

MASTER DEGREE IN COMPUTER SCIENCE

Methods for Image Processing

academic year 2018–2019 teacher: Stefano FERRARI

example — written exam

Surname																				
answers	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
scores																				

Q 01

If each pixel is coded using 3 bits, the maximum number of gray shades is

- A. 3
- B. 7
- C. 8
- D. 6
- E. 256

Q 02

With reference to the following figure, the 4-neighborhood of the pixel p, N_4 , is

p_1	p_2	p_3
p_4	p	p_5
p_6	p_7	p_8

- A. $N_4 = \{p_1, p_2, p_3, p_4\}$
- B. $N_4 = \{p_1, p_3, p_6, p_8\}$
- C. $N_4 = \{p_1, p_3, p_5, p_7\}$
- D. $N_4 = \{p_2, p_4, p_5, p_7\}$
- E. $N_4 = \{p_2, p_3, p_4, p_6\}$

O_{03}

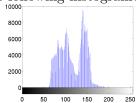
With reference to the following figure, the 8-adjacent pixels to the pixel p are

p_1	p_2	p_3
p_4	p	p_5
p_6	p_7	p_8

- A. $\{p_2, p_3, p_5, p_6\}$
- B. $\{p_2, p_5\}$

- C. $\{p_3, p_6\}$
- D. $\{p_1, p_4, p_7, p_8\}$
- E. $\{p_1, p_3, p_6, p_8\}$

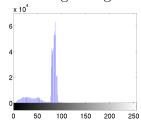
Q 04


Given the following image (having L=8 intensity levels), which of the following array can be its histogram?

6	7	2	7
7	5	4	1
1	0	7	7

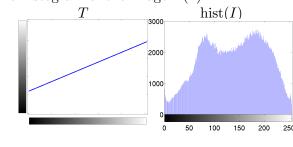
- A. $[-1 \ 1 \ 2 \ 0 \ 1 \ 1 \ 3 \ 5]$
- B. [1 0 1 2 5 1 1 1]
- C. [1 1 0 1 1 5 1 2]
- D. [1 2 1 0 1 1 1 5]
- E. [0 1 1 1 5 2 1 1]

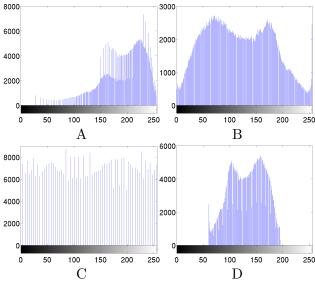
Q 05

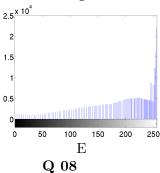

What can be inferred about the image that has the following histogram?

- A. Surely, it must be equalized
- B. Probably, it has a poor contrast
- C. Probably, there is an excess of white pixels
- D. It is the typical gamma function image
- E. Probably, it cannot be equalized

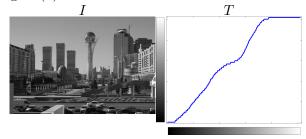
Q 06


What can be inferred about the image that has the following histogram?




- A. Surely, it has a high contrast
- B. It has too many white pixels
- C. This histogram cannot belong to an image
- D. It should be darkened
- E. Probably, it is dark

Q 07


Given the following transformation T and the histogram of an image I, which of the following is the histogram of the image T(I)?

Given the following image I and the transformation T, which of the following is the transformed image T(I)?

009

Giving the following image, f, and filter, w, the value for the central pixel resulting from the filtering is

ımg	19						
	2	3	0		1	1	1
f:	1	4	3	$w: 1/9 \times$	1	1	1
	0	2	3		1	1	1

- A. 3
- B. 2.4
- C. 2
- D. 0
- E. 4

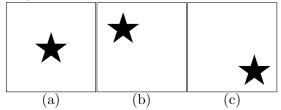
Q 10

Which kind of filter is the following filter, w:

	U	1	0
$w: 1/5 \times$	1	1	1
	0	1	0

- A. smoothing
- B. derivative

- C. Gaussian
- D. sharpening
- E. Huffman


Q 11

Which of the statements about a sharpening filter are correct?

- A. it enhance the noise
- B. it operates on the border of the image
- C. it is based on the integral of the image
- D. it is a non-linear filter
- E. all of the above

Q 12

Given the three images following reported, what can be inferred of their FFT?

- A. They have the same spectrum and the same phase angle
- B. (b) and (c) have the same spectrum, but (a) has a different one
- C. All of them have the same spectrum
- D. All of them have the same phase angle
- E. Their spectrum is the same, but rotated

Q 13

What can be inferred about the image having the following FFT?

- A. It must have some high frequency pattern
- B. It has a dotted pattern
- C. It has two diagonal lines
- D. It is dark at the border and shading to white radially to the center
- E. None of the above

Q 14

Which of the following statements about the Canny edge detector are true?

- A. it computes the zero crossing as final stage
- B. it uses a Gaussian smoothing as preprocessing
- C. it uses the direction for selecting the more robust edge points
- D. it uses the weak edge points as candidates to increase the strong edge point set
- E. it uses a double threshold to select those points that are likely to be edge points

Q 15

The Hough transform can be used for

- A. detecting those pixels that belongs to an edge
- B. improving the efficiency of the spatial filtering
- C. finding the most probable lines in the image
- D. smoothing the edges
- E. none of the above

Q 16

Otsu's method

- A. identifies the value of the threshold adaptively with respect to the position
- B. is a smoothing procedure based on the histogram of the classes
- C. is an iterative method based on the gradient information
- D. aims to find the optimal value of the threshold
- E. makes use of filtering to improve its efficiency

Q 17

Watershed is a technique used for

- A. edge smoothing
- B. image sharpening
- C. histogram matching
- D. image segmentation
- E. image linear filtering

Q 18 Given the following image, how many regions will result after applying the watershed technique?

0	1	5	1	0
0	1	4	1	5
0	1	3	2	5
0	3	3	0	0
0	1	2	1	0
0	0	5	1	2
0	0	5	3	0

- A. 1
- B. 2
- C. 3

- D. 4
- E. 5

Q 19

Which of the following sequences can be coded with the number 0.3 using the arithmethic coding, using the given symbol distribution:

Symbol	Probability	Initial Partition
a1	0.2	[0.0, 0.2)
a2	0.2	[0.2, 0.4)
a3	0.4	[0.4, 0.8)
a4	0.2	[0.8, 1.0)

- A. a2 a3
- B. a1a3
- C. a2a1
- D. a3 a4
- E. a2 a4

Q 20

Given the symbol probability distribution reported in the following table, which code can be a Huffman code?

a Humman code.									
symb.	nnoh	code	code	code	code	code	ı		
	prob.	A	В	С	D	\mathbf{E}	ı		
a1	.2	101	11	011	101	11	ı		
a2	.1	100	00	010	100	0			
a3	.4	0	0	1	01	100	ı		
a4	.3	11	1	001	10	101	ı		