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Fourier transform based analysis

I The FT of an image does not provide explicit information;
I the FT components are the linear combination of all the

elements of f .

I High frequencies are related to rapid variations, while low
frequencies are related to slow variations (large scale).

I Some information on the structure of the scene (e.g.,
direction of the borders) can be deduced from the spectrum.

.
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Fourier transform based analysis (2)

a b

I In the spectrum (b) of the image (a) shows some large scale
features are apparent: the ±45◦ lines are the effect of the
orientation of the main edges in the original image (a), while
the nearly vertical component is produced by the bright oxide
filament.

Filtering in the frequency domain

I Filtering in the frequency domain is operated by modifying the
coefficients of the transformed image, and then transforming
back the processed image.

g(x , y) = F−1{H(u, v) F (u, v)}

I H(u, v) is the filter function (or filter transfer function);

I g(x , y) is the filtered image.

I F , H and g are arrays of the same size.
I If H is real and symmetric and f is real, g is real.

I Imaginary components due to numeric errors can be ignored.

.
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DC component

I The component of F corresponding to the origin of the
frequencies, called DC, corresponds to the average intensity of
f .

I Setting to zero only this component has the effect of shifting
at zero the average of g .

I If the gray levels are not rescaled, g will be darker.

Lowpass and highpass filters

I A lowpass filter attenuates the high frequencies and lets
unaltered the low frequencies.

I It will produce a defocused copy of the image.

I A highpass filter preserves the high frequencies and attenuates
the low frequencies (the DC, in particular, should vanishes).

I Improvement of the details, but the contrast is decreased.
I Adding a constant, the DC are partially preserved.

.
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Lowpass and highpass filters (2)

Wraparound and padding

I The padding of the original image can avoid wraparound
errors.

I Both the image and the filter should be padded.
I Padding have to be applied in the spatial domain.

I If the filter is specified in the frequency domain, it could be
transformed in the spatial domain, padded, and transformed
back in the frequency domain.

I However, ringing can arise and cause considerable errors.
I A better procedure consists in defining the filter in the

frequency domain in the interval extended by the padding of
the function.

I The wraparound error are mitigated by the image padding and
is preferable to ringing.

.
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Wraparound and padding (2)

a b c

(b) and (c) are smoothed version of (a), respectively without and
with padding.
Note the differences between (b) and (c) in the lateral and bottom
sides.

Wraparound and padding (3)

a b

Inherent periodicity in images using DFT, (a) without and (b) with
zero padding.

.
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Wraparound and padding (4)

a c

b d

I Ideal filter (a)
is transformed
in the spatial
domain (b),
padded (c),
and
transformed
back in the
frequency
domain (d).

I The effect of
ringing in (d)
is evident.

Zero phase shift filters

I Filtering can preserve the phase angle:

F (u, v) = R(u, v) + ιI (u, v)

g(x , y) = F−1{H(u, v) R(u, v) + ιH(u, v) I (u, v)}
I The ratio between real and imaginary parts does not change.

I Variations of the phase angle can have dramatic effect on the
output of the filtering.

I Filters that do not change the phase angle are called zero
phase shift filters.

a b

I Reconstruction using only
the 50% (a) and the 25%
(b) of the phase angle.

.
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Summary

I Given f (x , y) [M × N], P e Q are computed:
I P = 2M e Q = 2N

I Padding: f −→ fp
I (optional) Multiplication of fp(x , y) by (−1)x+y

I Computation of F = F{fp}
I Computation of the filter, H(u, v) [P × Q] (optionally

centered in (M, N))

I Computation of G (u, v) = H(u, v) F (u, v)

I gp(x , y) = real
(
F−1{G (u, v)}

)

I (optional) Multiplication of gp(x , y) by (−1)x+y

I Cropping: the region [M × N] of gp constitutes the filtered
image, g .

Summary (2)

a b c

d e f

g h

(a) f

(b) fp

(c) fp(−1)x+y

(d) F

(e) H

(f) G

(g) gp

(h) g

.

Stefano Ferrari— Methods for Image processing— a.a. 2015/16 7



Impulse response

I If f (x , y) = δ(x , y), F (u, v) = 1.

I Hence, G (u, v) = H(u, v) F (u, v) = H(u, v), from which:
g(x , y) = h(x , y).

I h(x , y) is called impulse response of H(u, v).

I Since the all the quantities in the discrete implementation are
finite, these filters are called Finite Impulse Response (FIR)
filters.

Design of spatial filters

I Frequency domain knowledge can be used to guide the design
of spatial filters.

I For example, the Gaussian filter can be considered:

H(u) = Ae−
u2

2σ2

h(x) =
√

2πσAe−2π
2σ2x2

I All the components are real and have a Gaussian behavior in
both the domains.

I Their effects are intuitive.
I Lowpass filtering with one Gaussian.
I Highpass filtering with two Gaussians:

H(u) = Ae
− u2

2σ2
1 − Be

− u2

2σ2
2

h(x) =
√

2πσ1Ae−2π2σ2
1x

2 −
√

2πσ2Be−2π2σ2
2x

2

.
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Design of spatial filters (2)

Design of spatial filters (3)

.
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Lowpass filters

I Ideal lowpass filter:

H(u, v) =

{
1, D(u, v) ≤ D0

0, D(u, v) > D0

where H is the filter spectrum, D is the pixels distance
function and D0 is the cut-off frequency.

I Butterworth:

H(u, v) =
1

1 + [D(u, v)/D0]2n

I Gaussian:

H(u, v) = e
−D2(u, v)

2D2
0

Ideal lowpass filter

Ideal lowpass filter in frequency and spatial domain.

.
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Test image

I Test image and its spectrum.
I The superimposed circles enclose 87.0, 93.1, 95.7, 97.8, and

99.2% of the spectrum power.
I They correspond to the radii equal to 10, 30, 60, 160, 460.

Ideal lowpass filtering

original D0 = 10 D0 = 30

D0 = 60 D0 = 160 D0 = 460

.

Stefano Ferrari— Methods for Image processing— a.a. 2015/16 11



Butterworth lowpass filter

n = 1 n = 2 n = 5 n = 20

Butterworth lowpass filter in frequency and spatial domain.

Butterworth lowpass filtering

original D0 = 10 D0 = 30

D0 = 60 D0 = 160 D0 = 460

.
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Gaussian lowpass filter

Gaussian lowpass filter in the frequency domain.

Gaussian lowpass filtering

original D0 = 10 D0 = 30

D0 = 60 D0 = 160 D0 = 460

.
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Lowpass filtering examples

a b

(a) Low resolution scanned text corrupted by noise.

(b) Lowpass filtering joins the parts of the broken
characters.

Lowpass filtering examples (2)

I Aesthetic effects of the lowpass filtering.

.
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Lowpass filtering examples (3)

I Lowpass filtering can eliminate the noise in the acquired
image.

I As the cut-off frequency decreases, the smaller details are
progressively lost.

Highpass filters

I Ideal highpass filter:

H(u, v) =

{
0, D(u, v) ≤ D0

1, D(u, v) > D0

I Butterworth:

H(u, v) =
1

1 + [D0/D(u, v)]2n

I Gaussian:

H(u, v) = 1− e
D2(u, v)

2D2
0

.
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Ideal highpass filter

Ideal highpass filter in frequency and spatial domain.

Butterworth highpass filter

Butterworth highpass filter in frequency and spatial domain.

.
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Gaussian highpass filter

Gaussian highpass filter in frequency and spatial domain.

Highpass filtering

Ideal

Butterworth

Gaussian

D0 = 30 D0 = 60 D0 = 160

.
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Highpass filtering example

a b c

(a) Thumb print image

(b) Result of highpass filtering

(c) After thresholding

Laplacian

I The Laplacian filter in the frequency domain is:

H(u, v) = −4π2(u2 + v2)

I

∇2f (x , y) = F−1{H(u, v) F (u, v)}
I

g(x , y) = f (x , y) + c ∇2f (x , y)

.
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Laplacian enhancement example

a b c

(a) Original blurry image

(b) Result of the Laplacian enhancement in the
frequency domain

(c) Result of the Laplacian enhancement in the spatial
domain

Unsharp masking

I The unsharp masking technique requires a mask gmask:

gmask(x , y) = f (x , y) + fLP(x , y)

where:
fLP(x , y) = F−1{HLP(u, v) F (u, v)}

I The filtered image results:

g(x , y) = f (x , y) + k gmask(x , y)

I The process can be reframed as:

g(x , y) = F−1{(1 + k (1− HLP(u, v))) F (u, v)}

.
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Unsharp masking (2)

I It can be expressed in terms of a highpass filter:

g(x , y) = F−1{(1 + k HHP(u, v)) F (u, v)}

I Generalizing:

g(x , y) = F−1{(k1 + k2 HHP(u, v)) F (u, v)}

where:
I k1 ≥ 0 is the offset from the origin,
I k2 ≥ 0 is the high frequencies contribution.

Unsharp masking enhancement example

a b

c d

(a) Original X-ray image

(b) Result of Gaussian highpass filtering

(c) Result of unsharp masking using the same filter

(d) After histogram equalization on (c)

.
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Homomorphic filtering*

I The intensity function of a scene, f , can be modeled as the
composition of the illumination, i , and the reflectance, r :

f (x , y) = i(x , y) r(x , y)

I This relation cannot be exploited directly for the filtering in
the frequency domain:

F{f (x , y)} 6= F{i(x , y)}F{r(x , y)}

I A transformation able to separate the two components in the
frequency domain has to be devised.

Homomorphic filtering* (2)

I The logarithm has the interesting property:

z(x , y) = log f (x , y) = log i(x , y) + log r(x , y)

I Due to the linearity of the DFT:

Z (u, v) = F{z(x , y)} = F{log i(x , y)}+ F{log r(x , y)}
I The filter H can be applied to both the components:

S(u, v) = H(u, v)Z (u, v) = H(u, v)Fi (x , y)+H(u, v)Fr (x , y)

I In the spatial domain, the logarithmic transformation can be
reversed:

g(x , y) = eF
−1{S(u, v)}

I The process can be operated using a filter such as:

H(u, v) = (γH − γL)

(
1− exp

(
−c

D2(u, v)

D2
0

))
+ γL

.
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Homomorphic filtering example*

a b c

(a) Homomorphic filter

(b) Full body PET scan image

(c) Enhancement through homomorphic filtering

Bandreject and bandpass filters*

I Some applications operate on regions of the frequency
domain:

I selective filtering.

I Filters that operate on only some bands, they are called
bandreject or bandpass filters.

.
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Notch filters*

I A notch filter operates on a limited neighborhood of some
frequencies.

I Such regions must be symmetrical wrt the origin (zero phase
shift).

DFT computation

I The DFT is separable: monodimensional DFT of the rows,
followed by monodimensional DFT of the columns.

I The IDFT is easily reframed in terms of DFT.

I The DFT complexity is O((MN)2).

I However, the DFT can be implemented through the Fast
Fourier Transform (FFT) algorithm, which has a
O(MN log2(MN)) complexity.

I Its implementation would require that M and N are power of
2, but it can be generalized.

I Computational advantage of
FFT vs. direct
implementation of DFT as a
function of the number of
samples.

.
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Homeworks and suggested readings

DIP, Sections 4.7–4.9, 4.11

I pp. 255–293, 298–303

.
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