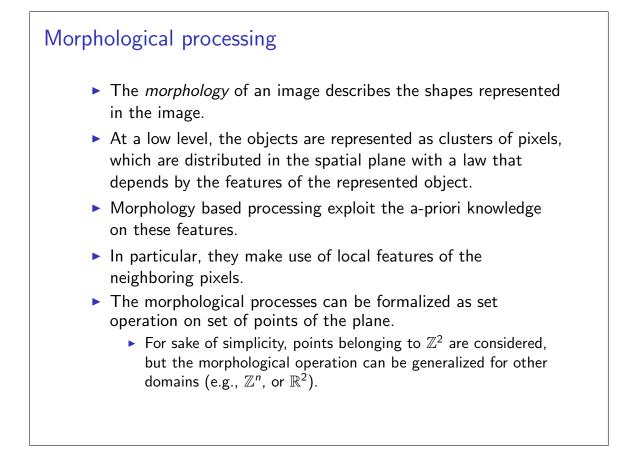
Morphology

Stefano Ferrari

Università degli Studi di Milano stefano.ferrari@unimi.it

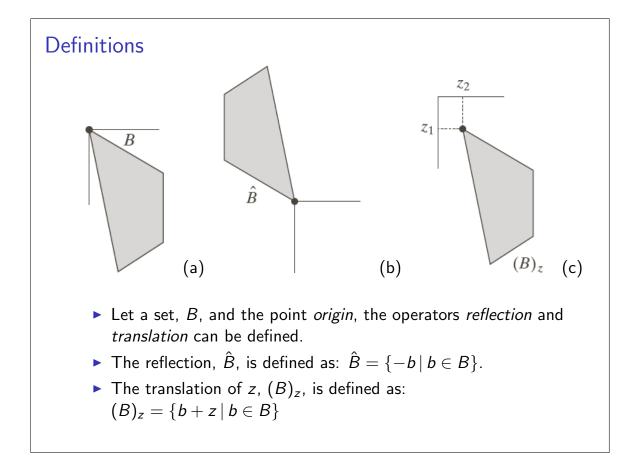
Methods for Image Processing

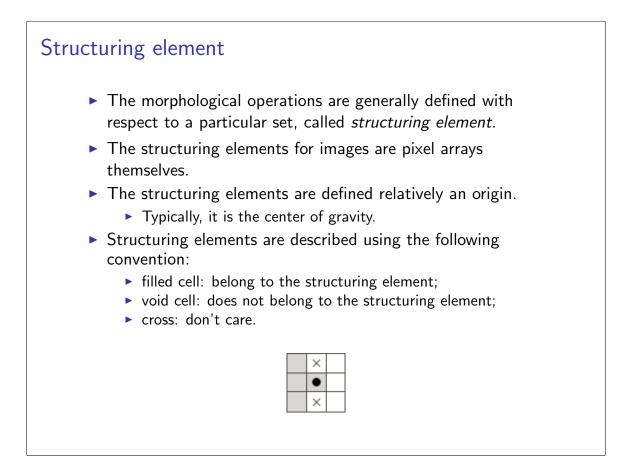
academic year 2014-2015

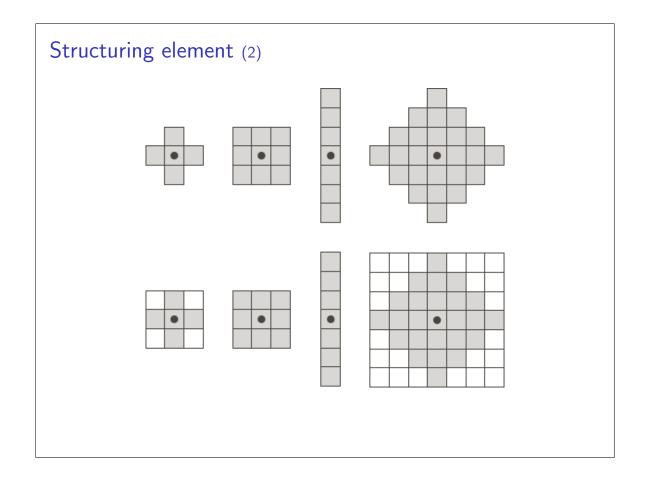


Morphological processing (2)

- They are easily defined on binary images, where concepts of membership and complement can be associated to the pixel binary color, but they can be extended to gray level images.
- ► A binary image, f, can be used for describing a set of points of Z², B:
 - if f(x, y) is white, $(x, y) \in B$;
 - if f(x, y) is black, $(x, y) \notin B$.
 - $B = \{(x, y) | f(x, y) = 1\}$
- Note: in the illustrative figures, the considered sets are depicted in gray, while the background is white.







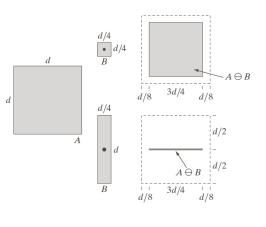
Erosion

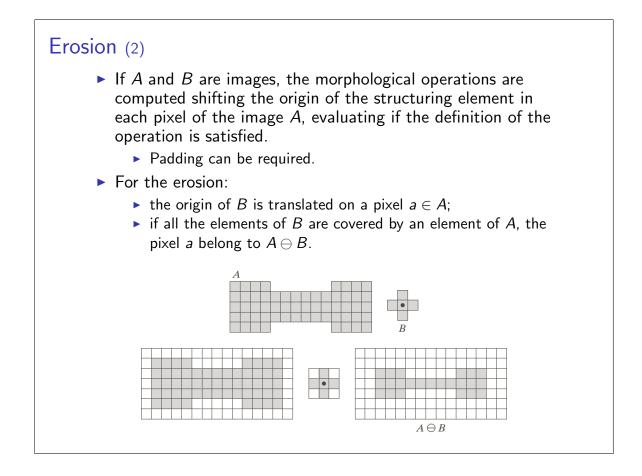
Given A and B, the erosion of A through B, $A \ominus B$, is defined as:

 $A \ominus B = \{z \mid (B)_z \subseteq A\}$

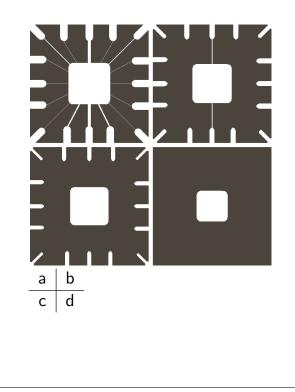
Equivalently, A eroded B can be defined as:

$$A \ominus B = \{ z \mid (B)_z \cap A^c = \emptyset \}$$

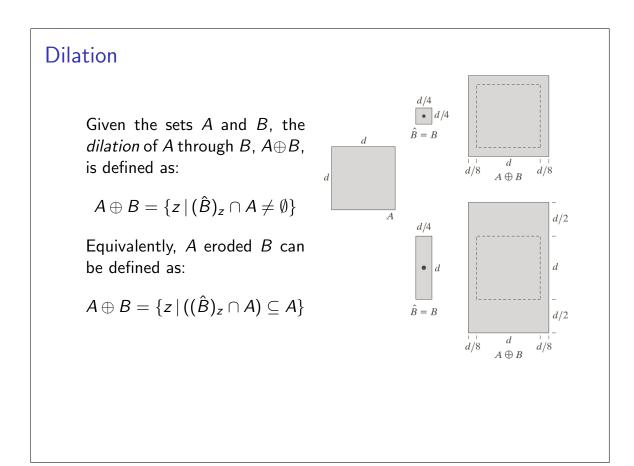


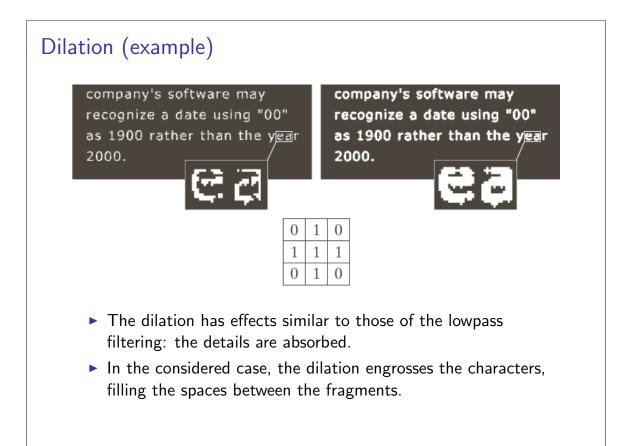


Morphological filtering



- The erosion can be used for realizing a shape based filtering (morphological filtering).
- (a) 486×486 binary image;
- (b) erosion of (a) with 11×11 square structuring element;
- (c) with 15×15 square;
- (d) and with 45×45 square.
 - Erosion cancels the details smaller than the structuring element.





Duality

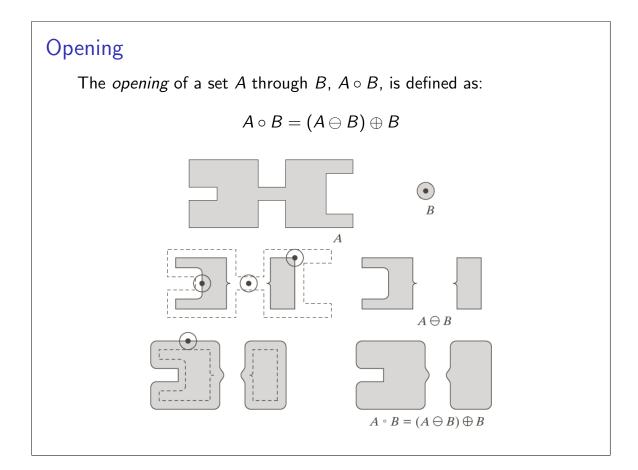
Erosion and dilation are operations dual with respect to the complement and reflection:

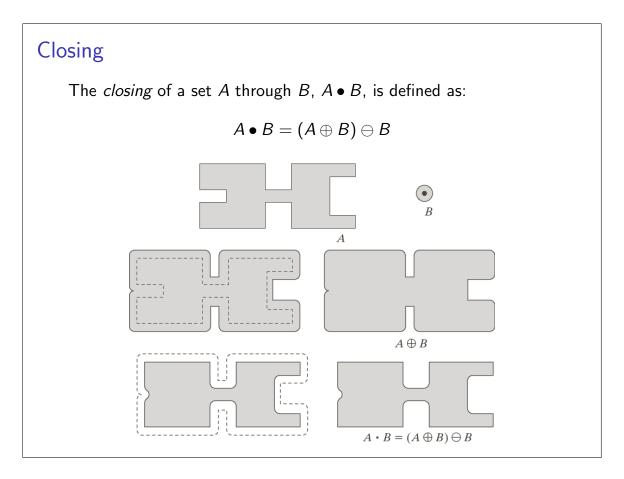
$$(A \ominus B)^c = A^c \oplus \hat{B}$$

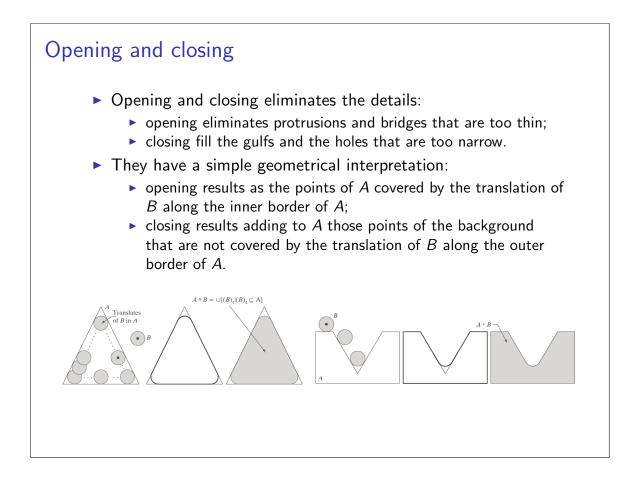
and

$$(A \oplus B)^c = A^c \ominus \hat{B}$$

If the structuring element is symmetric (B̂ = B), the erosion of A can be obtained dilating the background, A^C, with the same structuring element, and complementing the result (vice versa for the dilation).







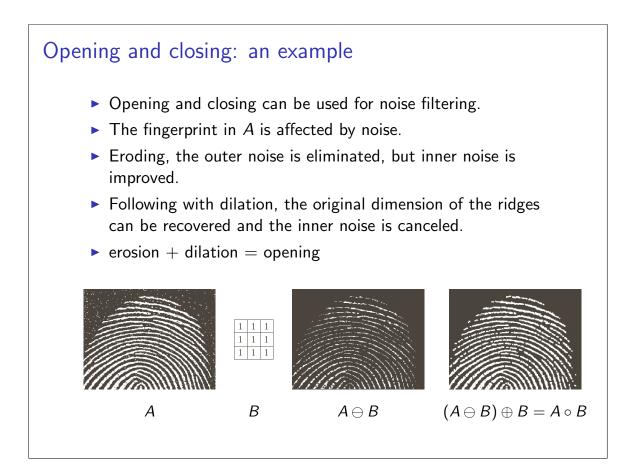
Opening and closing properties

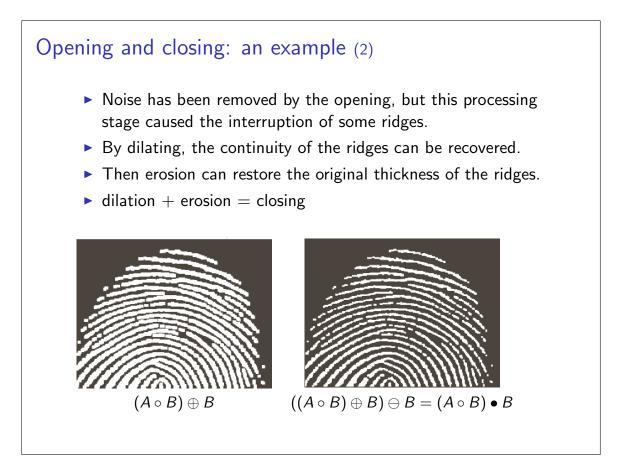
Like dilation and erosion, also the opening and closing are dual operations with respect to complement and reflection:

- $\blacktriangleright (A \bullet B)^c = A^c \circ \hat{B}$
- $\blacktriangleright (A \circ B)^c = A^c \bullet \hat{B}$

Besides, the following properties hold:

- $\blacktriangleright A \circ B \subseteq A \subseteq A \bullet B$
- $\blacktriangleright (A \circ B) \circ B = A \circ B$
- $\blacktriangleright (A \bullet B) \bullet B = A \bullet B$
- $\bullet \ C \subseteq D \Rightarrow C \circ B \subseteq D \circ B$
- $\bullet \ C \subseteq D \Rightarrow C \bullet B \subseteq D \bullet B$



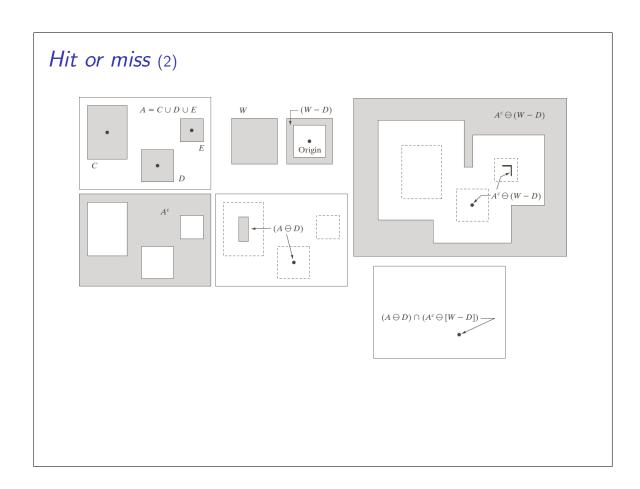


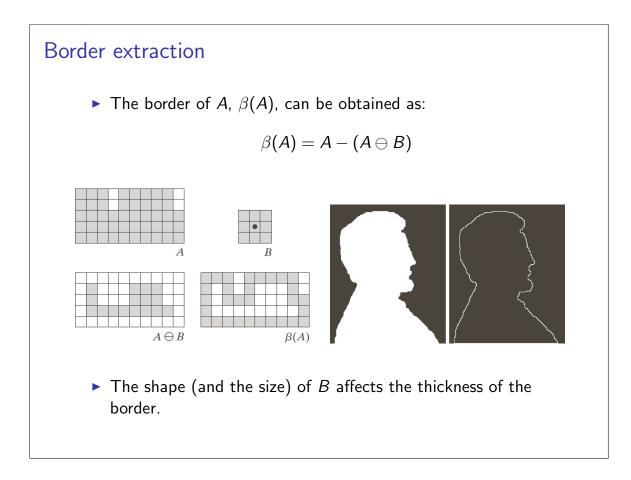
Hit or miss

- The *hit-or-miss* transformation allows to detect disjointed shapes.
 - The objects have to be separated by at least one background pixel.
- The processing is based on a structuring element (shaped as the object to be detected) and its local background (a window larger than the structuring element).
- Let A a set constituted of several regions, A = C ∪ D ∪ E, B the shape to be detected and its local background, B = (D, W − D) = (B₁, B₂).
- The hit-or-miss transform $A \circledast B$ is defined as:

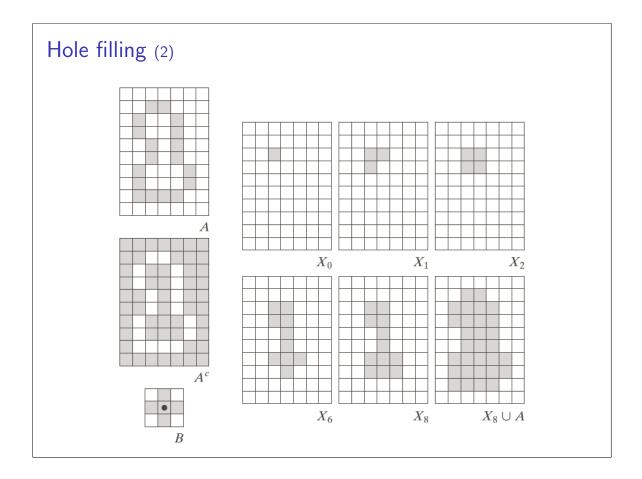
$$A \circledast B = A \ominus D \cap (A^c \ominus (W - D))$$

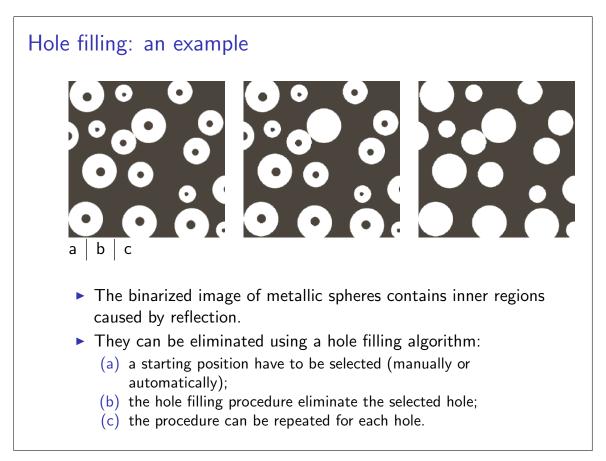
- Equivalent definitions:
 - $A \circledast B = A \ominus B_1 \cap A^c \ominus B_2$
 - $\bullet \ A \circledast B = A \ominus B_1 A^c \oplus \hat{B}_2$





Hole filling A hole is a background region surrounded by a connected border of *foreground* elements. Let A a set containing 8-connected borders that enclose a background region (holes), which have to be filled (i.e., set to 1). • The sequence X_0, \ldots, X_k can be constructed, where X_0 is a set containing a point of each hole and X_j is defined as: $X_i = (X_{i-1} \oplus B) \cap A^c$ 1 0 for B =1 1 1 0 1 0 • The algorithm ends for a value of k such that $X_k = X_{k-1}$, X_k contains all the filled holes. • Hence, $A \cup X_k$ contains A without holes. • The intersection with A^c constraints the dilation inside of the region of interest.





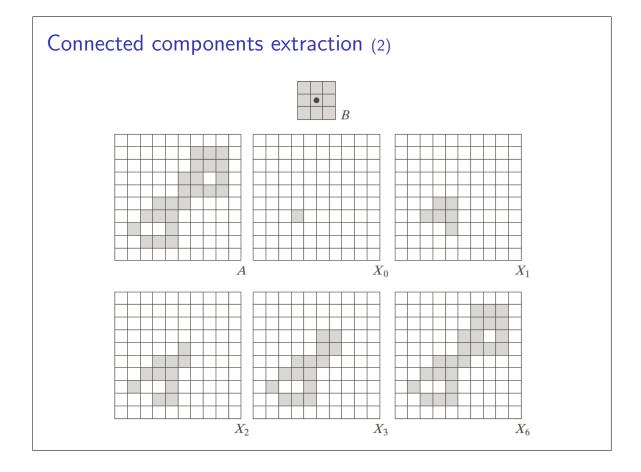
Connected components extraction

- The extraction of the connected components of a binary image is a fundamental process for the automatic digital image processing.
- Let A a set containing one or more connected components, X₀ a set containing a point for each connected components of A and X_k is a set defined as follows:

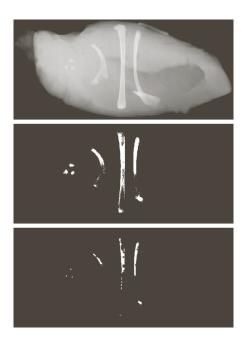
$$X_k = (X_{k-1} \oplus B) \cap A$$

where B is a structuring element.

- For X_k = X_{k−1}, the set X_k contains all the connected components of A.
- Note: the operation is similar to that of hole filling, but it make use of A (instead of A^c) for masking the dilation.

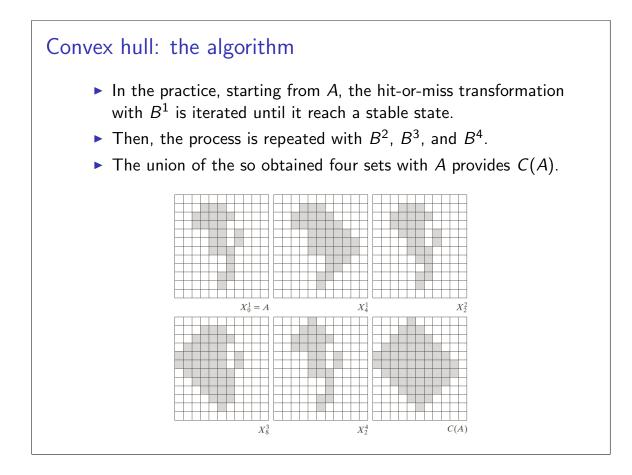


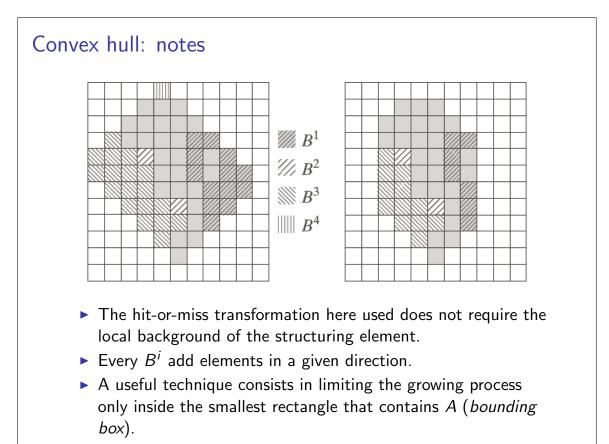
Connected components extraction: an example



- The presence of bones inside the chicken breast can be detected through an X-ray image.
- After a suitable thresholding, the erosion with a appropriate structuring element left only the objects that are not due to noise.
- The count of the resulting connected components pixels allows to estimate the size of the remaining bones.

Convex hull • The (convex hull), H, of a set A is the smallest convex set containing A. • A region is convex if every segment joining two points belonging to the considered region is in the region. • Let B^1 , B^2 , B^3 and B^4 the structuring elements: $\underbrace{K \times K}_{B^1} \underbrace{K \times K}_{B^2} \underbrace{K \times K}_{B^3} \underbrace{K \times K}_{B^4}$ and $X_k^i = (X_{k-1}^i \circledast B^i) \cup X_{k-1}^i$, with $X_0^i = A$. • Let $D^i = X_k^i$, for k such that $X_k^i = X_{k-1}^i$, for every i. • The convex hull of A, C(A), can be computed as: $C(A) = \bigcup_i D^i$





Thinning

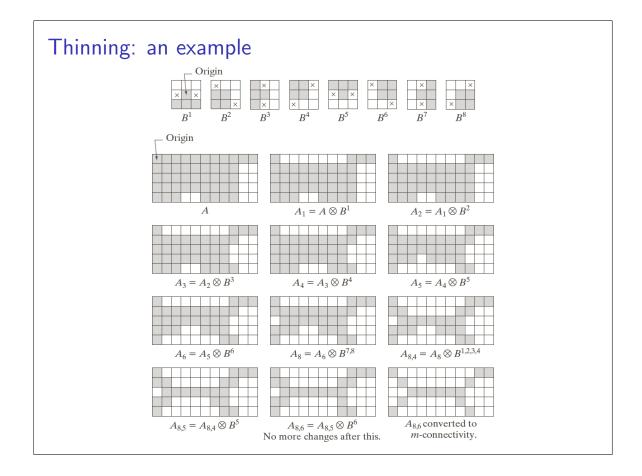
• The *thinning* of a set A through $B, A \otimes B$, can be defined as:

 $A \otimes B = A - (A \circledast B) = A \cap (A \circledast B)^{c}$

- The hit-or-miss transformation here used does not require the local background.
- Sometimes, defining different structuring elements for different directions, {B} = {B¹, ..., Bⁿ}, can simplify the procedure. They are applied in sequence:

$$A \otimes \{B\} = (\cdots ((A \otimes B^1) \otimes B^2) \cdots) \otimes B^n$$

Then, the results can be further processed for avoiding multiple paths (*m*-connectivity).



Thickening

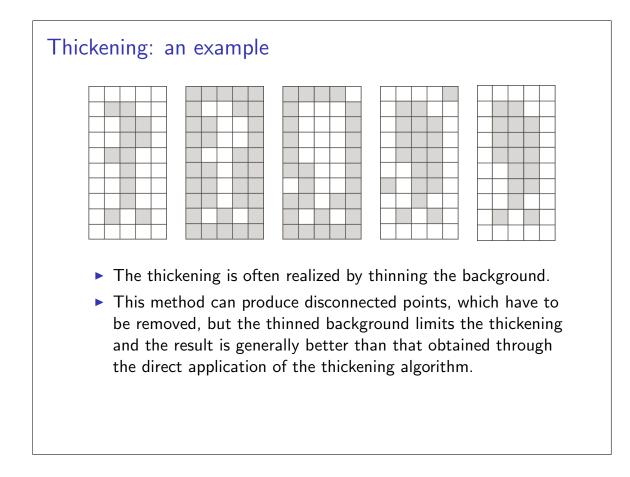
► The thickening of a set A through B, A ⊗ B, can be defined as:

 $A \odot B = A \cup (A \circledast B)$

- The hit-or-miss transformation does not require the local background.
- It is the dual transformation of the thinning.
- ▶ It can be defined using a sequence of structuring elements:

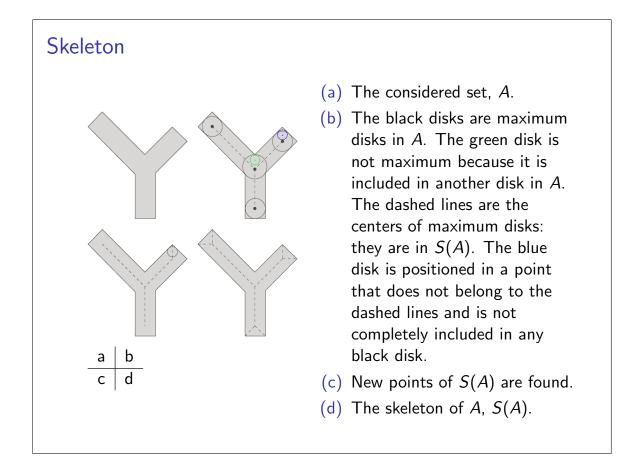
$$A \odot \{B\} = (\cdots ((A \odot B^1) \odot B^2) \cdots) \odot B^n$$

where the structuring elements are the complements of those used for the thinning.



Skeletonization

- ► The skeleton, S(A), of a set A can be intuitively defined as the centers of the minimum collection of circular disks that covers A.
- More formally, the concept of maximum disk has to be defined:
 - a disk (D)_z, positioned in z ∈ A, is said maximum if no other disk completely in A that contains (D)_z can be positioned;
- and the skeleton of A, S(A), can be defined as:
 - $S(A) = \{z \in A \mid (D)_z \text{ is a maximum disk in } A\}$



Morphological definition of skeleton

- The skeleton, S(A), of a set A can be defined in terms of morphological operations.
- It can be shown that:

$$S(A) = \bigcup_{k=0}^{K} S_k(A)$$

with

$$S_k(A) = (A \ominus^k B) - (A \ominus^k B) \circ B$$

where B is a structuring element, $(A \ominus^k B)$ means k successive erosions, and K is the last iteration before the empty set is obtained: $K = \max\{k \mid A \ominus^k B \neq \emptyset\}$.

