per la Sicurezza a.a. 2004/05

Grammatiche

Stefano Ferrari

Università degli Studi di Milano Dipartimento di Tecnologie dell'Informazione

Stefano Ferrari 🖈 Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza \diamondsuit Grammatiche \diamondsuit a.a. 2004/05 - p. 1/37

Alfabeto

Un alfabeto è un insieme finito e non vuoto di simboli.

Esempi:

•
$$A = \{a, b, c\}$$

•
$$A = \{0, 1\}$$

Stefano Ferrari 🖈 Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza \diamondsuit Grammatiche \diamondsuit a.a. 2004/05 - p. 2/37

Stringa

Una stringa (o parola) è una sequenza finita di simboli.

Esempio:

• se $A = \{a, b, c\}$, aaabacab è una stringa su A.

La lunghezza di una stringa w, denotata con |w|, è il numero di simboli che la compongono.

Esempio:

• |aaabacab| = 8

La stringa vuota ϵ è composta da zero simboli:

$$|\epsilon| = 0$$

Stefano Ferrari * Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza ♦ Grammatiche ♦ a.a. 2004/05 - p. 3/37

Sottostringhe

Sia $w = a_1 \cdots a_n$:

- $a_1 \cdots a_j$, con $j \in \{1, \ldots, n\}$ è un prefisso di w;
- $a_j \cdots a_n$, con $j \in \{1, \ldots, n\}$ è un suffisso di w;
- $a_i \cdots a_j$, con $i,j \in \{1, \ldots, n\}$ è una sottostringa di w;
- $oldsymbol{\epsilon}$ è prefisso, suffisso e sottostringa di w.

Stefano Ferrari 🖈 Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza \diamondsuit Grammatiche \diamondsuit a.a. 2004/05 - p. 4/37

Concatenazione

La concatenazione di v e w è vw:

- la concatenazione è un'operazione associativa;
- ϵ ne è l'elemento neutro.

La concatenazione si estende agli alfabeti.

Per esempio, se $A = \{a, b, c\}$:

- $A^0 = \{\epsilon\}$
- $A^1 = \{a, b, c\}$
- $\bullet \ A^2 = \{aa, \, ab, \, ac, \, \ldots, \, cc\}$
- $A^* = A^0 \cup A^1 \cup A^2 \cup A^3 \cup \dots = \cup_i A^i$ (chiusura di A)

Stefano Ferrari * Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza ♦ Grammatiche ♦ a.a. 2004/05 - p. 5/37

Linguaggio

Un linguaggio (formale) L definito su un alfabeto A è un sottoinsieme di A^* .

Una frase di un linguaggio è una stringa appartenente al linguaggio stesso.

Stefano Ferrari 🖈 Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza \diamondsuit Grammatiche \diamondsuit a.a. 2004/05 - p. 6/37

Esempi

Esempi:

- il linguaggio delle frasi in italiano:
 - alfabeto: $A = \{a, b, \ldots, z, \langle \text{spazio} \rangle \}$
 - stringhe su A: cosa, il porto, ghsde afe li
 - frasi: $la\ gatta\ corre$
- il linguaggio delle espressioni aritmetiche:
 - alfabeto: $A = \{0, ..., 9, +, -, :, \times, (,)\}$
 - stringhe su A: 980, 34 + 61, : ()345+)
 - frasi: (25 + 12):3

Stefano Ferrari 🖈 Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza ♦ Grammatiche ♦ a.a. 2004/05 - p. 7/37

Operazioni sui linguaggi (1)

Se L, L_1 e L_2 sono linguaggi su Σ , si possono definire le seguenti operazioni:

unione , $L_1 \cup L_2$:

- $L_1 \cup L_2 = \{w \, | \, w \in L_1 \lor w \in L_2\}$
- $|L_1 \cup L_2| < |L_1| + |L_2|$

intersezione , $L_1 \cap L_2$:

- $\bullet \,\, L_1 \cap L_2 = \{ w \, | \, w \in L_1 \wedge w \in L_2 \}$
- $|L_1 \cap L_2| \leq \min(|L_1|, |L_2|)$

Stefano Ferrari * Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza ♦ Grammatiche ♦ a.a. 2004/05 - p. 8/37

Operazioni sui linguaggi (2)

differenza , L_1-L_2 :

- $L_1 L_2 = \{ w \, | \, w \in L_1 \wedge w \not\in L_2 \}$
- $|L_1 L_2| \le |L_1|$

complemento , \overline{L} :

- ullet $\Sigma^* L$
- $|\overline{L}| \leq \infty$

Stefano Ferrari 🛨 Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza ♦ Grammatiche ♦ a.a. 2004/05 - p. 9/37

Operazioni sui linguaggi (3)

concatenazione , L_1L_2 :

- $\bullet \,\, L_1L_2 = \{vw \,|\, v \in L_1, w \in L_2\}$
- $\bullet \ |L_1L_2| \leq |L_1| \cdot |L_2|$

potenza , L^n :

- ullet $L^0=\{\epsilon\}$
- ullet $L^1=L$
- $ullet \ L^k = \{v_1v_2\dots v_k \, | \, v_1, \, v_2, \, \dots, \, v_k \in L\}$
- $ullet |L^k| \leq |L|^k$

Stefano Ferrari 🖈 Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza $\diamondsuit \hspace{0.1in}$ Grammatiche $\diamondsuit \hspace{0.1in}$ a.a. 2004/05 - p. 10/37

Operazioni sui linguaggi (4)

chiusura (di Kleene) , L^* :

- $ullet L^* = \cup_i L^i$
- se $L = \{\epsilon\}, |L^*| = 1$
- ullet altrimenti, $|L^*|=\infty$

chiusura positiva , L^+ :

- $L^+ = \cup_i L^i$, i > 0
- $L^* = L^+ \cup \{\epsilon\}$
- ullet $|L^+|=\infty$

Stefano Ferrari 🖈 Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza \diamondsuit Grammatiche \diamondsuit a.a. 2004/05 - p. 11/37

Grammatica

Una grammatica (formale) definisce in modo rigoroso un linguaggio su un alfabeto, Σ .

Tecnicamente è una quadrupla $\langle \Sigma, V, P, S \rangle$:

- Σ , insieme finito di simboli terminali:
 - può anche includere la stringa vuota, ϵ ;
- V, insieme finito di simboli non terminali:
 - sono meta-simboli di appoggio ($V \cap \Sigma = \emptyset$);
 - rappresentano categorie sintattiche;
- P, insieme di regole di riscrittura del tipo $\alpha \to \beta$, con α , β stringhe su $\Sigma \cup V$, con $\alpha \neq \epsilon$;
- $S \in V$, simbolo iniziale, detto scopo.

Stefano Ferrari 🖈 Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza $\diamondsuit \quad \text{Grammatiche } \diamondsuit \quad \text{a.a. } 2004/05 \text{ - p. } 12/37$

Generazione del linguaggio

Per ottenere una frase del linguaggio:

- 1. si parte dallo scopo, S;
- 2. si applica una regola di produzione $\alpha \to \beta$:
 - (a) si cerca la presenza della sotto-sequenza α ;
 - (b) la si sostituisce con β ;
 - (c) α e β sono chiamate forme di frase;
- 3. si procede finché non si ottiene una stringa con soli simboli terminali.

Tutte le frasi del linguaggio si ottengono con questo procedimento.

Stefano Ferrari 🖈 Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza \diamondsuit Grammatiche \diamondsuit a.a. 2004/05 - p. 13/37

Esempio

Grammatica: $\langle \Sigma, V, P, S \rangle$

•
$$\Sigma = \{0, 1\}$$

•
$$V = \{X\}$$

•
$$P = \{X \to 0, X \to 1X, X \to 0X\}$$

$$\bullet$$
 $S = X$

Linguaggio: $\{0, 10, ..., 0110, ...\}$

•
$$S = X \rightarrow 0$$

•
$$S = X \rightarrow 1X \rightarrow 10$$

•
$$S = X \rightarrow 0X \rightarrow 01X \rightarrow 011X \rightarrow 0110$$

Stefano Ferrari 🛨 Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza \diamondsuit Grammatiche \diamondsuit a.a. 2004/05 - p. 14/37

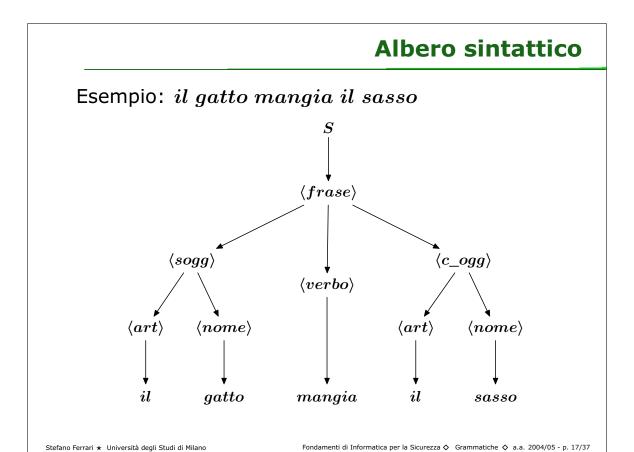
Grammatiche BNF

La notazione BNF (Backus-Naur Form) è più conveniente per rappresentare le grammatiche:

- le regole di produzione sono della forma $\alpha := \beta$;
- ullet i meta-simboli in V sono della forma $\langle nome
 angle$;
- il meta-simbolo speciale | (pipe) è usato per l'alternativa:

```
\alpha ::= eta_1, \ lpha ::= eta_2, \ldots, \ lpha ::= eta_n;
\alpha ::= eta_1 |eta_2| \ldots |eta_n|.
```

Su http://www.faqs.org/rfcs/rfc2234.html si trova la definizione di Augmented BNF (ABFN).


Stefano Ferrari * Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza ♦ Grammatiche ♦ a.a. 2004/05 - p. 15/37

Esempio

Stefano Ferrari 🖈 Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza \diamondsuit Grammatiche \diamondsuit a.a. 2004/05 - p. 16/37

Classificazione di Chomsky

È possibile caratterizzare le grammatiche sulla base della forma delle loro regole di produzione:

- Tipo 3 (regolari);
- Tipo 2 (context-free);
- Tipo 1 (context-sensitive);
- Tipo 0 (a struttura di frase).

Stefano Ferrari 🖈 Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza \diamondsuit Grammatiche \diamondsuit a.a. 2004/05 - p. 18/37

Grammatiche di tipo 3

Le grammatiche regolari si dividono in:

- lineari a destra, $F ::= \alpha, F ::= \alpha G$;
- lineari a sinistra, $F ::= \alpha, F ::= G\alpha$;

con $F, G \in V, \alpha \in \Sigma^*$.

Esempi:

- ullet $F::=aG|a,\ G::=bG|b|aF|$
- \bullet F ::= Fa|a

Il linguaggio generato si dice di tipo 3 (o linguaggio regolare).

Stefano Ferrari 🖈 Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza ♦ Grammatiche ♦ a.a. 2004/05 - p. 19/37

Grammatiche di tipo 2

Le grammatiche context-free (libere dal contesto) hanno produzioni della forma:

$$F ::= \alpha$$
, con $F \in V$ e $\alpha \in (\Sigma \cup V)^*$.

Esempi:

- F ::= aG|a, G ::= Gb|b|Fc
- F ::= aFc|b

Si dice che il linguaggio è di tipo 2 (o linguaggio libero dal contesto).

Tipicamente, i linguaggi di programmazione appartengono a questo tipo.

Stefano Ferrari 🖈 Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza \diamondsuit Grammatiche \diamondsuit a.a. 2004/05 - p. 20/37

Grammatiche di tipo 1

Le grammatiche context-sensitive (dipendenti dal contesto) hanno produzioni della forma:

- $\alpha F\beta := \alpha \gamma \beta$, $\alpha, \beta, \gamma \in (\Sigma \cup V)^*, \gamma \neq \epsilon, F \in V$;
- $S := \epsilon$.

Note:

- α e β definiscono il "contesto" in cui la sostituzione $F:=\gamma$ può avvenire;
- per una produzione della prima forma, la lunghezza della stringa generata non può diminuire.

Esempio: aFb := aFbGb

Stefano Ferrari 🛨 Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza ♦ Grammatiche ♦ a.a. 2004/05 - p. 21/37

Grammatiche di tipo 0

Le grammatiche di tipo 0 ammettono produzioni di qualsiasi forma:

• $\alpha ::= \beta$, con α , $\beta \in (\Sigma \cup V)^*$.

Nota: sono ammesse anche produzioni che possono diminuire la lunghezza della stringa generata.

Stefano Ferrari 🖈 Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza \diamondsuit Grammatiche \diamondsuit a.a. 2004/05 - p. 22/37

Gerarchia di grammatiche e linguaggi

Ogni grammatica di tipo n è anche una grammatica di tipo n-1.

Un linguaggio è di tipo n se esiste una grammatica di tipo n che lo genera, ma non nessuna di tipo n+1 è in grado di generarlo.

Esempi:

- linguaggio di tipo 3: $\{a^mb^n\,|\,m,\,n\geq 0\}$
- linguaggio di tipo 2: $\{a^nb^n | n \geq 0\}$
- linguaggio di tipo 1: $\{a^nb^nc^n\,|\,n\geq 0\}$
- linguaggio di tipo 0: $\{a^n \mid n \text{ è un numero primo}\}$

Stefano Ferrari 🛨 Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza ♦ Grammatiche ♦ a.a. 2004/05 - p. 23/37

Grammatiche ambigue

Una grammatica si dice ambigua se qualche stringa del linguaggio da essa generato può essere generata mediante più alberi sintattici.

Esempio: con la regola F:=FaF|FbF|f, la generazione della stringa fafbf non è univoca.

Infatti:

- ullet F o FaF o faF o faFbF o fafbF o fafbf
- $\bullet \ F \to FbF \to Fbf \to FaFbf \to faFbf \to fafbf$

Un linguaggio si dice inerentemente ambiguo se non esiste alcuna grammatica non ambigua che lo generi.

Stefano Ferrari ★ Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza ♦ Grammatiche ♦ a.a. 2004/05 - p. 24/37

Esercizio 1 (1)

Definiti i linguaggi:

- $L_1 = \{aa, ab, bc, c\}$
- $L_2 = \{1, 22, 31\}$

descrivere i linguaggi:

a) $L_3=L_1^*$

- d) $L_6=L_1\cup L_2$
- b) $L_4=L_1L_2$
- e) $L_7 = (L_1 L_2)^*$
- c) $L_5=L_1L_2^st$
- f) $L_8=(L_1\cup L_2)^*$

Stefano Ferrari * Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza ♦ Grammatiche ♦ a.a. 2004/05 - p. 25/37

Esercizio 1 (2)

a) $L_3=L_1^st$ è formato dalla concatenazione di un numero arbitrario (anche nullo) di elementi di L_1 .

$$L_3 = \{\epsilon, aa, \, c, \, cababc, \, \dots \}$$

b) $L_4=L_1L_2$ è formato dalla concatenazione di un elemento di L_1 con un elemento di L_2 .

$$L_4 = \{aa1,\ ab1,\ bc1,\ c1,\ aa22,\ ab22,\ bc22,\ c22,\ aa31,\ ab31,\ bc31,\ c31\}$$

c) $L_5=L_1L_2^*$ è formato dalla concatenazione di un elemento di L_1 con un numero arbitrario (anche nullo) di elementi di L_2 .

$$L_5 = \{aa, \ldots, c, bc1223131, ab111312222, \ldots\}$$

Stefano Ferrari * Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza ♦ Grammatiche ♦ a.a. 2004/05 - p. 26/37

Esercizio 1 (3)

- d) $L_6=L_1\cup L_2$ è l'unione di L_1 e L_2 . $L_6=\{aa,\,ab,\,bc,\,c,\,1,\,22,\,31\}$
- e) $L_7 = (L_1 L_2)^*$ è la chiusura di L_4 .

È pertanto formato da una sequenza (eventualmente vuota) di elementi di L_4 .

$$L_7 = \{\epsilon, \, aa22c1, \, ab1aa1, \, \dots \}$$

f) $L_8=(L_1\cup L_2)^*$ è la chiusura di $L_6.$

È pertanto formato da una sequenza (eventualmente vuota) di elementi di L_6 .

$$L_8 = \{\epsilon, c1122aaccbc, 22131311aa, aa, 1, \dots\}$$

Stefano Ferrari * Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza ♦ Grammatiche ♦ a.a. 2004/05 - p. 27/37

Esercizio 2 (1)

Data la grammatica $G = \langle \Sigma, V, P, S \rangle$:

- $\Sigma = \{a, b\}$
- $V = \{S, A, B\}$
- $P = \{S ::= B|a, B ::= bA|aA, A ::= aB|b\}$

mostrare la sequenza di regole da applicare per generare le seguenti frasi:

- a) *bb*
- b) aababb
- c) babaab

Stefano Ferrari * Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza \diamondsuit Grammatiche \diamondsuit a.a. 2004/05 - p. 28/37

Esercizio 2 (2)

$$S::=B|a,\ B::=bA|aA,\ A::=aB|b$$

$$egin{array}{c|c} bb & S \ S ::= B & B \ B ::= bA & bA \ A ::= b & bb \ \end{array}$$

Stefano Ferrari 🖈 Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza \Diamond Grammatiche \Diamond a.a. 2004/05 - p. 29/37

Esercizio 2 (3)

$$S::=B|a,\;B::=bA|aA,\;A::=aB|b$$

Stefano Ferrari 🖈 Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza \Diamond Grammatiche \Diamond a.a. 2004/05 - p. 30/37

Esercizio 2 (4)

c) babaab

$$S::=B|a,\ B::=bA|aA,\ A::=aB|b$$

babaab

 \boldsymbol{S}

 $S ::= B \quad | B$

 $B := bA \mid bA$

 $A ::= aB \mid baB$

 $B := bA \mid babA$

 $A ::= aB \mid babaB$

 $B ::= aA \mid babaaA$

 $A := b \quad | babaab$

Stefano Ferrari 🛨 Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza \diamondsuit Grammatiche \diamondsuit a.a. 2004/05 - p. 31/37

Esercizio 3 (1)

Data la grammatica $G = \langle \Sigma, V, P, S \rangle$:

- $\Sigma = \{a, b, c\}$
- $V = \{S, A, B\}$
- $\bullet \ P = \{S ::= A|aA, \ A ::= Ab|bAB|b, \ B ::= cB|c\}$

mostrare la sequenza di regole da applicare per generare le seguenti frasi:

- a) bbb
- b) abbcc
- c) abbbcc

Stefano Ferrari 🖈 Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza \Diamond Grammatiche \Diamond a.a. 2004/05 - p. 32/37

Esercizio 3 (2)

a)
$$bbb$$
 $S::=A|aA,\;A::=Ab|bAB|b,\;B::=cB|c$

$$egin{array}{c|c} bbb & & & & & & S \ S ::= A & A & & & & A \ A ::= Ab & Abb & & & Abb \ A ::= b & bbb \ \end{array}$$

Stefano Ferrari 🖈 Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza \Diamond Grammatiche \Diamond a.a. 2004/05 - p. 33/37

Esercizio 3 (3)

b)
$$abbcc$$
 $S:=A|aA,\;A:=Ab|bAB|b,\;B:=cB|c$

abbcc			
	S		
S::=aA	aA		
A ::= bAB	abAB		
A::=b	abbB		
B ::= cB	abbcB		
B ::= c	abbcc		

Stefano Ferrari 🖈 Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza \Diamond Grammatiche \Diamond a.a. 2004/05 - p. 34/37

Esercizio 3 (4)

c)
$$abbbcc$$
 $S:=A|aA,\ A:=Ab|bAB|b,\ B:=cB|c$

abbbcc		abbbcc		
	$oxed{S}$		S	
S::=aA	aA	S::=aA	aA	
A ::= bAB	abAB	A ::= bAB	abAB	
A ::= bAB	abbABB	A::=Ab	abAbB	
A::=b	abbbBB	A::=b	abbbB	
B ::= c	abbbcB	B ::= cB	abbbcB	
B ::= c	abbbcc	B ::= c	abbbcc	

Ambigua!

Stefano Ferrari 🛨 Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza \Diamond Grammatiche \Diamond a.a. 2004/05 - p. 35/37

Esercizio 4 (1)

Data la grammatica $G = \langle \Sigma, V, P, S \rangle$:

- $\Sigma = \{a, b, c\}$
- $V = \{S, A, B\}$
- $\bullet \ P = \{S ::= A|aA, \ A ::= aAb|b|AB, \ B ::= b|ABa|c\}$

mostrare la sequenza di regole da applicare per generare le seguenti frasi:

- a) aabbcbb
- b) aabbbca

Stefano Ferrari 🖈 Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza ♦ Grammatiche ♦ a.a. 2004/05 - p. 36/37

Esercizio 4 (2)

a)

b)

aabbcbb		aabbbca		
	S	•		$oxed{S}$
S::=A	$oldsymbol{A}$		S::=A	$oldsymbol{A}$
A ::= aAb	aAb		A ::= AB	aAB
A ::= aAb	aaAbb		B ::= ABa	aAABa
A ::= AB	aaABbb		B ::= c	aAAca
B ::= c	aaAcbb		A ::= b	aAbca
A ::= AB	aaABcbb		A::=aAb	aaAbbca
A::=b	aabBcbb		A ::= b	aabbbca
B ::= b	aabbcbb			•

Stefano Ferrari 🛨 Università degli Studi di Milano

Fondamenti di Informatica per la Sicurezza \Diamond Grammatiche \Diamond a.a. 2004/05 - p. 37/37