:

a;= ‘1'2M—j(')'-1*gj) &)

where M is the maximum number of layers. the function
samples f are considered as residuals, r,. for the first layer (r,
= f). All the data points are considered in computing the
weights a,.. We explicitly notice that (3) is equivalent to the
analysis through filtering in the MRA.

The filter g() is obtained from g, () by contracting it by a
factor of two, similarly to the MRA scaling function:

8 sk (x) =28, (2x). (6)

Downsampling (5) and contraction of the Gaussian basis (6)
by a factor of two is not mandatory in the HRBF as it was in
the MRA framework. An arbitrary integer value can be
adopted and even a different integer value for the various
layers.

The configuration procedure is iterated until a stop criterion
is met, e.g. the predetermined number of level is reached or
until a uniform error over the entire input domain is
achieved. At the end, the original signal f is represented by
the collection of HRBF coefficients {a,, ..., a,}:

F6)=Fa,0=X 5, 008,000 ™

Once the network has been configured, it offers in a fast way
a multi-scale approximation of the signal.

II1. COMPARISON

A. Theoretical comparison

Although HRBF and MRA both offer a multi-resolution
approximation, they work in a different way. MRA
decomposes the signal decreasing the level of detail layer by
layer (Fig la), where the first layer is constituted by the
signal measured samples. HRBF, instead, works the other
way round: the least detailed approximation is obtained first
(Gaussian basis with large variance) and details are
progressively added as the number of layers increases and the
variance decreases (Fig. 1c).

MRA filters are generally shorter than a digital FIR
implementation of the Gaussian filter, which, due to its large
transition band, spans at least eight samples [3]. Moreover,
the number of coefficients in a MRA is equal to the number
of data points, N, while in HRBF it is equal to 2N — 1.
However, in practical applications, after zeroing the smallest
coefficients the number of coefficients left is usually the
same. HRBF, on the contrary, is much simpler as it needs

only one filter while MRA requires two pairs (g, k, g, h ),

one for analysis and one for synthesis. As we will see in the
experimental results, the configuration algorithm is also more
error tolerant as it is based on the computation of the residual
which can easily incorporate errors in the previous
computations. Moreover, many basis functions used in MRA
do not have an analytical expressions and are able to give the
measurement field values only in the sampled points. The
spacing in between them has to be interpolated while with
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HRBF a continuos measurement field is directly output.
Moreover, MRA is cast for a digital implementation, while
HRBFs are suitable for both a digital and a hybrid
implementation where the coefficients are stored digitally
and the Guassians can be either digitalized (in a FIR filter) or
computed analogically.

B. Experimental comparison

Original data with perturbations

— T T

@ |

(b)

(© |
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Fig. 2: Original data (a), and the same signal affected by perturbation —
fixed (b) and floating (c) point-like —.

The quality of the reconstruction of a signal depends on the
accuracy in the parameters determined in the configuration
phase.

We simulated the effect of quantization which affects the
computation both in fixed and floating point implementation
for MRA and HRBF algorithms. Fixed point notation is
extensively used in hardware implementation since it allows
circuitry simplification. The use of this notation involves —
given the fixed number of bits available — a compromise
between the range of the possible numbers and the resolution
(i.e. the gap between two consecutive possible numbers). To
simulate the fixed point implementation, the parameters
value are constrained to assume a finite number of (equally
spaced) values by rounding them. The reconstruction
accuracy is evaluated for quantization steps 1/10000, 1/1000,
1/100, 1/50 and 1/10 of the maximum absolute value of the
elements of the parameters vector considered.

Floating point notation allows to represent the data up to a
given relative accuracy. In the floating point representation,
the parameters are rounded according to the given number of
bits dedicated to the mantissa and exponent. In our
simulation, we limit the bits restrictions to the mantissa. This
is equivalent to give a relative precision (namely, we used
from two to six decimal digits) of the actual parameters value

(truncation). Computation precision is considered infinite for
the scope of the experiment.

The parameter sets considered in the experiments are: the
input data, f, the filters coefficients, g for HRBF and {g, &,

g, h } for the MRA, and the basis functions coefficients,

{a,, ...,a,) for HRBF and {a,,d,, ..., d,} for the MRA. Each
session is characterized by both the noise type and the
parameters set which is corrupted. In each session, HRBF
and MRA receive the input data f and calculate the
approximation coefficients. Error in the reconstruction is
assessed through a different data set f,. f and f, are obtained
by regularly sampling the function f{:) reported in Fig. 2 in
1,001 and 32,000 points respectively.

In each of the six plots of Figs 3 and 4, the results obtained
perturbing the three sets of parameters in the two modalities
(fixed and floating point) are reported. The reconstruction
accuracy is measured as the standard deviation of the
(signed) difference between the original function and the
synthesized one. Biorthogonal wavelets 3.7 have been used
in the MRA.

IV. RESULTS AND CONCLUSIONS

As Figs 3 and 4 show, HRBF does not loose accuracy when
errors occur in the configuration procedure. This is due to
two main reasons. The first reason is that MRA can loose the
biorthogonality properties of its basis functions. The second
and main reason is that the residual computed in the HRBF
configuration procedure for the layer j (4) incorporates the
errors introduced at the output of the previous layer as errors
in the filter or approximation coefficients or in the
computation per se. This allows error correction in the higher
layers. Only the error introduced in the last layer cannot be
corrected, but, as the residual decreases with the number of
layers, it is of small amplitude its impact on the
reconstruction is very small. This is not the case in MRA
where the error in the coefficients propagates through the
cascade algorithm.

Overall, the results suggest that HRBF networks can be a
much more robust tool for hardware implemented multi-
resolution reconstruction of measurement fields.
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Fig. 3: Generalization error — fixed point perturbation. Error on: input data (a), filters coefficients (b), and approximation coefficients(c).
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Fig. 4: Generalization error — fixed point perturbation. Error on: input data (a), filters coefficients (b), and approximation coefficients(c).
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