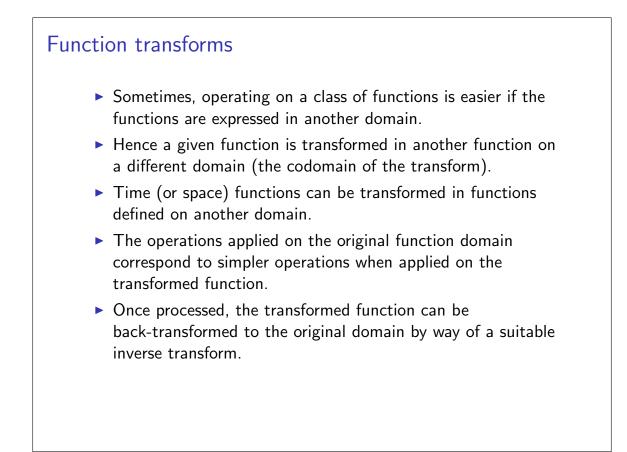
Fourier transform

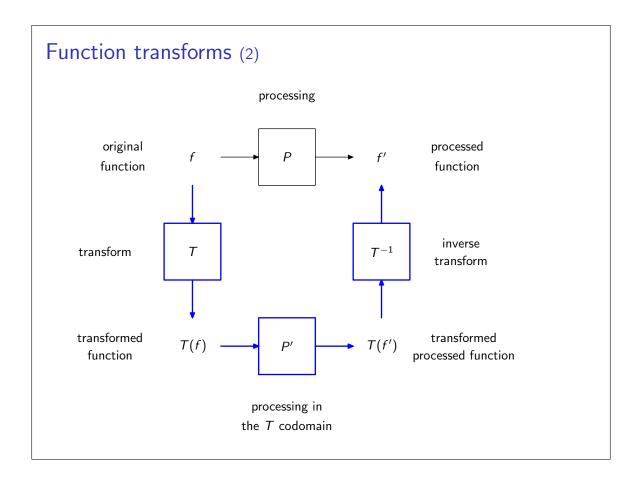
Stefano Ferrari

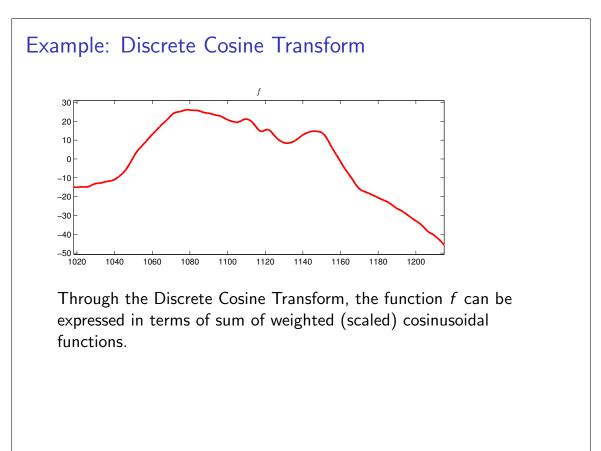
Università degli Studi di Milano stefano.ferrari@unimi.it

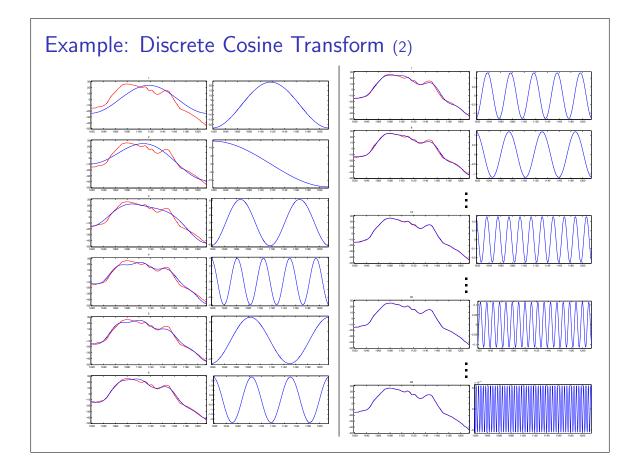
Methods for Image Processing

academic year 2018-2019









Fourier series

Every periodic function, f, with period T, can be represented as a linear combination of sines and cosines:

$$f(t) = \sum_{n=-\infty}^{\infty} c_n e^{\iota \frac{2\pi n}{T} t}$$

where

$$c_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{t}{2}} f(t) e^{-\iota \frac{2\pi n}{T} t} \mathrm{d}t$$

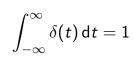
Note: the base is composed of an infinite set of sines and cosines.

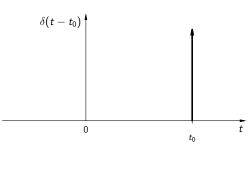
Impulse

The Dirac delta function, δ , or impulse, is defined as:

$\delta(t) = \bigg\{$	$\infty,$	t = 0
	0,	t eq 0

and



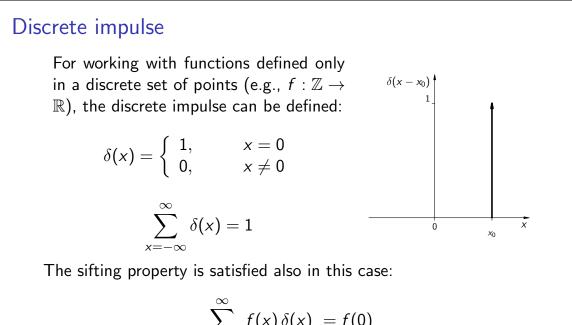


Impulse (2)

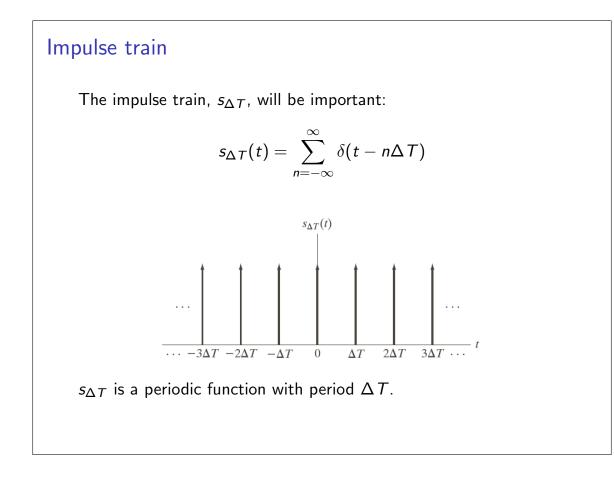
The impulse has the interesting property, called the *sifting property*:

$$\int_{-\infty}^{\infty} f(t) \,\delta(t) \,\mathrm{d}t = f(0)$$
$$\int_{-\infty}^{\infty} f(t) \,\delta(t-t_0) \,\mathrm{d}t = f(t_0)$$

Hence, it can be used for sampling a function, f, by convolution.



$$\sum_{x=-\infty}^{\infty} f(x) \,\delta(x-x_0) = f(x_0)$$



Continuous Fourier transform

Under mild conditions, for every function f(t) the *continuous* Fourier transform can be computed as:

$$\mathcal{F}{f(t)} = \int_{-\infty}^{\infty} f(t) e^{-\iota 2\pi\nu t} dt = F(\nu)$$

Since t is integrated, the Fourier transform of f(t) is a function of the variable ν .

Hence it is usually indicated as $\mathcal{F}{f(t)} = F(\nu)$.

The Fourier transform describes f(t) as a linear (complex) combination of sines and cosines:

$$F(\nu) = \int_{-\infty}^{\infty} f(t) \left[\cos(2\pi\nu t) - \iota \sin(2\pi\nu t) \right] dt$$

since:

$$e^{\iota\theta} = \cos\theta + \iota\sin\theta$$

Continuous Fourier transform (2)

A complementary transform, called *inverse Fourier transform* can be defined:

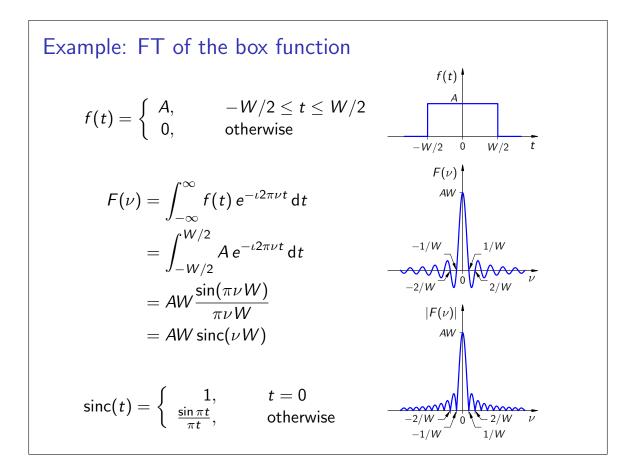
$$f(t) = \mathcal{F}^{-1}{F(\nu)} = \int_{-\infty}^{\infty} F(\nu) e^{\iota 2\pi \nu t} d\nu$$

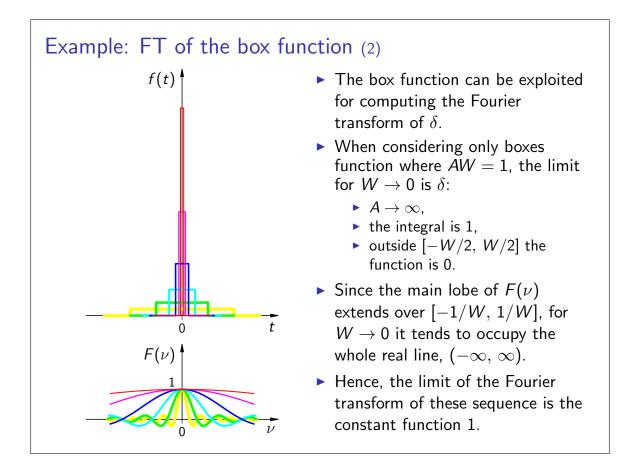
It allows to obtain f(t) from $F(\nu)$. The $\mathcal{F}{f(t)}$ and $\mathcal{F}^{-1}{F(\nu)}$ transforms are called the *Fourier* transforms pair.

For some operations, the spectrum of the transform carries valuable information:

 $\|F(\nu)\|$

the coefficient of the basis function gives the relative importance of the basis function in the representation.





Example: FT of the impulse

Using the sifting property of δ , its Fourier transform can be computed directly:

$$\mathcal{F}(\delta(t)) = \mathcal{F}(
u) = \int_{-\infty}^{\infty} \delta(t) e^{-\iota 2\pi
u t} dt = e^{-\iota 2\pi
u 0} = 1$$

It can be also shown that:

$$\mathcal{F}\{s_{\Delta T}(t)\} = S(\nu) = \frac{1}{\Delta T} \sum_{n=-\infty}^{\infty} \delta\left(\nu - \frac{n}{\Delta T}\right)$$

Note: $S(\nu)$ is a periodic function with period $\frac{1}{\Delta T}$.

Convolution and Fourier transform

The convolution between two continuous functions, f and h, is defined as:

$$f(t)*h(t)=\int_{-\infty}^{\infty}f(au)\,h(t- au)\mathrm{d} au$$

It can be shown that:

$$\mathcal{F}{f(t) * h(t)} = F(\nu) H(\nu)$$

Also the opposite holds:

$$\mathcal{F}{f(t) h(t)} = F(\nu) * H(\nu)$$

This is called the *convolution theorem*.

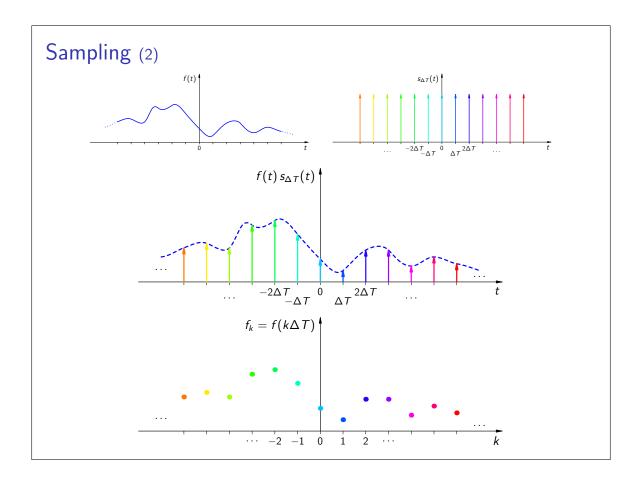
Sampling

- Sampling is a processing step often required for operating on a function with a digital computer.
- This operation can be modeled as the multiplication of the considered function, *f*, with the impulse train of a suitable period, Δ*T*, called *sampling step*:

$$\tilde{f}(t) = f(t) s_{\Delta T}(t) = \sum_{n=-\infty}^{\infty} f(t) \delta(t - n\Delta T)$$

► The value of each sample results:

$$f_k = \int_{-\infty}^{\infty} f(t) \, \delta(t - k \Delta T) \, \mathrm{d}t = f(k \Delta T), \qquad k \in \mathbb{Z}$$



Fourier transform of a sampled function

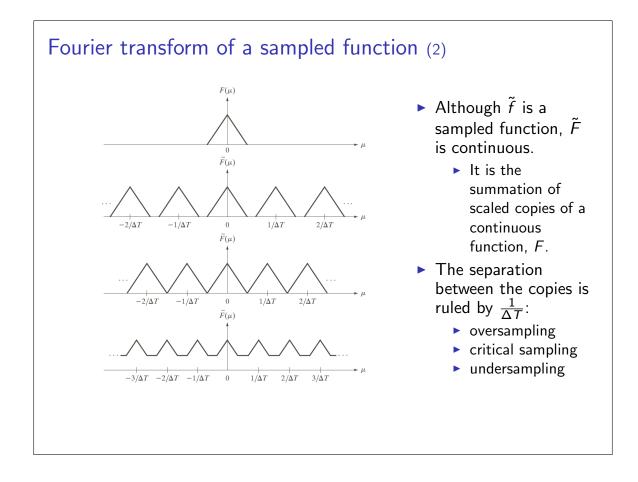
Using the convolution theorem, the Fourier transform of a sampled function can be computed as:

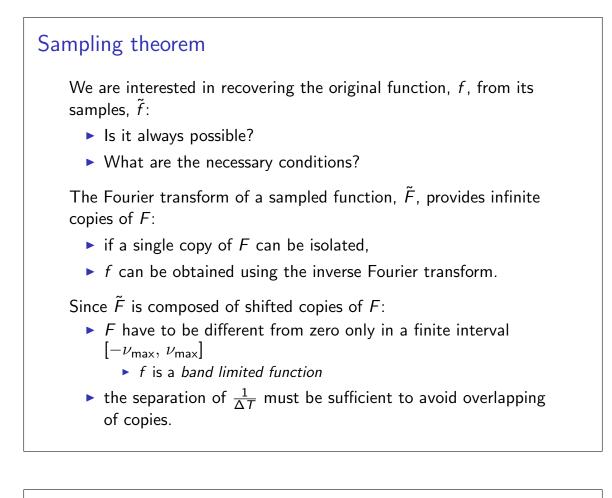
$$\tilde{F}(\nu) = \mathcal{F}{\tilde{f}(t)} = \mathcal{F}{f(t) s_{\Delta T}(t)} = F(\nu) * S(\nu)$$

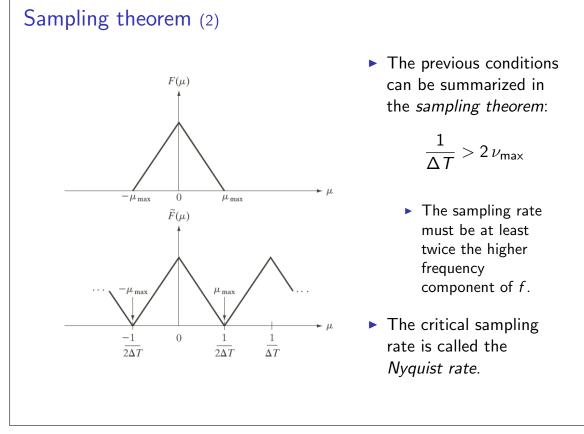
From the sifting property of δ :

$$ilde{F}(
u) = rac{1}{\Delta T} \sum_{n=-\infty}^{\infty} F\left(
u - rac{n}{\Delta T}
ight)$$

Hence, the Fourier transform of the sampled function, \tilde{F} is the infinite summation of scaled copies (for a factor of $\frac{1}{\Delta T}$) of the Fourier transform of the original function, F, shifted by $\frac{1}{\Delta T}$ (i.e., \tilde{F} is a $\frac{1}{\Delta T}$ periodic function).







Reconstruction of a sampled function

• Multiplying \tilde{F} by a box function H:

$$H(
u) = egin{cases} \Delta T, & -
u_{\mathsf{max}} \leq
u \leq
u_{\mathsf{max}} \ 0, & ext{otherwise} \end{cases}$$

a single copy of F can be recovered.

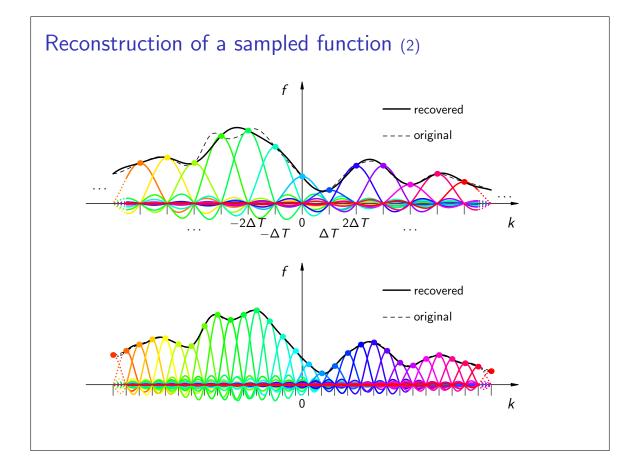
Then, the inverse Fourier transform can be applied to obtain f.

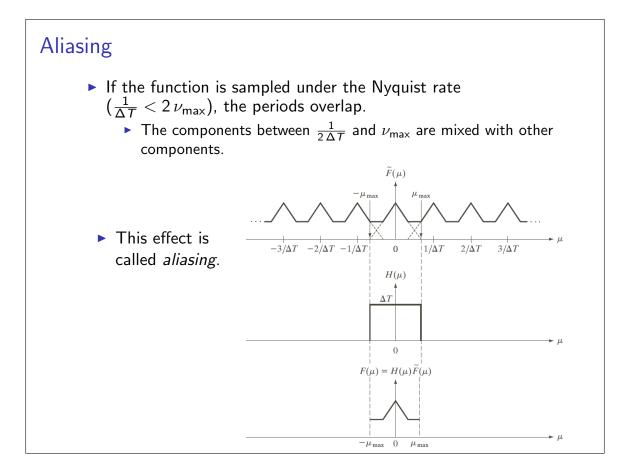
$$f(t) = \mathcal{F}^{-1}\{F(\nu)\} = \mathcal{F}^{-1}\{H(\nu)\,\tilde{F}(\nu)\} = h(t) * \tilde{f}(t)$$

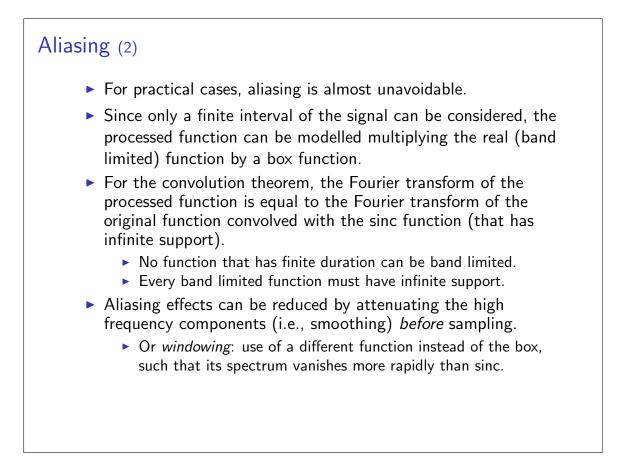
It can be shown that:

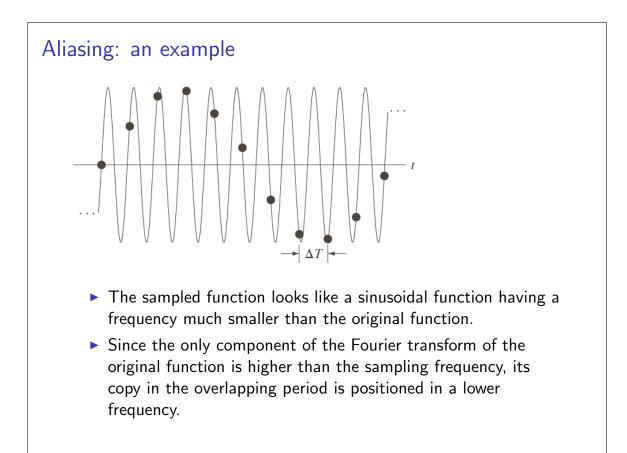
$$f(t) = \sum_{n=-\infty}^{\infty} f(n\Delta T) \operatorname{sinc}\left(\frac{t-n\Delta T}{\Delta T}\right)$$

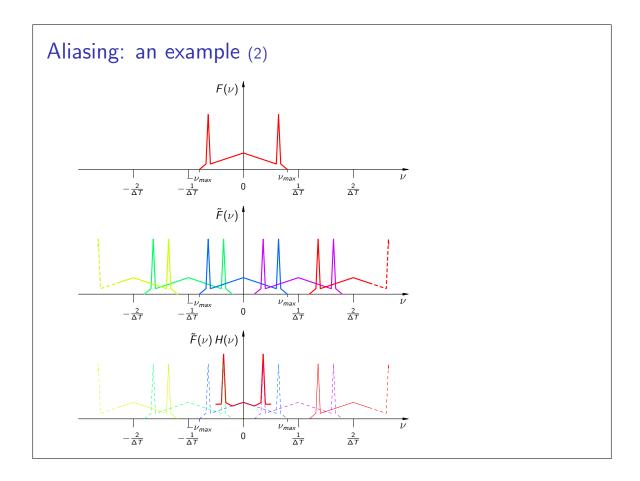
- f(t) is equal to f_k in $t = k \Delta T$;
- elsewhere it is obtained using a shifted sinc functions basis.











Discrete Fourier Transform (DFT)

• \tilde{F} can be expressed in terms of \tilde{f} :

$$ilde{F}(
u) = \int_{-\infty}^{\infty} ilde{f}(t) e^{-\iota 2\pi
u t} \, \mathrm{d}t$$

From which can be shown:

$$\tilde{F}(\nu) = \sum_{n=-\infty}^{\infty} f_n e^{-\iota 2\pi\nu n\Delta T}$$

• Since \tilde{F} is periodic, all the information carried out by \tilde{F} is contained in a single period.

Discrete Fourier Transform (DFT) (2)

If M samples of F̃ are considered in one period, ΔT, the following frequencies are inspected:

$$u_m = rac{m}{M \Delta T}, \qquad m = 0, \ldots, M-1$$

and the samples are:

$$F_m = \sum_{n=0}^{M-1} f_n e^{-\iota 2\pi m n/M}$$

- The *M* samples {*F_m*} are computed using only *M* samples of *f*.
- This transform is called the *Discrete Fourier Transform*.

Inverse Discrete Fourier Transform (IDFT) The *M* samples {*f_n*} can be reconstructed from {*F_m*} using the following transformation: *f_n* = ¹/_M ∑^{M-1}_{m=0} *F_me^{i2πmn/M}*, *n* = 0, ..., *M* - 1 This transform is called the *Inverse Discrete Fourier Transform*.

Discrete Fourier Transform pair • The forward and inverse Fourier transform are usually represented as: $F(u) = \sum_{x=0}^{M-1} f(x)e^{-\iota 2\pi u x/M}, \qquad u = 0, \dots, M-1$ $f(x) = \frac{1}{M} \sum_{u=0}^{M-1} F(u)e^{\iota 2\pi u x/M}, \qquad x = 0, \dots, M-1$ • No direct reference to time and frequency is present. • {f_n} and {F_m} are just sequences. • It can be shown that F(u) and f(x) are periodic: $F(u) = F(u + kM) \quad \text{and} \quad f(x) = f(x + kM), \quad k \in \mathbb{Z}$ • Although if (the original) f is not.

Circular convolution

The convolution of finite sequence of M elements can be defined through:

$$g(x) = f(x) * h(x) = \sum_{m=0}^{M-1} f(m) h(x-m)$$

- The periodicity of g derives from the periodicity of f and h.
- This operation is called *circular convolution*.
- Through this operation, the convolution theorem (for continuous FT) can be extended to the DFT.
 - The circularity causes the wraparound problem, that will be discussed later.

