Multiresolution Analysis and Fast Wavelet Transform

Fondamenti di elaborazione del segnale multi-dimensionale Multi-dimensional signal processing

Stefano Ferrari

Università degli Studi di Milano stefano.ferrari@unimi.it

Elaborazione dei Segnali Multi-dimensionali e Applicazioni 2014–2015

Motivations

- ► CWT has valuable properties for signal processing.
- ► However, the use of CWT requires some approximations:
 - inner product computation;
 - scale and translation parameters sampling.
- ▶ A discrete version of wavelet transform (i.e., a wavelet transform that operates with only a dyadic set of wavelets and on a discrete set of samples of the signal) is possible: the Discrete Wavelet Transform (DWT).
- ► The theory that allows to obtain such a transform is better explained starting from the Multi-Resolution Analysis (MRA).
- ▶ A fundamental result of the MRA theory is that, under some conditions, the DWT can be obtained through a digital filtering operation.
- ► This transform is computationally very efficient and, for this reason, it is called Fast Wavelet Transform (FWT).

Multiresolution Analysis — Overview

▶ A Multiresolution Analysis (MRA) defines a sequence of nested spaces of functions, {V_j}:

$$\cdots \subset V_{-1} \subset V_0 \subset V_1 \subset \cdots \subset V_i \subset V_{i+1} \subset \cdots$$

such that lower the index, smoother the functions that belong to the space.

- ▶ This sequence will, at the end, cover the space of the finite energy functions, $L^2(\mathbb{R})$.
- ▶ For each function $f \in L^2(\mathbb{R})$, the best approximation, $P_j[f]$, in each space, V_j , can be defined by projecting the function onto this space.
- ▶ Hence, a sequence of approximating functions, $\{P_j[f]\}$, is obtained, such that:

$$\lim_{j\to\infty} P_j[f] = f$$

Multiresolution Analysis — Overview (2)

► The difference between two consecutive approximations represents the details that are added:

$$Q_{j}[f] = P_{j+1}[f] - P_{j}[f]$$

and can be obtained as the projection of the function f onto an appropriate detail space, W_i .

► Hence, the function *f* can be represented by summing the sequence of the detail projections:

$$f = \sum_{j} Q_{j}[f]$$

▶ The basis of the W_j 's spaces are the wavelets.

Scaling functions — Approximation spaces

A Multiresolution Analysis (MRA) of $L^2(\mathbb{R})$ is defined as the sequence of closed subspaces $V_j \in L^2(\mathbb{R})$, $j \in \mathbb{Z}$, which have the following properties:

- 1. $V_j \subset V_{j+1}$
- 2. $v(x) \in V_i \Leftrightarrow v(2x) \in V_{i+1}$
- 3. $v(x) \in V_0 \Leftrightarrow v(x+1) \in V_0$
- 4. $\bigcup_{j=-\infty}^{\infty} V_j$ is dense in $L^2(\mathbb{R})$ and $\bigcap_{j=-\infty}^{\infty} V_j = \{0\}$
- 5. There is a function $\varphi(x) \in V_0$, having non null integral, such that the set $\{(\varphi(x-k)|k \in \mathbb{Z})\}$ is a Riesz basis for V_0 .

The function $\varphi(\cdot)$ is called *scaling function*.

Scaling functions — Approximation spaces (2)

There is a sequence $\{h_k\} \in l^2(\mathbb{Z})$ for which the scaling function satisfies:

$$\varphi(x) = 2\sum_{k} h_{k} \, \varphi(2x - k)$$

- ▶ The relation is called the *refinement equation*;
 - aka dilation equation or two-scale difference equation
- Defining

$$\varphi_{j,k}(x) = \sqrt{2^j}\,\varphi(2^jx - k)$$

it can be shown that $\{ arphi_{j,k}(x) \, | \, k \in \mathbb{Z} \}$ is a Riesz basis for V_j

▶ Hence, $\{\varphi_{j,k}(x) | j, k \in \mathbb{Z}\}$ is a Riesz basis for $L^2(\mathbb{R})$

Scaling functions — Approximation spaces (3)

Hence there are at least three ways to build or identify a MRA:

- ▶ through the description of the *V_i*s spaces;
- by means of the scaling function, φ ;
- ▶ through the coefficients $\{h_k\}$ of the refinement equation.

As it will be shown, in order to obtain an approximation, the coefficients $\{h_k\}$ can be used directly.

- ▶ It is efficient.
- ▶ There is no need of using the scaling function.

However, a more detailed characterization of these coefficients is required.

Properties of the scaling functions

▶ It can be shown that:

$$\sum_k h_k = 1$$

▶ The normalization is a condition usually required:

$$\int_{-\infty}^{\infty} \varphi(x) \, \mathrm{d}x = 1$$

▶ In the frequency domain, this condition is equivalent to:

$$\hat{\varphi}(0)=1$$

► From the refinement equation and the normalization condition, the scaling function is uniquely determined.

Properties of the scaling functions (2)

► In order to be able to approximate simple function (e.g., constants), it is useful to assume that:

$$\forall x \in \mathbb{R}, \ \sum_{k} \varphi(x-k) = 1$$

- the scaling function and its integer translates partition the unit.
- This condition is equivalent to:

$$\hat{\varphi}(2\pi k) = 0, \ k \in \mathbb{Z}, \ k \neq 0$$

• or $\hat{\varphi}(2\pi k) = \delta$, $k \in \mathbb{Z}$, due to $\hat{\varphi}(0) = 1$.

Properties of the scaling functions (3)

▶ From the refinement equation, $\varphi(x) = 2 \sum_k h_k \varphi(2x - k)$:

$$\hat{\varphi}(\nu) = H(\nu/2)\hat{\varphi}(\nu/2)$$

where H is a 2π -periodic function defined as:

$$H(\nu) = \sum_{k} h_{k} e^{-\iota k \nu}$$

• Since $\hat{\varphi}(0) = 1$, the recursion on the above property produces:

$$\hat{\varphi}(\nu) = \prod_{j=1}^{\infty} H(2^{-j}\nu)$$

This relation can be used for obtaining φ from $\{h_k\}$.

Properties of the scaling functions (4)

- ▶ It can be shown that H(0) = 1.
 - E.g., from $\hat{\varphi}(\nu) = H(\nu/2)\hat{\varphi}(\nu/2)$.
- ► It can also be shown that a condition for the partition of the unity is:

$$H(\pi) = 0$$
 or $\sum_{k} (-1)^{k} h_{k} = 0$

Approximation at the j-th scale

For each function, its approximation can be obtained projecting it onto an approximation space:

$$\forall f(\cdot) \in L^2(\mathbb{R}), \lim_{j \to \infty} P_j[f(\cdot)] = f(\cdot)$$

$$P_{j}[f(x)] = \sum_{k} \lambda_{j,k} \, \varphi_{j,k}(x)$$

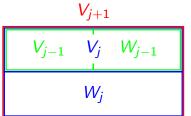
for some $\{\lambda_{j,k}\}$.

Wavelets — Detail spaces

Let W_j be the complementary space of V_j in V_{j+1} , i.e., the space that satisfies:

$$V_{j+1} = V_j \oplus W_j$$

= $\{v_j + w_j \mid v_j \in V_j, w_j \in W_j\}$



The space W_j contains the information about the "details" required for moving from a j-resolution approximation to the j+1-resolution one. As a consequence:

$$\bigoplus_{j} W_{j} = L^{2}(\mathbb{R})$$

Wavelets — Details space (2)

A function $\psi(\cdot)$ is a wavelet if the set of functions $\{\psi(x-k) \mid k \in \mathbb{Z}\}$ is a Riesz basis for the wavelet space W_0 .

$$\{\psi_{j,k}(x) \mid j,k \in \mathbb{Z}\}$$
, where $\psi_{j,k}(x) = \sqrt{2^j} \, \psi(2^j x - k)$, is a Riesz bases for $L^2(\mathbb{R})$.

Since $\psi \in V_1$, there is a sequence $\{g_k\} \in l^2(\mathbb{Z})$ such that:

$$\psi_{0,0}(x) = \psi(x) = 2\sum_{k} g_{k} \varphi(2x - k)$$

The function $\psi(\cdot)$ is called *mother wavelet*.

Properties of the wavelets

► The Fourier transform of the wavelet is:

$$\hat{\psi}(\nu) = G(\nu/2)\,\hat{\psi}(\nu/2)$$

where G is a 2π -periodic function given by:

$$G(\nu) = \sum_{k} g_{k} e^{-\iota k \nu}$$

Detail at the *j*-th scale

As for the approximation, the detail at a given scale can be obtained by projecting the function onto a proper wavelet space:

$$\forall f(x) \in L^2(\mathbb{R})$$
:

$$f(x) = \sum_{j} Q_{j}[f(x)] = \sum_{j,k} \gamma_{j,k} \psi_{j,k}(x)$$

Notes:

- ► The above equation is a "discrete" (in the scale and position parameters) inverse wavelet transform.
- ▶ The computational cost for computing the coefficients $\{\gamma_{j,k}\}$ depends by the properties of the wavelets and scaling functions.

Orthogonal wavelets

- ► The use of an orthogonal basis is particularly interesting as it allows to decompose a function in uncorrelated elements.
- ▶ In this case, the coefficient $\lambda_{j,k}$ are obtained by the orthogonal projection of the function f onto the basis element $\varphi_{j,k}$:

$$P_{j}[f(x)] = \sum_{k} \langle f, \varphi_{j,k} \rangle \varphi_{j,k}(x)$$

▶ $P_j[f(\cdot)]$ is the best representation of $f(\cdot)$ in V_j , as:

$$\forall g \in V_j, ||g - f|| \ge ||P_j[f] - f||$$

▶ Similarly, if the wavelets $\{\psi_{j,k}\}$ form an orthogonal basis for W_j , the projection Q_j is an orthogonal projection and the coefficient $\gamma_{j,k}$ can be obtained by orthogonally projecting f onto $\psi_{j,k}$:

$$Q_{j}[f(x)] = \sum_{k} \langle f, \psi_{j,k} \rangle \, \psi_{j,k}(x)$$

Orthogonal wavelets (2)

- ▶ A MRA where the wavelet spaces W_j are defined as the orthogonal complement of V_j in V_{j+1} .
 - As a consequence, the wavelet spaces, $\{W_j\}$, are mutually orthogonal,
 - \triangleright the above defined projections P_i and Q_i are orthogonal, and
 - the expansion

$$f(x) = \sum_{j} Q_{j}[f(x)]$$

is an expansion of orthogonal functions.

▶ If the above mentioned conditions on the scaling function are satisfied, a sufficient condition for the orthogonality of a MRA is:

$$W_0 \perp V_0$$

or

$$\langle \psi(x), \varphi(x-k) \rangle = 0$$

Orthogonal wavelets (3)

▶ Under mild conditions, $\langle \psi(x), \varphi(x-k) \rangle = 0$ is equivalent to:

$$orall
u \in \mathbb{R}, \; \sum_{\mathbf{k}} \hat{\psi}(
u + 2k\pi) \overline{\hat{\varphi}}(
u + 2k\pi) = 0$$

In order to investigate on the properties of the orthogonal wavelets and scaling functions, the following 2π -periodic function is introduced:

$$F(\nu) = \sum_{k} |\hat{\varphi}(\nu + 2k\pi)|^2$$

▶ Since $\{\varphi(x-k) \mid k \in \mathbb{Z}\}$ is a Riesz basis, there are two constants A and B such that:

$$0 < A \le F(\nu) \le B < \infty$$

i.e., $F(\cdot)$ is bounded (and the bounds do not depend on ν).

Orthogonal wavelets (4)

▶ Since $\hat{\varphi}(\nu) = H(\nu/2) \, \hat{\varphi}(\nu/2)$, it derives:

$$F(2\nu) = |H(\nu)|^2 F(\nu) + |H(\nu + \pi)|^2 F(\nu + \pi)$$

which shows that F is actually π -periodic.

▶ The scaling function is orthogonal when

$$\langle \varphi(x), \varphi(x-k) \rangle = \delta_k, \ k \in \mathbb{Z}$$

In this case, $\{\varphi_{j,k} \mid k \in \mathbb{Z}\}$ is an orthonormal basis for V_j .

▶ Under mild conditions, the above relation is equivalent to:

$$\forall \nu \in \mathbb{R}, \ \sum_{k} |\hat{\varphi}(\nu + 2k\pi)|^2 = F(\nu) = 1$$

Hence

$$\forall \nu \in \mathbb{R}, \ |H(\nu)|^2 + |H(\nu + \pi)|^2 = 1$$

which is equivalent to

$$\forall k \in \mathbb{Z}, \ \sum_{j} h_{j} h_{j-2k} = \frac{\delta_{k}}{2}$$

Orthogonal wavelets (5)

- ▶ $\sum_{j} h_{j}h_{j-2k} = \frac{\delta_{k}}{2}$ and $\langle \varphi(x), \varphi(x-k) \rangle = \delta_{k}$ describe the orthogonality necessary conditions in the time domain;
- ▶ $\sum_{k} |\hat{\varphi}(x+2k\pi)|^2 = 1$ and $|H(\nu)|^2 + |H(\nu+\pi)|^2 = 1$ describes the orthogonality necessary conditions in the frequency domain.
- These conditions can be used to build orthogonal scaling functions.
- ▶ Similarly, the basis $\{\psi_{j,k} \,|\, k \in \mathbb{Z}\}$ is an orthonormal basis for W_0 if

$$\langle \psi(\mathbf{x}), \psi(\mathbf{x} - \mathbf{k}) \rangle = \delta_{\mathbf{k}}$$

or, equivalently

$$\sum_{\nu}|\hat{\psi}(\nu+2k\pi)|^2=1$$

from which results the necessary condition:

$$|G(\nu)|^2 + |G(\nu + \pi)|^2 = 1$$

Orthogonal wavelets (6)

- ► The *G* function (and, hence the *g* coefficients), can be better characterized.
- ▶ It can be shown that

$$\forall \nu \in \mathbb{R}, \ G(\nu) \, \overline{H}(\nu) + G(\nu + \pi) \, \overline{H}(\nu + \pi) = 0$$

An important result [Mallat, 1989] show that

$$G(\nu) = A(\nu)\bar{H}(\nu + \pi)$$

where A is a 2π periodic function such that:

$$A(\nu + \pi) = -A(\nu)$$

With the above conditions.

$$|A(\nu)| = 1$$

▶ Hence, the above relations allow to build an orthogonal wavelet given the orthogonal scaling function, for a chosen A.

Orthogonal wavelets (7)

- ► For practical uses, the compactness of the wavelet and scaling function is very important.
- ▶ It can be shown that this can be obtained for

$$A(\nu) = Ce^{-(2k+1)\nu}$$
, for $|C| = 1$ and $k \in \mathbb{Z}$

The standard choice is

$$A(\nu) = e^{-\iota\nu}$$

for which G and H are the transfer functions of a pair of quadrature mirror filters:

$$g_k = (-1)^k \, \bar{h}_k$$

▶ This choice has also the advantage of yielding real coefficients g_k s, provided that also h_k s are reals.

Biorthogonal wavelets

- ▶ The orthogonality puts strong limitation on the construction of the wavelets (e.g., on compactness of the wavelets).
- More flexibility can be achieved by using biorthogonal wavelets.
- ► The definition on a compact domain allows for an accurate implementation of the transform.
- ► In this case, the wavelet and the scaling function are represented by FIR filters,
 - $ightharpoonup h_k$ and g_k have a finite number of non-null coefficients.

Biorthogonal wavelets — Dual spaces

- ▶ The biorthogonal MRA requires the existence of a *dual scaling* function, $\tilde{\varphi}$, and a *dual wavelet*, $\tilde{\psi}$.
- ▶ They generate a dual multiresolution analysis with subspaces \tilde{V}_i and \tilde{W}_i such that:

$$ilde{V}_j \perp W_j$$
 and $V_j \perp ilde{W}_j$

► Hence

$$\tilde{W}_j \perp W_{j'}$$
 for $j' \neq j$

▶ The above orthogonality relations imply:

$$\langle \tilde{\varphi}(x), \psi(x-k) \rangle = \langle \tilde{\psi}(x), \varphi(x-k) \rangle = 0$$

Biorthogonal wavelets — Dual spaces (2)

Moreover:

$$\langle \tilde{\varphi}_{j,l}, \varphi_{j,k} \rangle = \delta_{l-k} \quad j, k, l \in \mathbb{Z}$$
$$\langle \tilde{\psi}_{j,l}, \psi_{i,k} \rangle = \delta_{j-i} \delta_{l-k} \quad j, k, l \in \mathbb{Z}$$

▶ In particular

$$\langle \tilde{\varphi}(x), \, \varphi(x-k) \rangle = \delta_k \quad k \in \mathbb{Z}$$

$$\langle \tilde{\psi}(x), \psi(x-k) \rangle = \delta_k \quad k \in \mathbb{Z}$$

► The properties of the dual wavelet and scaling function, are similar to those of the wavelet and scaling function, respectively.

Biorthogonal wavelets — Dual spaces (3)

- ▶ The role of primal and dual MRA is interchangeable:
 - both can have the role of the primal or the dual MRA;
 - the effects on the transform and the inverse will depend on the characteristics of the primal and the dual.
- ► However, the biorthogonal MRA maintains the main advantage of the orthogonal MRA:
 - the coefficients can be computed by means of orthogonal projections;
 - the dual MRA is used to compute the transform (analysis MRA);
 - ▶ the primal MRA is used to reconstruct the signal from the transform coefficients (synthesis).
- ▶ The projection operator P_i and Q_i are here defined as:

$$P_{j}[f(x)] = \sum_{k} \langle f, \tilde{\varphi}_{j,k} \rangle \varphi_{j,k}(x)$$

and

$$Q_j[f(x)] = \sum_k \langle f, \tilde{\psi}_{j,k} \rangle \, \psi_{j,k}(x)$$

Biorthogonal wavelets — Dual spaces (4)

► Hence, the discrete wavelet transform is:

$$f(x) = \sum_{j,k} \langle f, \tilde{\psi}_{j,k} \rangle \, \psi_{j,k}(x)$$

Properties and conditions similar to those obtained to the orthogonal MRA can be obtained. In particular:

$$ilde{arphi}(x)=2\sum_{k} ilde{h}_{k} ilde{arphi}(2x-k)$$
 and $ilde{\psi}(x)=2\sum_{k} ilde{g}_{k} ilde{\psi}(2x-k)$

from which can be obtained

$$\tilde{h}_{k-2l} = \langle \tilde{\varphi}(x-l), \varphi(2x-k) \rangle$$
 and $\tilde{g}_{k-2l} = \langle \tilde{\psi}(x-l), \varphi(2x-k) \rangle$

Biorthogonal wavelets — Dual spaces (5)

▶ In particular, by writing $\varphi(2x - k) \in V_1$ as element of V_0 and W_0 :

$$\varphi(2x-k) = \sum_{l} \tilde{h}_{k-2l} \varphi(x-l) + \sum_{l} \tilde{g}_{k-2l} \psi(x-l)$$

▶ By imposing that h_k , g_k , \tilde{h}_k , \tilde{g}_k have finite components, it can be shown that, under mild conditions:

$$ilde{G}(
u)=e^{-\iota
u}ar{H}(
u+\pi) \ ext{and} \ \ G(
u)=e^{-\iota
u}ar{ ilde{H}}(
u+\pi)$$

The properties of the orthogonal and biorthogonal MRA can be used to formulate an efficient algorithm for computing the wavelet transform and its inverse.

Fast Wavelet Transform

▶ As $V_j = V_{j-1} \oplus W_{j-1}$, $v_j \in V_j$ can be uniquely write as sum of a function $v_{j-1} \in V_{j-1}$ and a function $w_{j-1} \in W_{j-1}$:

$$v_{j}(x) = \sum_{k} \lambda_{j,k} \varphi_{j,k}(x) = v_{j-1}(x) + w_{j-1}(x)$$
$$= \sum_{k} \lambda_{j-1,k} \varphi_{j-1,k}(x) + \sum_{k} \gamma_{j-1,k} \psi_{j-1,k}(t)$$

for proper coefficients $\{\lambda_{j,k}\}$, $\{\lambda_{j-1,k}\}$, $\{\gamma_{j-1,k}\}$.

- ▶ Hence the same function v_j can be represented either by means the sequence $\{\lambda_{j,k}\}$, and by the sequences $\{\lambda_{j-1,k}\}$ $\{\gamma_{j-1,k}\}$.
- ► This is a key relation for obtaining an efficient algorithm for the analysis and synthesis.

Fast Wavelet Transform (2)

► In fact:

$$\lambda_{j-1,l} = \langle v_j, \tilde{\varphi}_{j-1,l} \rangle = \sqrt{2} \langle v_j, \sum_k \tilde{h}_{k-2l} \tilde{\varphi}_{j,k} \rangle$$
$$= \sqrt{2} \sum_k \tilde{h}_{k-2l} \lambda_{j,k}$$

and, similarly,

$$\gamma_{j-1,l} = \sqrt{2} \sum_{k} \tilde{g}_{k-2l} \, \lambda_{j,l}$$

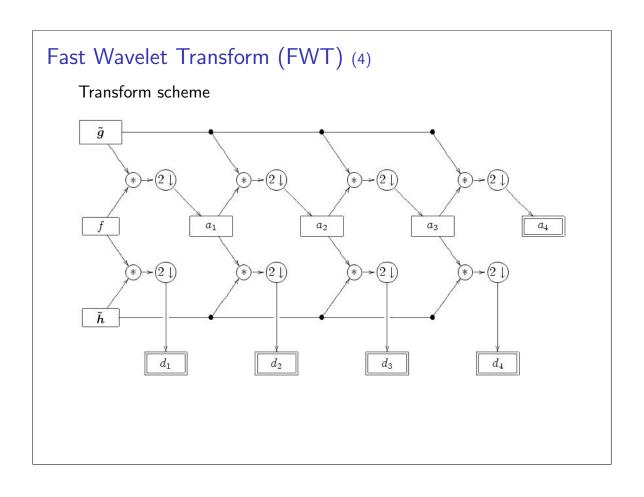
The refinement equations allow to obtain the inverse transform:

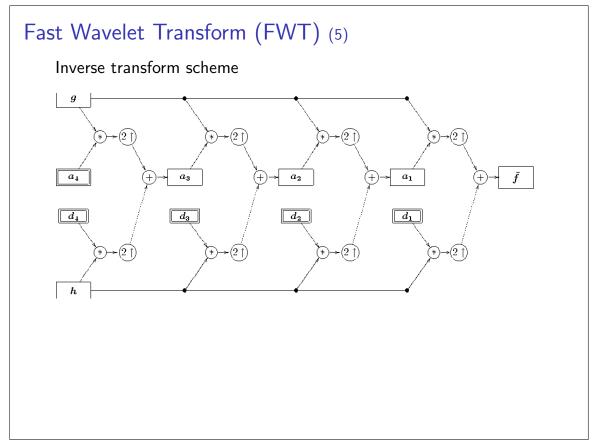
$$\lambda_{j,k} = \sqrt{2} \sum_{l} h_{k-2l} \, \lambda_{j-1,l} + g_{k-2l} \, \gamma_{j-1,l}$$

► The recursive application of these formulas provide the Fast Wavelet Transform (FWT) or cascade algorithm.

Fast Wavelet Transform (3)

- It should be noticed that the filters \tilde{h} and \tilde{g} are translated by two positions.
- ▶ Hence the $\lambda_{j-1,l} = \sqrt{2} \sum_{k} \tilde{h}_{k-2l} \lambda_{j,k}$ do not describe a convolution.
- ► However, they can be computed as a convolution followed by a subsampling.
- ▶ If the signal is defined over an interval, the number of $\lambda_{j,k}$ coefficients will be the double of that of $\lambda_{j-1,k}$ and $\gamma_{j-1,k}$.
- ► The number of coefficients to represent the signal does not change.
- ▶ The inverse transform can be obtained by upsampling the coefficients $\lambda_{j-1,k}$ and $\gamma_{j-1,k}$, putting zeros between the coefficients.





Fast Wavelet Transform (6)

- ▶ A problem is the estimate of the initial coefficients λ_0 .
- ► They should be the inner product of the (mother) scaling function and the signal itself.
- ► A simple choice is using a sampling of the signal for the starting level, *n*:

$$\lambda_{n,l} = f\left(\frac{l}{2^n}\right)$$

- It is equivalent to suppose that the initial scaling function is an approximation of the Dirac's δ .
- It is important to notice that the FWT allows to obtain an exact inner product of the signal with the basis functions of the successive levels, by using only the $\lambda_{n,l}$ coefficients.

Plotting the basis functions

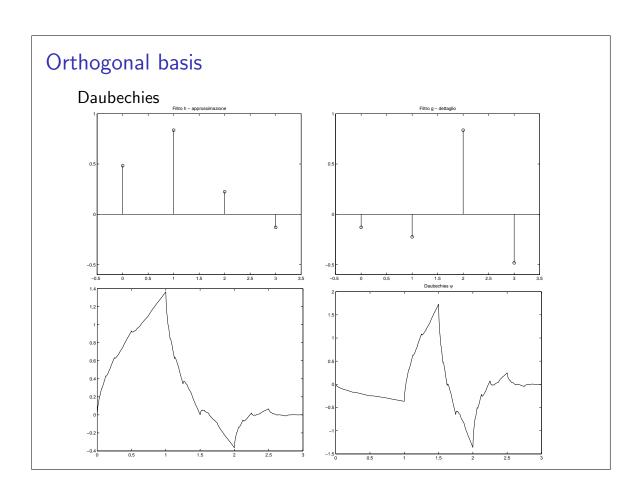
- ► The basis functions (wavelet and scaling function) sometimes cannot be expressed analytically.
- ▶ In this case, the cascade algorithm can be used to obtain an approximation of them.
- ▶ In fact, $f \in L^2(\mathbb{R})$ can be represented as:

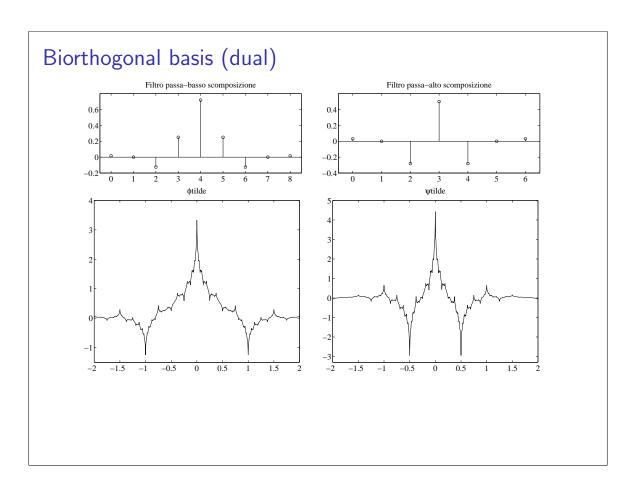
$$f(x) = \sum_{k} \lambda_{j,k} \varphi_{j,k}(x) + \sum_{l \geq j} \sum_{k} \gamma_{l,k} \psi_{l,k}(x)$$

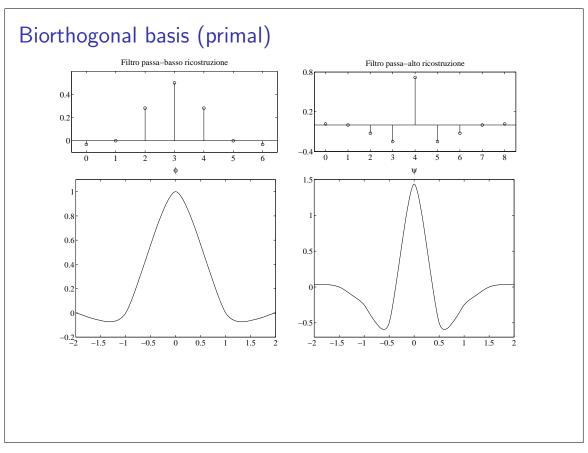
- ▶ From proper coefficients $\{\lambda\}$ and $\{\gamma\}$, the function f can be reconstructed.
- ▶ The scaling function $\varphi_{j,k}$ is characterized by having only the coefficient $\lambda_{j,k}$ set to 1; all the others are null.
- ▶ Hence, starting from such a sequence, after few iterations of the cascade algorithm a good sampling of the scaling function is obtained.
 - The number of coefficients doubles at each iteration.

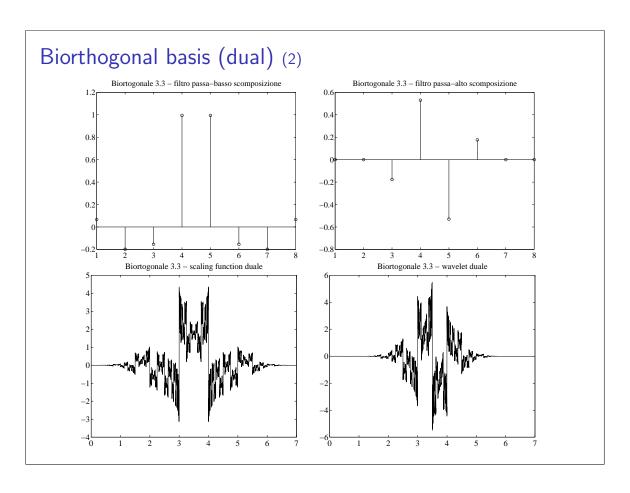
Plotting the basis functions (2)

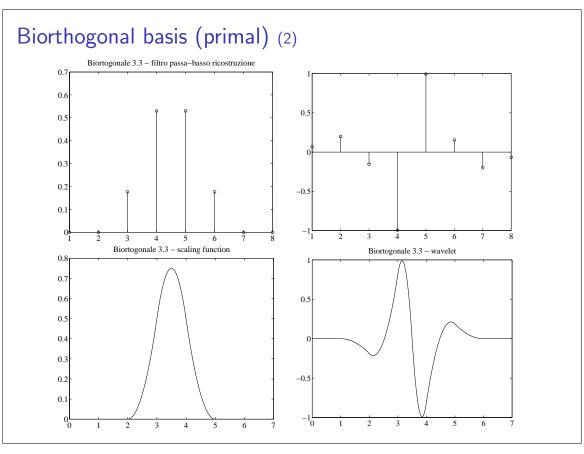
- ► Similarly, the wavelet can be obtained.
 - ▶ All the λ and γ are set to 0, but one of γ is set to 1.
- ► The Fourier transforms of wavelet and scaling functions can also be obtained.



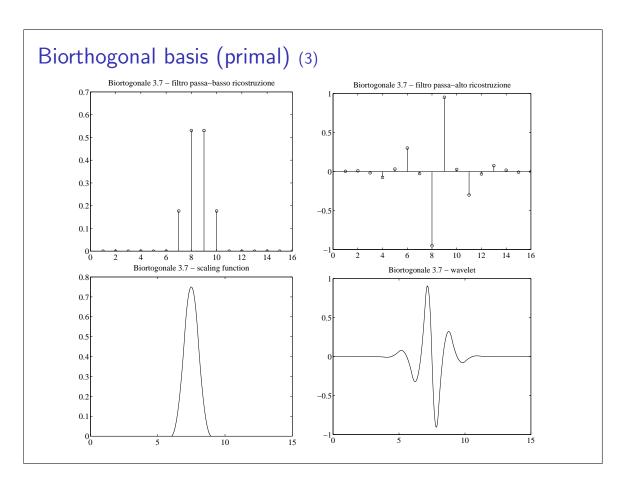








Biorthogonal basis (dual) (3) Biortogonale 3.7 - filtro passa-alto scomposizione 0.6 0.4 0.6 0.2 0.4 0.2 -0.2 -0.4 -0.2 -0.6 -0.8L 12 10 Biortogonale 3.7 - scaling function duale -0.5 10



Fast Wavelet Transform (FWT)

orthogonality or biorthogonality

fast algorithm for wavelet transform computation

function projection

FIR filters

→ filtering

$$f \to \begin{bmatrix} \mathsf{g} \\ \mathsf{h} \end{bmatrix} \to \begin{cases} \lambda_{j,k} \\ \gamma_{j,k} \end{cases}$$

transform

$$\begin{cases} \lambda_{j,k} \} & \rightarrow \boxed{\mathsf{g}} \\ \{\gamma_{j,k} \} & \rightarrow \boxed{\mathsf{h}} \end{cases} \rightarrow f$$

inverse transform

 $\begin{cases} \lambda_{j,k} \} & \to \begin{bmatrix} \mathsf{g} \\ \gamma_{j,k} \end{cases} \to f$

transform

inverse transform

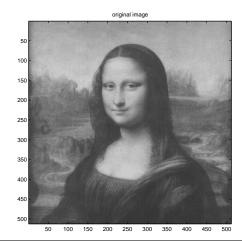
orthogonal MRA

biorthogonal MRA

Applications to images

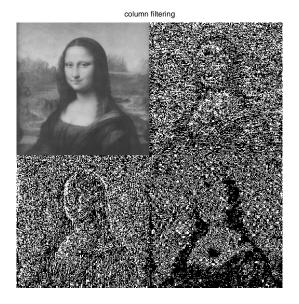
- Wavelet and scaling function can be defined also on a bidimensional domain, by using the tensor product.
 - ▶ They are defined as the product over the two dimensions.
- Hence they can be applied to the two dimensions independently.
 - Like the Fourier transform.

Example:

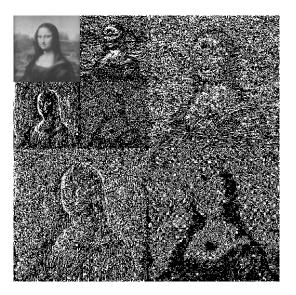


Applications to images (2)

Applications to images (3)



Applications to images (4)



Applications

- ► Signal representation (e.g., compression)
- ► Signal processing (e.g., filtering, anomalies detection)
- ▶ Pattern recognition (e.g., for feature selection)
- ► Hybrid models (e.g., Wavelet neural networks)

Image compression

Wavelet based image compression algorithms are based on some considerations:

- small detail coefficients (probably) carry unimportant information or noise;
 - ▶ if a detail occurs, the coefficients of all the levels corresponding to its position should be meaningful;
 - thresholding is used to set to zero unimportant coefficients;
 - quantization and encoding (e.g. Huffman) can then be realized.
- ▶ the shorter the wavelet support, the smaller the number of non-zero coefficients generated by an edge;
- orthogonality (and biorthogonality) decorrelates the coefficients.

Image compression (2)

- $f_M = \sum_{j,k} b_{j,k} \psi_{j,k}(x)$ with M non-zero coefficients, $b_{j,k}$
- ▶ From the orthogonality, the reconstruction error is:

$$||f - f_{\mathcal{M}}||_{L^{2}} = \left(\sum_{j,k} |\langle f, \psi_{j,k} \rangle - b_{j,k}|^{2}\right)^{\frac{1}{2}}$$

- ▶ Hence, the larger the $b_{i,k}$'s, the smallest the error.
- ▶ Besov space characterization allows a better estimate of the compression rate wrt. *M*.

Image compression (3)

- ▶ Encoding can take advantage of long sequences of zeros.
- ► The scanning order of the coefficients is critical for maximizing the length of zeros sequences.
- ▶ If a coefficient is zero, also the corresponding coefficients at the higher scales are probably zero.

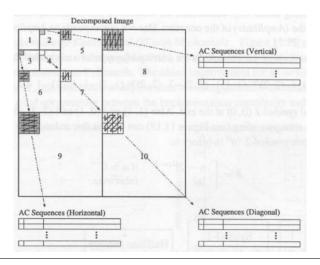


Image compression (4)

- ► Compression of image sequences can be realized using the 3D wavelet transform.
- Quality can be improved by considering not only a single coefficients, but the value of the coefficients in a neighborhood of each position.

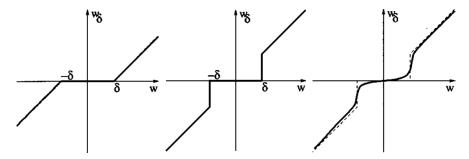
Image denoising

Wavelet denoising is based on three assumptions.

- ► Additive, stationary, and zero-mean noise affects the coefficients of all resolution levels.
- ► Large coefficients describe a good approximation of the original image.
- ▶ Noise should be relatively small.
 - ► Small influence on the large coefficients.

Image denoising – shrinking

- ▶ Shrinking is the approach generally used for denoising:
 - ▶ a threshold for each level and component is chosen;
 - ▶ the coefficients under threshold are set to zero.



- ► Soft and hard thresholding, and a sophisticated shrinking function.
- ▶ Soft thresholding is often used.

Image denoising - threshold selection

► For a given level and component (horizontal, vertical, diagonal), the optimal threshold should optimize (MSE):

$$\frac{1}{N}||w_{\delta}-v||^2$$

where:

- w_{δ} are the coefficients after shrinking
- v are the unknown noise-free coefficients
- ▶ The Donoho and Johnstone threshold:

$$\delta = \sqrt{2\log N}\sigma$$

where:

- ▶ *N* is the number of coefficients
- $ightharpoonup \sigma$ is the noise standard deviation

Image denoising – threshold selection (2)

Generalized cross validation can be used for estimating the threshold, by minimizing:

$$\mathsf{GCV}(\delta) = rac{rac{1}{N}||w - w_{\delta}||^2}{\left(rac{N_0}{N}
ight)^2}$$

where:

- $ightharpoonup N_0$ is the number of zero coefficients
- ▶ It mimics the MSE criterion.
- ▶ No estimate for the noise energy, σ , is needed.
- Adaptive techniques for estimating δ from the data can be found in literature.

Image denoising - neighboring

- ► Correlation between neighboring coefficients can be exploited:
 - 1. compute $s_{j,k} = \sum_{t \in \mathcal{N}(k)} w_{j,t}$
 - 2. shrink $w_{j,k}$:

$$w_{j,k} = \left\{ egin{array}{ll} 0, & s_{j,k} < \delta \ w_{j,k} (1 - \delta/s_{j,k}), & ext{otherwise} \end{array}
ight.$$

Image watermarking

- Wavelet coefficients can be perturbed in order to insert a watermark.
- ► The key can than be used in detecting the presence of the watermark.

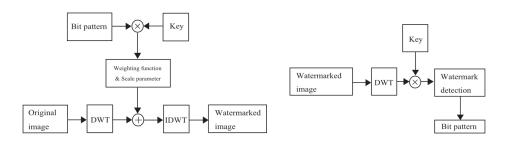


Image fusion

▶ Wavelet coefficients of registered images can be averaged.

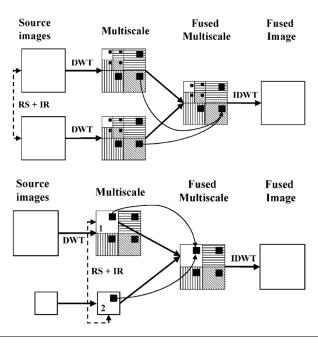


Image fusion (2)

► Example: MRI and PET images of the same subject.

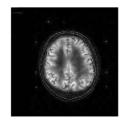
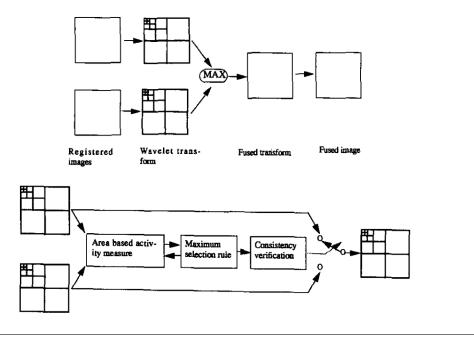


Image fusion (3)

▶ A suitable rule for averaging have to be devised.

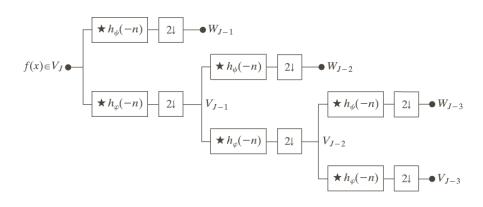


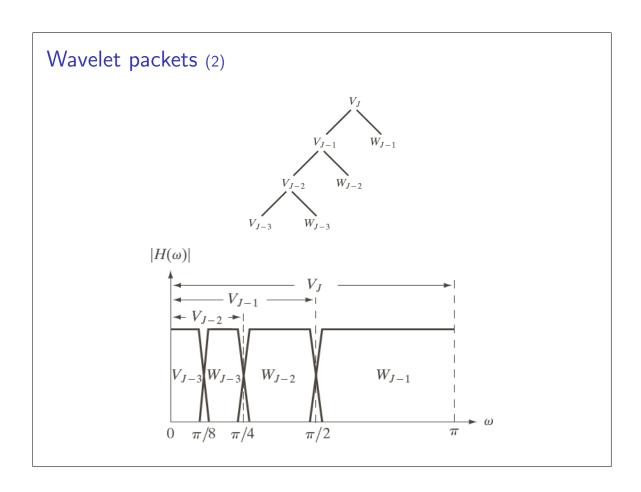
Modern wavelets

- Wavelets packets
- ► Lifting schema

Wavelet packets

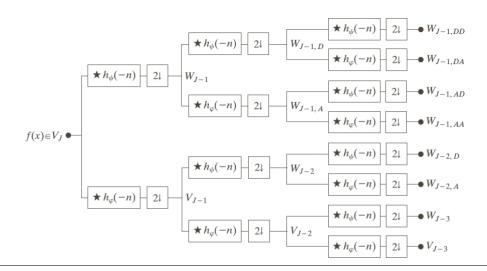
FWT provides a decomposition of a signal f in element of several subspaces (with O(N) computational cost).

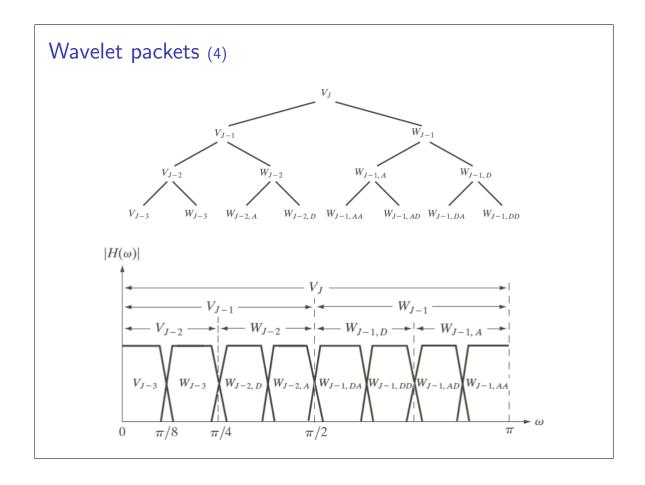


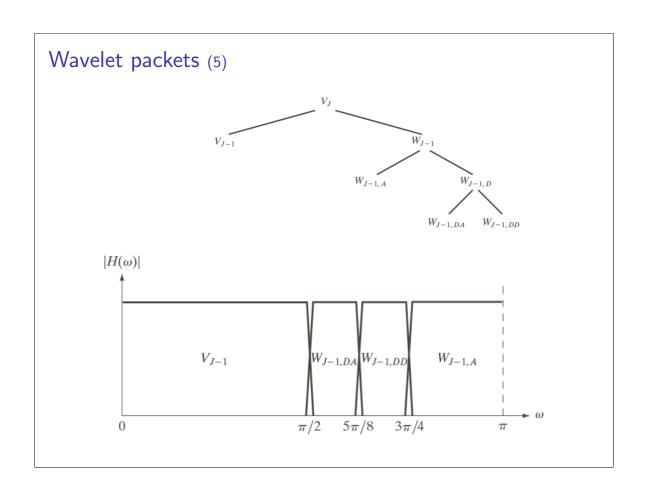


Wavelet packets (3)

- ► FWT machinery can be extended for decomposing also the detail coefficients.
- ► This transforms is called *wavelet packet* (and have an *O*(*N* log *N*) cost).

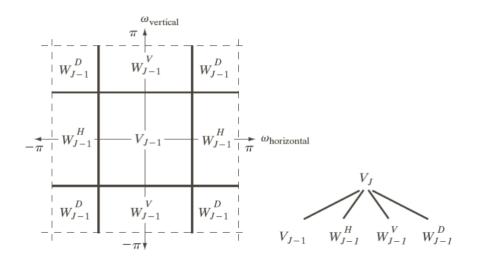






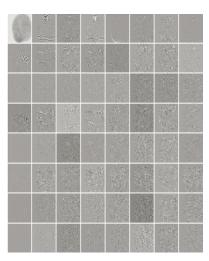
Wavelet packets for images

▶ For modeling the effects of a n-dimensional wavelet packet transform, a 2^n -ary tree can be considered.



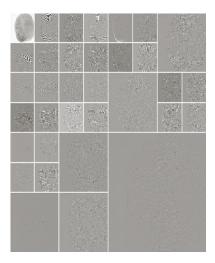
Wavelet packets - optimal decomposition

- ► For the FBI fingerprint archive, a three scales wavelet packets based compression is used.
 - ▶ The complete decomposition yields to 64 coefficients sets.



Wavelet packets – optimal decomposition (2)

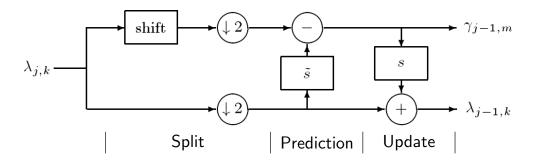
▶ In order to optimize the storage requirement, the optimal decomposition (best basis selection) can be considered.



Lifting scheme

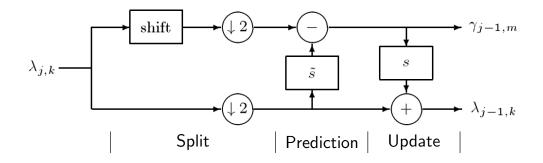
- ► The lifting scheme is a method for constructing the so-called second generation wavelets (orthogonal and biorthogonal):
 - they do not make use of Fourier transform (no regularly spaced samples are required);
 - they are not necessarily translates and dilates of the same function.
- ▶ Lifting scheme (LS) has the following advantages:
 - ► Faster implementation of the wavelet transform
 - ► FWT processes the same sequence with two filters and then subsample both the sequences;
 - LS splits the sequence before processing.
 - ▶ In-place processing (no additional memory requirement).
 - ▶ Inverse transform is realized inverting the transform operations.

Lifting scheme – analysis



- ▶ Split: $\{\lambda_{j,k}\}$ is split in $\{\lambda_{j-1,k}\}$ and $\{\gamma_{j-1,k}\}$;
 - ▶ the split can be done with any rule, but even and odd samples partition is a sensible choice.
- ▶ Prediction: $\{\lambda_{j-1,k}\}$ is used to predict $\{\gamma_{j-1,k}\}$ through \tilde{s} :
 - the value in the two sequence should be correlated;
 - ▶ this information is used to change the values of $\{\gamma_{i-1.k}\}$.

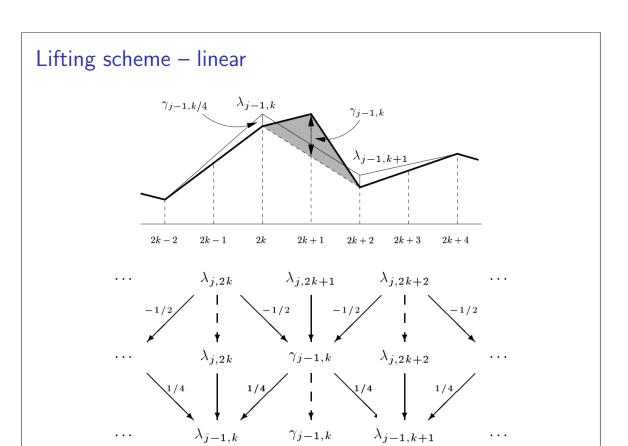
Lifting scheme – analysis (2)

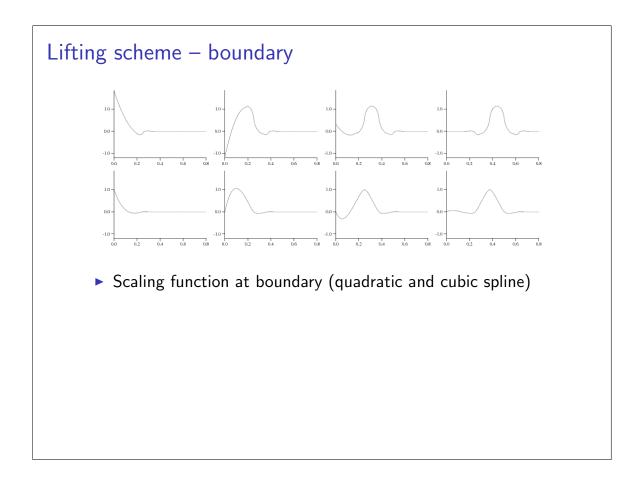


- ▶ Update: information in the original $\{\gamma_{j-1,k}\}$ that cannot be predicted by $\{\lambda_{j-1,k}\}$ is now in $\{\gamma_{j-1,k}\}$; this can be used to update the value of $\{\lambda_{j-1,k}\}$ through s:
 - downsampling can suffer of aliasing;
 - $\{\lambda_{i-1,k}\}$ can now preserve some features of $\{\lambda_{i,k}\}$ (e.g., the mean, or up to the *n*-th moment);
 - an ad-hoc operator could be hardly invertible.

Lifting scheme – synthesis

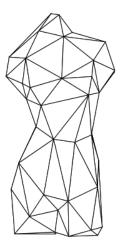
- Since the analysis stage can be realized as:
 - 1. $[\{\lambda_{j-1,k}\}, \{\gamma_{j-1,k}\}] := \text{split}(\{\lambda_{j,k}\})$
 - 2. $\{\gamma_{j-1,k}\} := \{\gamma_{j-1,k}\} \tilde{s}(\{\lambda_{j-1,k}\})$
 - 3. $\{\lambda_{j-1,k}\} := \{\lambda_{j-1,k}\} + s(\{\gamma_{j-1,k}\})$
- the synthesis stage can be obtained as:
 - 1. $\{\lambda_{j-1,k}\} := \{\lambda_{j-1,k}\} s(\{\gamma_{j-1,k}\})$
 - 2. $\{\gamma_{j-1,k}\} := \{\gamma_{j-1,k}\} + \tilde{s}(\{\lambda_{j-1,k}\})$ 3. $\{\lambda_{j,k}\} := \text{join}(\{\lambda_{j-1,k}\}, \{\gamma_{j-1,k}\})$





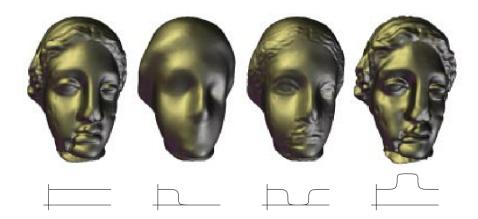
Lifting scheme – irregular sampling





- Second generation wavelets can be applied on irregular sampled data.
- ▶ Low scale approximation of mesh produce a coarsification.

Lifting scheme – mesh processing



- Typical signal processing techniques are possible also on meshes:
 - original, smoothed, stop-banded, enhanced.

Other multiscale approaches

- Curvelets
- ▶ Beamlets
- Tetrolets
- Ridgelets

Bibliography

- ▶ Digital image processing, R.C. Gonzalez and R.E. Woods
- Digital image processing, B. Jähne
- "Wavelets on Irregular Point Sets," I. Daubechies, I. Guskov,P. Schröder, and W. Sweldens
- "The lifting scheme: a construction of second generation wavelets," W. Sweldens, SIAM Journal on Mathematical Analysis
- "Image de-noising by integer wavelet transforms and generalized cross validation," M. Jansen, G. Uytterhoeven, and A. Bultheel, Medical Physics, Vol. 26, No. 4, April 1999
- "Image denoising with neighbour dependency and customized wavelet and threshold," G.Y. Chen, T.D. Bui, A. Krzyzak, Pattern Recognition, 2005
- "Image denoising with an optimal threshold and neighbouring window," Zhou Dengwen, Cheng Wengang, Pattern Recognition Letters, 2008

Bibliography (2)

- "Genetic Algorithm Approach for Wavelet-Based Image Watermarking," M. Nakamoto, S. Fujimoto, A. Doi, T. Hinamoto, ICSP2008 Proceedings
- ► "A wavelet-based image fusion tutorial," G. Pajares, J. Manuel de la Cruz, Pattern Recognition, 2004
- "Multisensor Image Fusion Using the Wavelet Transform," H. Li, S. Manjunath, and S.K. Mitra, Graphical Model and Image Processing, 1995
- "A Review of Curvelets and Recent Applications," J. Ma and G. Plonka
- "Tetrolet Shrinkage with Anisotropic Total Variation Minimization for Image Approximation," J. Krommweha, J. Ma
- "The Finite Ridgelet Transform for Image Representation,"
 M.N. Do and M. Vetterli, IEEE Transactions on Image
 Processing