

MASTER DEGREE IN COMPUTER SCIENCE

Image Processing

academic year 2013–2014

Teacher: Stefano FERRARI

UNIVERSITÀ DEGLI STUDI DI MILANO

Written exam example

scores	1 (2)	2 (3)	3 (3)	 4 (4) 	 5 (4)	6 (4)
Sur	name			Name		
Mat	triculation num	ber		Signatu	ire	

Question 1

Using the 8-adjacency relation, identify in the bitmap (where 0 is the background):

- (a) the pixels that are adjacent to the pixel α ;
- (b) the shortest path connecting the pixel α to the pixel β ;
- (c) the connected regions.

0	1	0	1	0	1	1	0	1	0	1	0	1	1	0	1	0	1	0	1	1
1	1	1	1	0	0	1	1	1	1	1	0	0	1	1	1	1	1	0	0	1
0	0	1^{β}	1	1	0	1	0	0	1^{β}	1	1	0	1	0	0	1^{β}	1	1	0	1
0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	1	1^{α}	1	0	1	1	0	1	1^{α}	1	0	1	1	0	1	1^{α}	1
1	1	0	0	0	1	1	1	1	0	0	0	1	1	1	1	0	0	0	1	1
1	1	1	1	0	1	1	1	1	1	1	0	1	1	1	1	1	1	0	1	1
(a)						(b)							(c)							

Question 2

Compute the closing of the image I operated by the structuring element E.

Question 3

Given the image I and the transformation T, indicate (justifying the choice):

- (a) which among the following images is T(I);
- (b) which among the following histograms corresponds to I.

Question 4

Histogram based intensity transformations. Describe the fundamental concepts and the applications of these techniques.

Question 5

Spatial domain filtering techniques.

Describe the motivations for the use of these techniques and summarize an overview of the approaches belonging to this field.

Question 6

Design a QR code acquisition system.

Photo by Individual Design

Photo by Elizabeth Thomsen

A project is aimed at implementing a system for detecting the region representing the bidimensional barcode inside the image.

The QR codes are binary bidimensional matrices used for coding short textual strings o numerical sequences. The coding syntax is such that the message can be easily decoded and the coding is robust to perspective transformations.

The use of enriching messages with QR-code have spread with the diffusion of smartphones. Typically, the mobile devices are equipped with an application for QR-codes decoding. The user frames the QR-code and the application detects, acquires, normalize, and decodes it.

Among the components of the present project, only the QR-code detection module have to be considered.

Point out the techniques that can be used for obtaining the required data, explaining the motivations for those choices.