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Function transforms

I Sometimes, operating on a class of functions is easier if the
functions are expressed in another domain.

I Hence a given function is transformed in another function on
a different domain (the codomain of the transform).

I Time (or space) functions can be transformed in functions
defined on another domain.

I The operations applied on the original function domain
correspond to simpler operations when applied on the
transformed function.

I Once processed, the transformed function can be
back-transformed to the original domain by way of a suitable
inverse transform.

.
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Function transforms (2)
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Example: Discrete Cosine Transform
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Through the Discrete Cosine Transform, the function f can be
expressed in terms of sum of weighted (scaled) cosinusoidal
functions.

.
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Example: Discrete Cosine Transform (2)
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Fourier series

Every periodic function, f , with period T , can be represented as a
linear combination of sines and cosines:

f (t) =
∞∑

n=−∞
cne

ι 2πn
T

t

where

cn =
1

T

∫ T
2

−T
2

f (t)e−ι
2πn
T

tdt

Note: the base is composed of an infinite set of sines and cosines.

.
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Impulse

The Dirac delta function, δ, or impulse, is defined as:

δ(t) =

{
∞, t = 0

0, t 6= 0

and ∫ ∞

−∞
δ(t) dt = 1

0
t0

t

δ(t − t0)

Impulse (2)

The impulse has the interesting property, called the sifting
property: ∫ ∞

−∞
f (t) δ(t) dt = f (0)

∫ ∞

−∞
f (t) δ(t − t0) dt = f (t0)

Hence, it can be used for sampling a function, f , by convolution.

.
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Discrete impulse

For working with functions defined only
in a discrete set of points (e.g., f : Z→
R), the discrete impulse can be defined:

δ(x) =

{
1, x = 0
0, x 6= 0

∞∑

x=−∞
δ(x) = 1 0

x0

1

x

δ(x − x0)

The sifting property is satisfied also in this case:

∞∑

x=−∞
f (x) δ(x) = f (0)

∞∑

x=−∞
f (x) δ(x − x0) = f (x0)

Impulse train

The impulse train, s∆T , will be important:

s∆T (t) =
∞∑

n=−∞
δ(t − n∆T )

s∆T is a periodic function with period ∆T .

.
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Continuous Fourier transform

Under mild conditions, for every function f (t) the continuous
Fourier transform can be computed as:

F{f (t)} =

∫ ∞

−∞
f (t) e−ι2πνt dt = F (ν)

Since t is integrated, the Fourier transform of f (t) is a function of
the variable ν.
Hence it is usually indicated as F{f (t)} = F (ν).

The Fourier transform describes f (t) as a linear (complex)
combination of sines and cosines:

F (ν) =

∫ ∞

−∞
f (t) [cos(2πνt)− ι sin(2πνt)] dt

since:
eιθ = cos θ + ι sin θ

Continuous Fourier transform (2)

A complementary transform, called inverse Fourier transform can
be defined:

f (t) = F−1{F (ν)} =

∫ ∞

−∞
F (ν) eι2πνt dν

It allows to obtain f (t) from F (ν).
The F{f (t)} and F−1{F (ν)} transforms are called the Fourier
transforms pair.

For some operations, the spectrum of the transform carries
valuable information:

‖F (ν)‖

I the coefficient of the basis function gives the relative
importance of the basis function in the representation.

.
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Example: FT of the box function

f (t) =

{
A, −W /2 ≤ t ≤W /2
0, otherwise

F (ν) =

∫ ∞

−∞
f (t) e−ι2πνt dt

=

∫ W /2

−W /2
A e−ι2πνt dt

= AW
sin(πνW )

πνW
= AW sinc(νW )

sinc(t) =

{
1, t = 0

sinπt
πt , otherwise

−W /2 W /20

A

t

f (t)

0

1/W−1/W

2/W−2/W
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ν

F (ν)

0

1/W−1/W

2/W−2/W

AW

ν

|F (ν)|

Example: FT of the box function (2)

0 t

f (t)

0

1

ν

F (ν)

I The box function can be exploited
for computing the Fourier
transform of δ.

I When considering only boxes
function where AW = 1, the limit
for W → 0 is δ:

I A→∞,
I the integral is 1,
I outside [−W /2, W /2] the

function is 0.

I Since the main lobe of F (ν)
extends over [−1/W , 1/W ], for
W → 0 it tends to occupy the
whole real line, (−∞, ∞).

I Hence, the limit of the Fourier
transform of these sequence is the
constant function 1.

.
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Example: FT of the impulse

Using the sifting property of δ, its Fourier transform can be
computed directly:

F(δ(t)) = F (ν) =

∫ ∞

−∞
δ(t) e−ι2πνt dt = e−ι2πν0 = 1

It can be also shown that:

F{s∆T (t)} = S(ν) =
1

∆T

∞∑

n=−∞
δ
(
ν − n

∆T

)

Note: S(ν) is a periodic function with period 1
∆T .

Convolution and Fourier transform

The convolution between two continuous functions, f and h, is
defined as:

f (t) ∗ h(t) =

∫ ∞

−∞
f (τ) h(t − τ)dτ

It can be shown that:

F{f (t) ∗ h(t)} = F (ν)H(ν)

Also the opposite holds:

F{f (t) h(t)} = F (ν) ∗ H(ν)

This is called the convolution theorem.

.
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Sampling

I Sampling is a processing step often required for operating on
a function with a digital computer.

I This operation can be modeled as the multiplication of the
considered function, f , with the impulse train of a suitable
period, ∆T , called sampling step:

f̃ (t) = f (t) s∆T (t) =
∞∑

n=−∞
f (t) δ(t − n∆T )

I The value of each sample results:

fk =

∫ ∞

−∞
f (t) δ(t − k∆T ) dt = f (k∆T ), k ∈ Z

Sampling (2)

0 t

f (t)

0
−∆T ∆T

−2∆T 2∆T. . . . . . t

s∆T (t)

0
−∆T ∆T

−2∆T 2∆T. . . . . .

. . .
. . .

t

f (t) s∆T (t)

0−1 1−2 2. . . . . .

. . .
. . .

k

fk = f (k∆T )

.
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Fourier transform of a sampled function

Using the convolution theorem, the Fourier transform of a sampled
function can be computed as:

F̃ (ν) = F{f̃ (t)} = F{f (t) s∆T (t)} = F (ν) ∗ S(ν)

From the sifting property of δ:

F̃ (ν) =
1

∆T

∞∑

n=−∞
F
(
ν − n

∆T

)

Hence, the Fourier transform of the sampled function, F̃ is the
infinite summation of scaled copies (for a factor of 1

∆T ) of the

Fourier transform of the original function, F , shifted by 1
∆T (i.e., F̃

is a 1
∆T periodic function).

Fourier transform of a sampled function (2)

I Although f̃ is a
sampled function, F̃
is continuous.

I It is the
summation of
scaled copies of a
continuous
function, F .

I The separation
between the copies is
ruled by 1

∆T :
I oversampling
I critical sampling
I undersampling

.
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Sampling theorem

We are interested in recovering the original function, f , from its
samples, f̃ :

I Is it always possible?

I What are the necessary conditions?

The Fourier transform of a sampled function, F̃ , provides infinite
copies of F :

I if a single copy of F can be isolated,

I f can be obtained using the inverse Fourier transform.

Since F̃ is composed of shifted copies of F :
I F have to be different from zero only in a finite interval

[−νmax, νmax]
I f is a band limited function

I the separation of 1
∆T must be sufficient to avoid overlapping

of copies.

Sampling theorem (2)

I The previous conditions
can be summarized in
the sampling theorem:

1

∆T
> 2 νmax

I The sampling rate
must be at least
twice the higher
frequency
component of f .

I The critical sampling
rate is called the
Nyquist rate.

.
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Reconstruction of a sampled function

I Multiplying F̃ by a box function H:

H(ν) =

{
∆T , − νmax ≤ ν ≤ νmax

0, otherwise

a single copy of F can be recovered.

I Then, the inverse Fourier transform can be applied to obtain
f .

f (t) = F−1{F (ν)} = F−1{H(ν) F̃ (ν)} = h(t) ∗ f̃ (t)

I It can be shown that:

f (t) =
∞∑

n=−∞
f (n∆T ) sinc

(
t − n∆T

∆T

)

I f (t) is equal to fk in t = k ∆T ;
I elsewhere it is obtained using a shifted sinc functions basis.

Reconstruction of a sampled function (2)

0
−∆T ∆T

−2∆T 2∆T. . . . . .

. . .
. . .

k

f
recovered

original

0 k

f
recovered

original

.
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Aliasing

I If the function is sampled under the Nyquist rate
( 1

∆T < 2 νmax), the periods overlap.
I The components between 1

2 ∆T and νmax are mixed with other
components.

I This effect is
called aliasing.

Aliasing (2)

I For practical cases, aliasing is almost unavoidable.

I Since only a finite interval of the signal can be considered, the
processed function can be modelled multiplying the real (band
limited) function by a box function.

I For the convolution theorem, the Fourier transform of the
processed function is equal to the Fourier transform of the
original function convolved with the sinc function (that has
infinite support).

I No function that has finite duration can be band limited.
I Every band limited function must have infinite support.

I Aliasing effects can be reduced by attenuating the high
frequency components (i.e., smoothing) before sampling.

I Or windowing: use of a different function instead of the box,
such that its spectrum vanishes more rapidly than sinc.

.
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Aliasing: an example

I The sampled function looks like a sinusoidal function having a
frequency much smaller than the original function.

I Since the only component of the Fourier transform of the
original function is higher than the sampling frequency, its
copy in the overlapping period is positioned in a lower
frequency.

Discrete Fourier Transform (DFT)

I F̃ can be expressed in terms of f̃ :

F̃ (ν) =

∫ ∞

−∞
f̃ (t)e−ι2πνt dt

I From which can be shown:

F̃ (ν) =
∞∑

n=−∞
fne
−ι2πνn∆T

I Since F̃ is periodic, all the information carried out by F̃ is
contained in a single period.

.
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Discrete Fourier Transform (DFT) (2)

I If M samples of F̃ are considered in one period, ∆T , the
following frequencies are inspected:

νm =
m

M ∆T
, m = 0, . . . , M − 1

and the samples are:

Fm =
M−1∑

n=0

fne
−ι2πmn/M

I The M samples {Fm} are computed using only M samples of
f .

I This transform is called the Discrete Fourier Transform.

Inverse Discrete Fourier Transform (IDFT)

I The M samples {fn} can be reconstructed from {Fm} using
the following transformation:

fn =
1

M

M−1∑

m=0

Fme
ι2πmn/M , n = 0, . . . , M − 1

I This transform is called the Inverse Discrete Fourier
Transform.

.
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Discrete Fourier Transform pair

I The forward and inverse Fourier transform are usually
represented as:

F (u) =
M−1∑

x=0

f (x)e−ι2πux/M , u = 0, . . . , M − 1

f (x) =
1

M

M−1∑

u=0

F (u)eι2πux/M , x = 0, . . . , M − 1

I No direct reference to time and frequency is present.
I {fn} and {Fm} are just sequences.

I It can be shown that F (u) and f (x) are periodic:

F (u) = F (u + kM) and f (x) = f (x + kM), k ∈ Z

I Although if (the original) f is not.

Circular convolution

I The convolution of finite sequence of M elements can be
defined through:

g(x) = f (x) ∗ h(x) =
M−1∑

m=0

f (m) h(x −m)

I The periodicity of g derives from the periodicity of f and h.

I This operation is called circular convolution.
I Through this operation, the convolution theorem (for

continuous FT) can be extended to the DFT.
I The circularity causes the wraparound problem, that will be

discussed later.

.
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Space and frequency resolution

I f is composed of M samples taken ∆T apart.

I The sequence covers an interval that is T = M ∆T long.

I In the frequency domain, the samples of F are
∆u = 1

M ∆T = 1
T apart.

I Hence, the DFT is defined over a frequency interval
Ω = M ∆u = 1

∆T long.

I The frequency resolution depends on the length of the
sampled interval in the space domain, T .

I The range of the frequencies covered by the DFT depends on
the sampling step, ∆T .

Homeworks and suggested readings

DIP, Sections 4.1–4.4

I pp. 199–224

.
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