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Histogram

I The histogram of an L-valued image is a discrete function:

h(k) = nk , k ∈ [0, . . . , L− 1]

where nk is the number of pixels with intensity k .

I Often it is preferable to consider the histogram normalized
with respect to the number of pixels, M × N:

p(k) =
nk
MN

I M and N are the number of rows and columns of the image.

I The function p(k) estimates the probability density of k;
I the sum

∑
k p(k) is equal to 1.

.
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Histogram based trasformations

I The histogram provides an intuitive (visual) tool for
evaluating some statistical properties of the image.

I Histogram based transformations are numerous:
I enhancement,
I compression,
I segmentation;

I and can be easily implemented:
I cheap;
I dedicated hardware.

Dark image

0 255

I The histogram components are localized to low intensity
values.

.
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Bright image

0 255

I The histogram components are localized to high intensity
values.

Low contrast image

0 255

I The histogram components are localized in a narrow region of
the intensity values.

.
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High contrast image

0 255

I The histogram components are distributed over all the
intensity range.

I The distribution is almost uniform, with few peaks.

I If the distribution is uniform, the image tends to have a high
dynamic range and the details are more easily perceived.

I This is the effect pursued by the histogram based
transformations.

Monotonic transformations

I In order to study the histogram transformations, it is useful to
consider the (continuous) monotonic transforms on
[0, L− 1]2:

I s = T (r), 0 ≤ r ≤ L− 1

I T (r2) ≥ T (r1), r2 > r1

I 0 ≤ T (r) ≤ L− 1, 0 ≤ r ≤ L− 1

I If T is strictly monotonically increasing, there is T−1:
I r = T−1(s), 0 ≤ s ≤ L− 1

0 L-1
0

L-1

r

T (r)

0 L-1
0

L-1

r

T (r)

0 L-1
0

L-1

s

T−1(s)
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Intensities as random variables

I The (continuous) intensities can be intended as random
variables in [0, L− 1].

I If s = T (r) and T (r) is continuous and differentiable:
I ps(s) = pr (r)

∣∣ dr
ds

∣∣

I In particular, the following transformation is interesting:
I s = T (r) = (L− 1)

∫ r

0
pr (w)dw

I Then:
I ds

dr = T(r)
dr = (L− 1) d

dr

[∫ r

0
pr (w)dw

]
= (L− 1)pr (r)

I Hence:
I ps(s) = pr (r)

∣∣ dr
ds

∣∣ = pr (r)
∣∣∣ 1
(L−1)pr (r)

∣∣∣
= 1

L−1 , 0 ≤ s ≤ L− 1

I That is: s is uniform, independently of pr .

Equalization

0 L-1
0

r

pr(r)

0 L-1
0

L-1

r

s = T (r)

0 L-1
0

1
L−1

s

ps(s)

I The equalization transformation, T (r), is steeper where r is
more probable.

I It results in mapping intervals of r values with low probability
into narrow intervals of s = T (r).

I On the contrary, intervals of r values with high probability are
mapped into large intervals of s.

.
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Equalization of a discrete random variable

I rk is the intensity level in 0, . . . , L− 1
I pr (rk) = nk

MN , k = 0, 1, . . . , L− 1

I pr can be equalized by assigning the intensity sk to those
pixels having intensity rk :

I sk = T (rk) = (L− 1)
∑k

j=0 pr (rj)

= L−1
MN

∑k
j=0 nj , k = 0, 1, . . . , L− 1

Equalization of a discrete random variable (2)

rk nk pr (rk) T (rk) sk ps(sk)
r0 = 0 790 0.19 1.33 1 0.19
r1 = 1 1023 0.25 3.08 3 0.25
r2 = 2 850 0.21 4.55 5 0.21
r3 = 3 656 0.16 5.67 6
r4 = 4 329 0.08 6.23 6

0.24

r5 = 5 245 0.06 6.65 7
r6 = 6 122 0.03 6.86 7
r7 = 7 81 0.02 7.00 7

0.11

.
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Examples

Dark image equalization

0 255

0 255

Examples (2)

Bright image equalization

0 255

0 255

.
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Examples (3)

Low contrast image equalization

0 255

0 255

Examples (4)

High contrast image equalization

0 255

0 255

.
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Examples (5)

I The transformation of each image maps values from the range
of the original images to the whole range of intensity levels.

I The transformation for (4) is close to the identity.

Histogram specification

I The histogram equalization is a basic procedure that allow to
obtain a processed image with a specified intensity
distribution.

I Sometimes, the distribution of the intensities of a scene is
known to be not uniform.

I The possibility of obtaining a processed image with a given
distribution is appreciable:

I Histogram matching

I The problem can be formalized as follows:
I given an input image, whose pixels are distributed with

probability density pr ,
I given the desired intensity distribution, pz ,
I find the transformation F , such that z = F (r).

.
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Histogram specification (2)

I Let s be a random variable such that:
I s = T (r) = (L− 1)

∫ r

0
pr (w)dw

I ps is uniform

I Define a random variable z that satisfies:
I G (z) = (L− 1)

∫ z

0
pz(t)dt = s

I ps is uniform

I Hence: G (z) = s = T (r)

I The desired mapping F , such that z = F (r) can be obtained
as:

I z = G−1(T (r)), i.e., F = T ◦ G−1

0 L-1
0

r

pr(r)

0 L-1
0

L-1

r

s = T (r)

0 L-1
0

L− 1

z

s = G(z)

0 L-1
0

z

pz(z)

Histogram specification (3)

I When discrete random variables are considered, pz can be
specified by its histogram.

I The histogram matching procedure can be realized:

1. obtain pr from the input image;

2. obtain the mapping T using the equalization relation;

3. obtain the mapping G from the specified pz ;

4. build F by scanning T and finding the matching value in G ;

5. apply the transformation F to the original image.

I In order to be invertible, G has to be strictly monotonic.

I In pratical cases, this property is rarely satisfied.

I Some approximations should be allowed
I e.g., the first matching value can be accepted.

.
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Example

I Large concentration of pixels in the dark region of the
histogram.

Example (2)

.
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Example (3)

Local histogram processing

I Histogram equalization is a global approach.

I Local histogram equalization is realized selecting, for each
pixel, a suitable neighborhood on which the histogram
equalization (or matching) is computed.

I More computational intensive, but neighboring pixels shares
most of their neighborhoods.

I Non overlapping regions may produce “blocky” effect.

.
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Example

a b c

(a) original image

(b) equalized image

(c) locally equalized image (3×3 neighborhood)

Histogram statistics

Some statistical indices can be easily computed from the
histogram:

I Mean (average):

I m =
∑L−1

i=0 rip(ri )

I Variance:
I σ2 =

∑L−1
i=0 (ri −m)2p(ri )

I Standard deviation: σ =
√
σ2

I n-th moment:
I µn =

∑L−1
i=0 (ri −m)np(ri )

Local statistical indices can be computed by bounding the
histogram to a given neighborhood, Sxy :

I mSxy =
∑L−1

i=0 ripSxy (ri )

I σ2Sxy =
∑L−1

i=0 (ri −mSxy )2pSxy (ri )

.

Stefano Ferrari— Methods for Image processing— a.y. 2018/19 13



Example

a b c

(a) original image

(b) equalized image

(c) local statistics enhanced image (3×3 neighborhood)

Example (2)

I Only dark regions need to be enhanced
I mSxy ≤ k0mG

I Uniform regions have to be preserved
I σSxy ≥ k1σG

I Low contrasted regions have to be enhanced
I σSxy ≤ k2σG

g(x , y) =





E · f (x , y) if mSxy ≤ k0mG

AND k1σG ≤ σSxy ≤ k2σG

f (x , y) otherwise

E = 4, k0 = 0.4, k1 = 0.02, k2 = 0.4.

.
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Homeworks and suggested readings

DIP, Sections 3.2, 3.3

I pp. 120–143

GIMP
I Colors

I Info
I Histogram

I Auto
I Equalize

http://www.imageprocessingbasics.com/

image-histogram-equalization/

.

Stefano Ferrari— Methods for Image processing— a.y. 2018/19 15


