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Abstract

A modular system which is able to reconstruct the 3D
surface of an object is presented here. It has a three level
architecture. The first level is devoted to the acquisition of
a set of 3D points over the surface (digitisation), the
second level constructs the 3D surface in the form of a
mesh, filtering the measurement noise. In the third level a
bitmap of the surface, obtained from a snapshot, is
projected over the 3D mesh to obtain a highly realistic 3D
model. This instrument improves the commercial available
scanners in two main aspects. The digitiser proves highly
flexible and it can easily accommodate objects of different
dimension. The construction of the mesh and the filtering
of the digitisation noise is carried in a single step through
an algorithm which can be parallelised to work in real
time. When the spot detection will be transferred to a
standard graphic board and the mesh construction over a
dedicated (FPGA) board, this instrument shall be seen as
a standard input device of next generation graphical
workstations.

1. Introduction

Virtual 3D models are required by an increasing
number of applications ranging from basic image
processing to video conferencing, consiructive and plastic
surgery, 3D fax, reversed engineering and 3D CAD. A
host of devices (3D scanners), which provide these 3D
models, have come to the market in the last few years [8].

Although ultrasound [I1] or mechanical (e.g.
Microscribe™) devices are available, optical technology is
preferred because it allows a high resolution and it does
not require any contact with the surface. The gold-
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standard is represented by the Cyberware™ scanners
which are suitable to most applications. However, apart
their very high cost, they have two drawbacks: a complex
structure, inside which the object is placed, has to be set
up and only objects within limited sizes range can be
digitised.

In this paper, a 3D scanner, which combines flexibility
and accuracy and it is easily portable is described. It is
subdivided into three main modules. The first module is
devoted to sampling a sufficient number of 3D points over
the surface (digitisation); the second module transforms
the set of points (range data) into a 3D surface, cleaning
the noise introduced by the digitisation process; and the
third module applies to the 3D model the texture, in the
form of bitmap taken from a snapshot of the surface. The
system has been widely tested in the 3D reconstruction of
Human faces. This is a particularly difficult task because
face’s spatial frequency content is highly variable;
moreover, small head motion during the digitisation
process produces a measurement error which adds to
measurement noise.

2. Data acquisition

3D digitisation is carried out by the Autoscan system,
described in [1]. This is constituted of a commercial laser
pointer of 5SmW, a pair of CCD video cameras, which
provide an image of 256x256 pixels with a frame rate of
100 Hz, a real-time image processor and a host computer.
In this version of the system, the Elite system image
processor [6] has been adopted. This is widely used in
automatic human motion analysis and it is able to
recognise in real-time, spherical markers attached to
repere points on the moving subject. Here, it is used to
detect, on the subject, the projected laser spot, which
constitutes a "virtual" marker. It can work in real-time
thanks to the Elite cross-correlation between a mask,
template of the spot, and the image carried out in real-time
through a custom board. Moreover, it achieves a high



SNR, which allows detecting the laser spot also in outdoor
conditions, with an experimental accuracy above 0.1
pixels. In the next version, the spot detection will be
transferred from the Elite to a board (e.g. FPGA) in the
host computer.

Surface digitisation is carried out moving the laser
pointer manually. To help directing the laser beam, a real-
time feedback is provided on the host PC monitor. This
scanning procedure offers the great advantage to increase
the number of sampled points in those regions where the
surface is more variable. A typical ensemble of digitised
points is reported in Figure 1a.

At the same time, through a standard CCD camera a
snapshot of the face is acquired (Fig. 1c).
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3. Surface reconstruction

Due to measurement noise, a direct tessellation of the
data points, {P, = (x, y, z)}, obtained by simply
connecting them, would produce an undesirable wobbling
surface (Fig. 1b), and the need of some sort of filtering in
the reconstruction, is evident. This is achieved here
through a particular model, the Hierarchical Radial Basis
Function Network (HRBF), proposed originally in the
connectionist domain [2]. We assume here that the surface
could be represented as a function S: R'—R. This
assumption is motivated by the acquisition set-up used.
Under this hypothesis, it is more convenient to reframe the
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data points collected as the set {(P, z2(P)) | P, = (x, y) €
R,z R">R}.

The network combines the output of many simple units
to achieve the reconstruction of a complex surface. In
particular, a HRBF Network is composed of radially
symmetric Gaussian units:

G
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o

where P, i e R’ and o € R. In the HRBF model, the units
are organised in layers, where each layer is composed of
equally spaced Gaussians, which have the same standard
deviation, o. Therefore the surface, z(P), is constructed by
adding the contribution of few grids of Gaussian

G(Ppio)=

(©)

Figure 1. The ensemble of 12,641 digitised points is reported in (a). The construction of a mesh by
simply connecting these points produces a noisy reconstruction (b). In (c) the face snapshot used
for texture mapping is reported.

functions, where each grid operates at a certain scale (or
cut-off frequency). Given a set, &, of parameters which
characterise the HRBF network, the actual shape of the
reconstructed surface (i.e. the output of the net), S(Pla),
is:
L M,
S(Play =33 w,G(P:P, 1)) @
I=1 k=1
where L is the number of grids and M, is the number of
Gaussian units in the I" grid. w,, is the weight associated to
the k" Gaussian in the " grid and P,, is its position. o is
the standard deviation of all the Gaussians in the /" grid
which determines the filtering scale of that grid. The
parameters o = {L, M, {w,}, {P,}, {g;}} determine the



actual shape of S(Pla). Although these could be
determined with gradient descent algorithms on a
regularising cost function [10], the offered solution is
often very poor in this case and different solution schemas
have been explored [3, 7, 9]. HRBF, in particular, offers a
very fast solution as the determination of the parameters is
performed with local operations carried out on the data
points and it is particularly suitable to this application.

Each grid of the HRBF model realises a linear filter
which is able to reconstruct the surface up to a certain
scale, determined by o, It can be shown [2] that 0, and the
spacing between two consecutive Gaussians on the same
grid, AP, are related with:

0,=1.465 AP, 3)

This relationship is obtained accepting a maximum
attenuation in the Pass Band of -3dB and a minimum
attenuation in the Stop Band of -40dB. Different
attenuation values lead to a different proportionality
constant between AP, and ¢,. To apply the Gaussian filter,
to the sampled data, these should be equally sampled in
correspondence of the grid crossings. That is the set {z,,}
= {z(P,)} should be available. Unfortunarely this is not the

carried out locally on the input space and it can be
parallelised to achieve quasi real-time processing.

The grid filter can be written as:

M,
S,(P)= Z(P,)G(P;P, | 0))AP’ o)
k=1

Comparing (5) with (2) it can be demonstrated that the
parameters {w,} can be obtained simply as Z(P,) AP/,
[2].

If only one grid are adopted, a large drawback is
introduced: the Guassians scale should be small enough to
resolve the finest details. This requires a very dense
packing of the Gaussians also in those regions where the
details can be resolved at a coarser scale, causing a waste
of resources and overfitting in those space regions. A
better solution would be to adaptively allocate the
Gaussian units, with an adequate scale, in the different
space regions. This is achieved in HRBF through stacking
non-complete grids over a first grid at a coarse scale. The
first grid will output a rough estimate of the surface, a,(P)
(Fig. 2a) as:

(a) (b)

(d)
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Figure 2. The output of the four grids of the HRBF model.

case here; but, since many points are usually digitised
(surface oversampling), a reliable estimate of z(P,) can be
obtained through the following MAP estimator:
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where A(P,) is the Receptive field associated to the k-th
Gaussian in the grid /. It is set, somehow arbitrary, as the

circular region included in P, = AP, This estimation is
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M,
a,(P)= Y, Z(Py)G(P; Py 10,)AR?
= ©)
The residual {r,(P)} is computed for each sampled
data point, (P, z(P), as:
r(P)=a(P)-zP) O]
This residual will be the input to a second grid which
features half the scale of the first grid: o, = ¢,/2. This
second grid does not need to reconstruct the original
surface but only the residual surface. Its reconstruction, a,,
will be at the scale o, and it will provide a second
residual r,. This grid will not be full, but Gaussians will be
inserted only when a poor approximation is given. This is



evaluated through the residual itself: a Gaussian is
inserted in the grid crossing &/ only if:

2‘71(Pr)
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N,
where &, is the rms value of the noise and N, is the number
of sampled points which belong to A(P,).
Grids are created one after the other, until condition (8)
is not satisfied over the entire input domain (Figs. 2a-2d).

(a)

Usually three-four grids are sufficient for face
reconstruction. The final result is a uniform approximation
of the surface in a L' metric. If a uniform convergence in a
different metric were required, this can be achieved by
simply changing the metric in (8).

The quantitative results are summarised in Table I. As
can be seen from the second column the residual error
decreases with the number of grids and it is essentially
zero mean when four grids have been used as it is
expected when only the measurement noise is left. Its
standard deviation decreases towards 1 mm (third
column). Although the digitisation noise is of one order of
magnitude less, motion of the head, which is not
constrained during the acquisition, makes the instrument

less precise. A suitable chair would increase the accuracy
of one order of magnitude. However, this would limit the
acquisition freedom and flexibility, and it has not been
considered here. The reconstruction implements a total of
6,986 Gaussians units which are much less than the 9,200
required by the full grid at the lowest scale (column 4).
Moreover, the units are clustered in those regions where
the highest details are found.

Finally, the obtained 3D surface can now be aligned
with the bitmap obtained from the snapshot and the face
texture can be mapped over it. The final result is a 3D

(b)

Figure 3. (a) The 3D model constructed adding the contribution of the four grids showed in
Figure 2a-d. (b) The final result obtained mapping the texture on the model. It should be
compared with Figure 1c.

very realistic reconstruction of the face (Figs 1c¢ and 3b).
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Table I: Reconstruction of the 3D face reported in Figure 1

#grid MSE Mean Error Error std #gauss V.ot o
[mm’] [mm)] [mm] [Hz] [mm]
1 160.92 1.59 10.17 116/150 0.01 18.74
2. 25.36 0.73 498 476/580 0.02 9.37
3 4.65 0.15 2.15 1812/2320 0.04 4.68
4 1.28 0.02 1.13 4582/9200 0.08 2.34
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