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Elaborazioni morfologiche

I La morfologia di una immagine descrive le forme
rappresentate nell’immagine stessa.

I A basso livello, gli oggetti rappresentati nell’immagine sono
agglomerati di pixel che si distribuiscono nel piano
dell’immagine con una legge che dipende dalle caratteristiche
dell’oggetto rappresentato.

I Le elaborazioni basate sulla morfologia sfruttano la
conoscenza a priori su tali caratteristiche.

I In particolare, utilizzano le caratteristiche locali dei pixel vicini.
I Le elaborazioni morfologiche possono essere formalizzate

come operazioni insiemistiche su insiemi di punti del piano.
I Per semplicità, si considerano punti di Z2, ma si possono

generalizzare ad altri insiemi (e.g., Zn, o R2).

.
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Elaborazioni morfologiche (2)

I Esse sono facilmente definite su immagini binarie, dove i
concetti di appartenenza e complemento sono associabili al
colore del pixel, ma possono essere estese anche a immagini a
toni di grigio.

I Un’immagine binaria, f , può essere utilizzata per descrivere un
insieme di punti di Z2, B:

I se f (x , y) è bianco, (x , y) ∈ B;
I se f (x , y) è nero, (x , y) 6∈ B.
I B = {(x , y) | f (x , y) = 1}

I Nota: nei grafici esemplificativi, gli insiemi considerati sono di
colore grigio, mentre lo sfondo è bianco.

Definizioni

(a) (b) (c)

I Dato un insieme, B, e il punto origine, si possono definire gli
operatori di riflessione e traslazione.

I La riflessione, B̂, è definita come: B̂ = {−b | b ∈ B}.
I La traslazione di z , (B)z , è definita come:

(B)z = {b + z | b ∈ B}

.
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Elemento strutturante

I Le operazioni morfologiche sono generalmente definite
rispetto ad un insieme, detto elemento strutturante.

I Gli elementi strutturanti per le immagini sono a loro volta
delle matrici di pixel.

I Gli elementi strutturanti sono definiti rispetto ad una origine.
I Tipicamente, è il baricentro.

I Per descrivere gli elementi strutturanti, si usa
convenzionalmente:

I cella piena: membro dell’elemento strutturante;
I cella vuota: non membro dell’elemento strutturante;
I crocetta: indifferenza.

Elemento strutturante (2)

.
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Erosione

Dati gli insiemi A e B, l’erosione di A attraverso B, A	 B, è
definita come:

A	 B = {z | (B)z ⊆ A}
In modo equivalente, A eroso B può essere definito come:

A	 B = {z | (B)z ∩ Ac = ∅}

Erosione (2)

I Se A e B sono immagini, le operazioni morfologiche si
calcolano traslando l’origine dell’elemento strutturante in ogni
pixel dell’immagine A, valutando poi se la definizione
dell’operazione è soddisfatta.

I Può essere necessario applicare del padding.

I Nel caso dell’erosione:
I si porta l’origine di B su un pixel a ∈ A;
I se tutti gli elementi di B corrispondono ad un elemento di A, il

pixel a appartiene ad A	 B.

.
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Filtraggio morfologico
I L’operazione di erosione

può essere utilizzata per
operare un filtraggio
basato sulla forma
(filtraggio morfologico).

I In alto a destra è
riprodotta una immagine
binaria 486×486; nelle
altre immagini il risultato
dell’erosione con
elementi strutturanti
quadrati di dimensione
11×11, 15×15 e 45×45.

I L’erosione elimina i dettagli troppo piccoli rispetto
all’elemento strutturante.

Dilatazione

Dati gli insiemi A e B, la di-
latazione di A attraverso B,
A⊕ B, è definita come:

A⊕ B = {z | (B̂)z ∩ A 6= ∅}

In modo equivalente, A eroso
B può essere definito come:

A⊕ B = {z | ((B̂)z ∩ A) ⊆ A}

.
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Dilatazione (esempio)

I L’operazione di dilatazione ha effetti analoghi al filtraggio
passabasso: i dettagli vengono assorbiti.

I Nel caso in esame, la dilatazione irrobustisce i caratteri,
riempiendo gli spazi tra i frammenti.

Dualità

I L’erosione e la dilatazione sono operazioni duali rispetto al
complementare e alla riflessione:

(A	 B)c = Ac ⊕ B̂

e
(A⊕ B)c = Ac 	 B̂

I Se l’elemento strutturante è simmetrico (B̂ = B), si può
ottenere l’erosione di A dilatando lo sfondo, AC , con lo stesso
elemento strutturante, e complementando il risultato (e
viceversa per la dilatazione).

.
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Apertura

L’apertura di un insieme A attraverso B, A ◦ B, è definita come:

A ◦ B = (A	 B)⊕ B

Chiusura

La chiusura di un insieme A attraverso B, A ◦ B, è definita come:

A • B = (A⊕ B)	 B

.
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Apertura e chiusura

I Apertura e chiusura eliminano i dettagli:
I l’apertura elimina le protuberanze e gli istmi troppo sottili;
I la chiusura riempie le insenature e i buchi troppo piccoli.

I Hanno una semplice interpretazione geometrica:
I l’apertura risulta come i punti di A coperti dalla traslazione di

B lungo il bordo interno di A;
I la chiusura risulta aggiungendo ad A i punti dello sfondo non

coperti dalla traslazione di B lungo il bordo esterno di A.

Proprietà di apertura e chiusura

Come la dilatazione e l’erosione, anche l’apertura e la chiusura
sono operazioni duali rispetto al complemento ed alla riflessione:

I (A • B)c = Ac ◦ B̂

I (A ◦ B)c = Ac • B̂

Inoltre, valgono le seguenti proprietà:

I A ◦ B ⊆ A ⊆ A • B

I (A ◦ B) ◦ B = A ◦ B

I (A • B) • B = A • B

I C ⊆ D ⇒ C ◦ B ⊆ D ◦ B

I C ⊆ D ⇒ C • B ⊆ D • B

.
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Apertura e chiusura: esempio

I Le operazioni di apertura e chiusura possono essere utilizzate
per filtrare il rumore.

I L’impronta digitale in A è corrotta dal rumore.

I Applicando l’erosione, si elimina il rumore esterno, ma si
amplia il rumore interno alle impronte.

I Una successiva dilatazione permette di ripristinare la
dimensione originale delle creste e di neutralizzare il rumore
interno.

I erosione + dilatazione = apertura

Apertura e chiusura: esempio (2)

I L’apertura ha rimosso il rumore, ma ha causato l’interruzione
di alcune creste.

I Applicando la dilatazione si può recuperare la continuità della
maggior parte delle creste interrotte.

I Una successiva erosione ripristina lo spessore delle creste.

I dilatazione + erosione = chiusura

.
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Hit or miss

I La trasformazione hit-or-miss serve per l’individuazione di
forme disgiunte.

I Gli oggetti devono essere separati da almeno un pixel di sfondo.

I L’elaborazione è basata su un elemento strutturante (con la
forma dell’oggetto da individuare) e il suo sfondo locale (una
finestra più larga dell’elemento strutturante).

I Sia A un insieme costituito da più regioni, A = C ∪ D ∪ E , B
la forma da identificare e il suo sfondo locale,
B = (D, W − D) = (B1, B2).

I La trasformazione hit-or-miss A ~ B è definita come:

A ~ B = A	 D ∩ (Ac 	 (W − D))

I Definizioni equivalenti:
I A ~ B = A	 B1 ∩ Ac 	 B2

I A ~ B = A	 B1 − Ac ⊕ B̂2

Hit or miss (2)

.
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Estrazione di contorni

I Il bordo di A, β(A), si può ottenere come:

β(A) = A− (A	 B)

I La forma (e la dimensione) di B influisce sullo spessore del
contorno.

Riempimento di vuoti

I Un vuoto (hole) è una regione di sfondo circondata da un
bordo connesso di elementi di primo piano (foreground).

I Sia A un insieme contenente bordi 8-connessi che racchiudono
una regione di sfondo (vuoti), i quali devono essere riempiti
(cioè posti a 1).

I Si costruisce una sequenza X0, . . . , Xk , dove X0 è un insieme
contenente un punto di ogni vuoto e Xj è definito come:

Xj = (Xj−1 ⊕ B) ∩ Ac

per B =
0 1 0

1 1 1

0 1 0

I L’algoritmo termina per un k tale che Xk = Xk−1, Xk

contiene tutti i vuoti riempiti.

I Quindi, A ∪ Xk contiene A senza vuoti.

I L’intersezione con Ac vincola la dilatazione all’interno della
regione di interesse.

.
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Riempimento di vuoti (2)

Riempimento di vuoti: esempio

I L’immagine binarizzata di un gruppo di sfere metalliche
contiene delle regioni interne dovute al riflesso.

I Possono essere eliminate con un algoritmo basato sul
riempimento dei vuoti.

.
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Estrazione di componenti connesse

I L’estrazione di componenti connesse di una immagine binaria
è una delle procedure di base per l’elaborazione automatica di
immagini digitali.

I Sia A un insieme contenente una o più componenti connesse,
X0 contenente un punto per ogni componente connessa di A e
Xk definito come segue:

Xk = (Xk−1 ⊕ B) ∩ A

dove B è un elemento strutturante.

I Per Xk = Xk−1, l’insieme Xk contiene tutte le componenti
connesse di A.

I Nota: il meccanismo è simile a quello per il riempimento di
vuoti, ma utilizza A (invece di Ac) per mascherare la
dilatazione.

Estrazione di componenti connesse (2)

.
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Estrazione di componenti connesse: esempio
I La presenza di ossa all’interno

di un petto di pollo può
essere rilevata da
un’immagine a raggi X.

I Dopo un’opportuna
sogliatura, l’erosione con un
elemento strutturante
adeguato lascia solo gli
oggetti che non sono
imputabili al rumore.

I Il conteggio dei pixel delle
componenti connesse
risultanti permette di stimare
la dimensione delle ossa non
rimosse.

Involucro convesso

I L’involucro convesso (convex hull), H, di un insieme A è il più
piccolo poligono convesso contenente A.

I Una figura geometrica è convessa se il segmento congiungente
due punti qualsiasi della figura è interamente contenuto nella
figura stessa.

I Siano , B1, B2, B3 e B4 gli elementi strutturanti:

e X i
k = (X i

k−1 ~ B i ) ∪ A, con X i
0 = A.

I Siano D i = X i
k , per k tale che X i

k = X i
k−1, per ogni i .

I L’involucro convesso di A, C (A), è calcolabile come:

C (A) =
⋃

i

D i

.
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Involucro convesso: algoritmo

I Nella pratica, partendo da A, si itera la trasformazione
hit-or-miss con B1, fino ad ottenere una figura stabile.

I La procedura si ripete con B2, B3 e B4.

I L’unione dei quattro insiemi ottenuti e di A fornisce C (A).

Involucro convesso: note

I La trasformazione hit-or-miss usata non richiede lo sfondo
locale dell’elemento strutturante.

I Ogni B i aggiunge elementi in una direzione.

I Può essere utile limitare la procedura in modo che
l’accrescimento avvenga solo all’interno del rettangolo che
contiene A (bounding box).

.
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Assottigliamento

I L’assottigliamento (thinning) di un insieme A attraverso B,
A⊗ B, si può definire come:

A⊗ B = A− (A ~ B) = A ∩ (A ~ B)c

I La trasformazione hit-or-miss usata non richiede lo sfondo
locale.

I Talvolta può essere utile definire diversi elementi strutturanti
per le diverse direzioni, da applicarsi in sequenza:
{B} = {B1, . . . , Bn}:

A⊗ {B} = (· · · ((A⊗ B1)⊗ B2) · · · )⊗ Bn

I Il risultato può poi essere ulteriormente elaborato per evitare
percorsi multipli (m-connettività).

Assottigliamento: esempio

.
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Ispessimento

I L’ispessimento (thickening) di un insieme A attraverso B,
A⊗ B, si può definire come:

A� B = A ∪ (A ~ B)

I La trasformazione hit-or-miss usata non richiede lo sfondo
locale.

I E’ la trasformazione duale dell’assottigliamento.

I Può essere definita usando una sequenza di elementi
strutturanti:

A� {B} = (· · · ((A� B1)� B2) · · · )� Bn

dove gli elementi strutturanti sono i complementari di quelli
dell’assotigliamento.

Ispessimento: esempio

I L’ispessimento si opera spesso per assottigliamento dello
sfondo.

I Questo metodo può produrre dei punti disconnessi, che
devono essere poi rimossi, ma lo sfondo assottigliato limita
l’ispessimento e il risultato è generalmente migliore
dell’applicazione diretta dell’algoritmo di ispessimento.

.
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Scheletrizzazione

I Lo scheletro, S(A), di un insieme A può essere definito
intuitivamente pensando di coprire tale insieme con una
collezione minima di dischi circolari.

I L’insieme di punti nei quali posizionare tali dischi è lo
scheletro di A.

I Più formalmente, si definisce il concetto di disco massimo:
I un disco (D)z , posizionato in z ∈ A è detto massimo, se non è

possibile posizionare nessun altro disco completamente incluso
in A tale da contenere (D)z ;

I e si definisce lo scheletro di A, S(A) come:

S(A) = {z ∈ A | (D)z è disco massimo in A

Scheletro

(a) (b)
(c) (d)

(a) L’insieme considerato, A.

(b) I dischi neri sono dischi
massimi in A. Il disco
verde non è disco massimo
perchè esiste un disco che
lo include ed è a sua volta
incluso in A. Il disco blu è
centrato in un punto che
non appartiene alle linee
tratteggiate: i punti delle
linee tratteggiate sono
propriamente incluse in
S(A).

(c) Individuazione di nuovi
punti di S(A).

(d) Lo scheletro di A, S(A).

.
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Definizione morfologica di scheletro

I Lo scheletro, S(A), di un insieme A può essere definito in
termini di operazioni morfologiche.

I Si può dimostrare che:

S(A) =
K⋃

k=0

Sk(A)

con
Sk(A) = (A	k B)− (A	k B) ◦ B

dove B è un elemento strutturante e (A	k B) indica k
erosioni successive e K è l’ultima iterazione prima che
l’insieme risultante diventi vuoto: K = max{k |A	k B 6= ∅}.

Potatura

I La potatura (pruning) è il tipico post-processing degli
algoritmi di scheletrizzazione;

I generalmente, si hanno alcune diramazioni spurie.

X1 = A⊗ {B}

I Si ipotizza che ogni diramazione con meno di tre pixel sia
spuria.

I {B}: tre volte la sequenza B1–B8

.
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Potatura (2)

X1 X2

I Si ottiene l’insieme dei punti terminali, X2:

X2 =
8⋃

k=1

(X1 ~ Bk)

Potatura

I Si dilatano i punti terminali, vincolandoli con l’insieme di
partenza, A:

X3 = (X2 ⊕ H) ∩ A (per tre volte)

H =
1 1 1
1 1 1
1 1 1

I La potatura termina con l’unione dei due insiemi intermedi:

X4 = X1 ∪ X3

X3 X4

.
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