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Morphological processing

I The morphology of an image describes the shapes represented
in the image.

I At a low level, the objects are represented as clusters of pixels,
which are distributed in the spatial plane with a law that
depends by the features of the represented object.

I Morphology based processing exploit the a-priori knowledge
on these features.

I In particular, they make use of local features of the
neighboring pixels.

I The morphological processes can be formalized as set
operation on set of points of the plane.

I For sake of simplicity, points belonging to Z2 are considered,
but the morphological operation can be generalized for other
domains (e.g., Zn, or R2).

.
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Morphological processing (2)

I They are easily defined on binary images, where concepts of
membership and complement can be associated to the pixel
binary color, but they can be extended to gray level images.

I A binary image, f , can be used for describing a set of points
of Z2, B:

I if f (x , y) is white, (x , y) ∈ B;
I if f (x , y) is black, (x , y) 6∈ B.
I B = {(x , y) | f (x , y) = 1}

I Note: in the illustrative figures, the considered sets are
depicted in gray, while the background is white.

Definitions

(a) (b) (c)

I Let a set, B, and the point origin, the operators reflection and
translation can be defined.

I The reflection, B̂, is defined as: B̂ = {−b | b ∈ B}.
I The translation of z , (B)z , is defined as:

(B)z = {b + z | b ∈ B}

.
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Structuring element

I The morphological operations are generally defined with
respect to a particular set, called structuring element.

I The structuring elements for images are pixel arrays
themselves.

I The structuring elements are defined relatively an origin.
I Typically, it is the center of gravity.

I Structuring elements are described using the following
convention:

I filled cell: belong to the structuring element;
I void cell: does not belong to the structuring element;
I cross: don’t care.

Structuring element (2)

.
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Erosion

Given A and B, the erosion of A through B, A	 B, is defined as:

A	 B = {z | (B)z ⊆ A}

Equivalently, A eroded B can be defined as:

A	 B = {z | (B)z ∩ Ac = ∅}

Erosion (2)

I If A and B are images, the morphological operations are
computed shifting the origin of the structuring element in
each pixel of the image A, evaluating if the definition of the
operation is satisfied.

I Padding can be required.

I For the erosion:
I the origin of B is translated on a pixel a ∈ A;
I if all the elements of B are covered by an element of A, the

pixel a belong to A	 B.

.
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Morphological filtering

a b

c d

I The erosion can be used
for realizing a shape
based filtering
(morphological filtering).

(a) 486×486 binary image;

(b) erosion of (a) with
11×11 square structuring
element;

(c) with 15×15 square;

(d) and with 45×45 square.

I Erosion cancels the
details smaller than the
structuring element.

Dilation

Given the sets A and B, the
dilation of A through B, A⊕B,
is defined as:

A⊕ B = {z | (B̂)z ∩ A 6= ∅}

Equivalently, A dilated B can
be defined as:

A⊕ B = {z | ((B̂)z ∩ A) ⊆ A}

.
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Dilation (example)

I The dilation has effects similar to those of the lowpass
filtering: the details are absorbed.

I In the considered case, the dilation engrosses the characters,
filling the spaces between the fragments.

Duality

I Erosion and dilation are operations dual with respect to the
complement and reflection:

(A	 B)c = Ac ⊕ B̂

and
(A⊕ B)c = Ac 	 B̂

I If the structuring element is symmetric (B̂ = B), the erosion
of A can be obtained dilating the background, AC , with the
same structuring element, and complementing the result (vice
versa for the dilation).

.
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Opening

The opening of a set A through B, A ◦ B, is defined as:

A ◦ B = (A	 B)⊕ B

Closing

The closing of a set A through B, A • B, is defined as:

A • B = (A⊕ B)	 B

.
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Opening and closing

I Opening and closing eliminates the details:
I opening eliminates protrusions and bridges that are too thin;
I closing fill the gulfs and the holes that are too narrow.

I They have a simple geometrical interpretation:
I opening results as the points of A covered by the translation of

B along the inner border of A;
I closing results adding to A those points of the background

that are not covered by the translation of B along the outer
border of A.

Opening and closing properties

Like dilation and erosion, also the opening and closing are dual
operations with respect to complement and reflection:

I (A • B)c = Ac ◦ B̂

I (A ◦ B)c = Ac • B̂

Besides, the following properties hold:

I A ◦ B ⊆ A ⊆ A • B

I (A ◦ B) ◦ B = A ◦ B

I (A • B) • B = A • B

I C ⊆ D ⇒ C ◦ B ⊆ D ◦ B

I C ⊆ D ⇒ C • B ⊆ D • B

.
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Opening and closing: an example

I Opening and closing can be used for noise filtering.

I The fingerprint in A is affected by noise.

I Eroding, the outer noise is eliminated, but inner noise is
improved.

I Following with dilation, the original dimension of the ridges
can be recovered and the inner noise is canceled.

I erosion + dilation = opening

A B A	 B (A	 B)⊕ B = A ◦ B

Opening and closing: an example (2)

I Noise has been removed by the opening, but this processing
stage caused the interruption of some ridges.

I By dilating, the continuity of the ridges can be recovered.

I Then erosion can restore the original thickness of the ridges.

I dilation + erosion = closing

(A ◦ B)⊕ B ((A ◦ B)⊕ B)	 B = (A ◦ B) • B

.
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Hit or miss

I The hit-or-miss transformation allows to detect disjointed
shapes.

I The objects have to be separated by at least one background
pixel.

I The processing is based on a structuring element (shaped as
the object to be detected) and its local background (a window
larger than the structuring element).

I Let A a set constituted of several regions, A = C ∪ D ∪ E , B
the shape to be detected and its local background,
B = (D, W − D) = (B1, B2).

I The hit-or-miss transform A ~ B is defined as:

A ~ B = A	 D ∩ (Ac 	 (W − D))

I Equivalent definitions:
I A ~ B = A	 B1 ∩ Ac 	 B2

I A ~ B = A	 B1 − Ac ⊕ B̂2

Hit or miss (2)

.
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Border extraction

I The border of A, β(A), can be obtained as:

β(A) = A− (A	 B)

I The shape (and the size) of B affects the thickness of the
border.

Hole filling

I A hole is a background region surrounded by a connected
border of foreground elements.

I Let A a set containing 8-connected borders that enclose a
background region (holes), which have to be filled (i.e., set to
1).

I The sequence X0, . . . , Xk can be constructed, where X0 is a
set containing a point of each hole and Xj is defined as:

Xj = (Xj−1 ⊕ B) ∩ Ac

for B =
0 1 0

1 1 1

0 1 0

I The algorithm ends for a value of k such that Xk = Xk−1, Xk

contains all the filled holes.

I Hence, A ∪ Xk contains A without holes.

I The intersection with Ac constraints the dilation inside of the
region of interest.

.
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Hole filling (2)

Hole filling: an example

a b c

I The binarized image of metallic spheres contains inner regions
caused by reflection.

I They can be eliminated using a hole filling algorithm:

(a) a starting position have to be selected (manually or
automatically);

(b) the hole filling procedure eliminate the selected hole;
(c) the procedure can be repeated for each hole.

.
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Connected components extraction

I The extraction of the connected components of a binary
image is a fundamental process for the automatic digital
image processing.

I Let A a set containing one or more connected components, X0

a set containing a point for each connected components of A
and Xk is a set defined as follows:

Xk = (Xk−1 ⊕ B) ∩ A

where B is a structuring element.

I For Xk = Xk−1, the set Xk contains all the connected
components of A.

I Note: the operation is similar to that of hole filling, but it
make use of A (instead of Ac) for masking the dilation.

Connected components extraction (2)

.
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Connected components extraction: an example

I The presence of bones inside
the chicken breast can be
detected through an X-ray
image.

I After a suitable thresholding,
the erosion with a appropriate
structuring element left only
the objects that are not due
to noise.

I The count of the resulting
connected components pixels
allows to estimate the size of
the remaining bones.

Convex hull

I The (convex hull), H, of a set A is the smallest convex set
containing A.

I A region is convex if every segment joining two points
belonging to the considered region is in the region.

I Let B1, B2, B3 and B4 the structuring elements:

and X i
k = (X i

k−1 ~ B i ) ∪ X i
k−1, with X i

0 = A.

I Let D i = X i
k , for k such that X i

k = X i
k−1, for every i .

I The convex hull of A, C (A), can be computed as:

C (A) =
⋃

i

D i

.
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Convex hull: the algorithm

I In the practice, starting from A, the hit-or-miss transformation
with B1 is iterated until it reach a stable state.

I Then, the process is repeated with B2, B3, and B4.

I The union of the so obtained four sets with A provides C (A).

Convex hull: notes

I The hit-or-miss transformation here used does not require the
local background of the structuring element.

I Every B i add elements in a given direction.

I A useful technique consists in limiting the growing process
only inside the smallest rectangle that contains A (bounding
box).

.
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Thinning

I The thinning of a set A through B, A⊗ B, can be defined as:

A⊗ B = A− (A ~ B) = A ∩ (A ~ B)c

I The hit-or-miss transformation here used does not require the
local background.

I Sometimes, defining different structuring elements for
different directions, {B} = {B1, . . . , Bn}, can simplify the
procedure. They are applied in sequence:

A⊗ {B} = (· · · ((A⊗ B1)⊗ B2) · · · )⊗ Bn

I Then, the results can be further processed for avoiding
multiple paths (m-connectivity).

Thinning: an example

.
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Thickening

I The thickening of a set A through B, A⊗ B, can be defined
as:

A� B = A ∪ (A ~ B)

I The hit-or-miss transformation does not require the local
background.

I It is the dual transformation of the thinning.

I It can be defined using a sequence of structuring elements:

A� {B} = (· · · ((A� B1)� B2) · · · )� Bn

where the structuring elements are the complements of those
used for the thinning.

Thickening: an example

I The thickening is often realized by thinning the background.

I This method can produce disconnected points, which have to
be removed, but the thinned background limits the thickening
and the result is generally better than that obtained through
the direct application of the thickening algorithm.

.
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Skeletonization

I The skeleton, S(A), of a set A can be intuitively defined as
the centers of the minimum collection of circular disks that
covers A.

I More formally, the concept of maximum disk has to be
defined:

I a disk (D)z , positioned in z ∈ A, is said maximum if no other
disk completely in A that contains (D)z can be positioned;

I and the skeleton of A, S(A), can be defined as:

S(A) = {z ∈ A | (D)z is a maximum disk in A}

Skeleton

a b

c d

(a) The considered set, A.

(b) The black disks are maximum
disks in A. The green disk is
not maximum because it is
included in another disk in A.
The dashed lines are the
centers of maximum disks:
they are in S(A). The blue
disk is positioned in a point
that does not belong to the
dashed lines and is not
completely included in any
black disk.

(c) New points of S(A) are found.

(d) The skeleton of A, S(A).

.
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Morphological definition of skeleton

I The skeleton, S(A), of a set A can be defined in terms of
morphological operations.

I It can be shown that:

S(A) =
K⋃

k=0

Sk(A)

with
Sk(A) = (A	k B)− (A	k B) ◦ B

where B is a structuring element, (A	k B) means k
successive erosions, and K is the last iteration before the
empty set is obtained: K = max{k |A	k B 6= ∅}.

Pruning

I The pruning is the typical post-processing step of the
skelotonization algorithm;

I usually some spurious branches are produced.

X1 = A⊗ {B}

I For instance, every branch with less than three pixels can be
considered spurious.

I {B}: three times the sequence B1–B8

.
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Pruning (2)

X1 X2

I The terminal points set, X2, can be obtained:

X2 =
8⋃

k=1

(X1 ~ Bk)

Pruning (3)

I The terminal points are dilated, constraining the result in A:

X3 = (X2 ⊕ H) ∩ A (three times)

with H =
1 1 1
1 1 1
1 1 1

I The pruning ends with the union of the two intermediate sets:

X4 = X1 ∪ X3

X3 X4

.
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Homeworks and suggested readings

DIP, Sections 9.1–9.5.8

I pp. 627–656

GIMP
I Filter

I Generic

I Dilate
I Erode

.
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