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Motivations

» Transforms give an alternative view of a signal.

» The Fourier Transform of a signal f(x) gives a representation
of the same signal in the frequency domain.

» The processing should reveal information not directly
accessible from the signal.
» The Fourier Transform gives information on the presence of
frequency components.
» |t is impossible to localize them.
» It can be critical for non-stationary signals.
» Wavelets perform what is called space-frequency
representation:

» information on the frequency components,
» localized in space.
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Motivations (2)

» Besides wavelet transform allows to describe the image at
different resolutions:

» features detection at different scales;
» selective denoising;
» compression and transmission.

» Multiresolution representation allows to perform linear filtering
operations using the same (small) filter for each resolution,
instead of using larger filter for coping with large features in
the full resolution image.

Multiscale representation

» The concepts from which the wavelet transform can be
derived root in several disciplines.

» In particular for images, multiscale representations have been
proposed before the wavelets.

» Among them, at least the following have to be mentioned:

» Gaussian pyramid
» Laplacian pyramid
» Scale spaces

» Subband coding
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Scale

Operating at different scales is a concept exploited in several
approaches.
» Features are not independent of image scale:

» their actual size depends on the resolution of the image and
the distance from the camera.

» For example, Marr-Hildreth edge detector:
1. filter with a Gaussian of a suitable scale;
2. compute the Laplacian;
3. find the zero-crossing.
» Also the Canny edge detector makes use of Gaussian
smoothing.

» The size of the smoothing filter has to increase with the scale
parameter.

Multiscale representation

Multiscale (or multigrid) representation are based on a simple
observation:

» fine scales need high resolution,

» for coarse scales, low resolution copies.

Hence a M-levels multigrid representation of an image, f, can be
obtained as:

> fb = f

me+125¢2[fm], n:O,...,M—l

where S|5[-] is a suitable downsampling operator.

» Note: | 2 means that one sample out of two in each direction
is discarded;
» other downsampling rates are theoretically possible, but not
useful in practice.
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Multiscale representation (2)

» Multigrid representation does not increase too much the
storage requirements:
» given N2 the number of pixel of f,
N2 /4 are required for f1,
N2 /16 for f,,
N2 /2™ for f,.
Less than N2 pixels are required.

vV v.vy vy

» Since S|o[-] operates on the previous level, the total number
of operations for obtaining the whole multigrid representation
is proportional to %Nz.

» Multigrid are also known as pyramidal representations (Burt
and Adelson, 1983).

Multiscale representation (3)
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Downsampling operator

Naive choices for S|5[-] may produce undesirable effects.

> Sio[-] =1 2 may produce aliasing.
» Smoothing is required.

» Smoothing cancels high frequency variations that may cause
aliasing when downsampled.

» Gaussian is generally chosen as smoothing operator.
» Multigrid representation are called Gaussian pyramid.

» Smoothing and downsampling allow small filters or small
spatial operators to operate on large scale features.

Upsampling operator

Some operations require the recovering of the original size of the
lower levels of the pyramid.

» It happens when different levels content has to be compared.

» This operation is carried out by the upsampling operator,
Ria[]
» A suitable rule for estimating the missing pixels is required.

» Generally, every even pixel of each row is estimated from the

odds;
» then, the same procedure is applied considering the column

direction.
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Laplacian pyramid

A complementary representation can be derived from the Gaussian
pyramid:

> Im = fm — Reo[fmt1]

> Im-1 = fu-1
where M is the number of pyramid levels.

This representation is called Laplacian pyramid.
» It provides a bandpass decomposition of the image.

» |, contains those components belonging to f,,, but not in f,,_1.
» Iy—1 contains the low frequencies components (coarsest scale
structures).

Laplacian pyramid (2)

From a Laplacian pyramid, the original image can be recursively
reconstructed.

» The scheme for computing the Laplacian pyramid can be
inverted:

> Iy—1 = fu_1
> 1 = Im—1 + Ry2[fu]
» Errors in the computation of /1 due to Ryp[-] are absorbed
in the reconstruction.
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Laplacian pyramid (3)

Since Laplacian images histograms are usually more dense in a
small neighborhood of zero, compression algorithms can perform
better on Laplacian pyramids than on Gaussian ones.
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Pyramid example

Directional pyramids

A variant of the pyramidal schemes are the directio-pyramidal
decomposition:

» Instead of isotropic filters, a pool of directional filters are used
for subsampling.

X

» For example,
separable filters
for horizontal and
vertical directions
can be used.

» More complex
filters pool design
is a difficult
problem.
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Scale spaces

» Pyramidal representation allows for a very rigid multiscale
processing.

» The scale parameter can vary only of a factor of two between
each level.
» Scale space scheme allows a continuous changing of the scale
parameter.

» The scale space is generated by blurring the image at a given
degree.
» This can be modelled as a diffusion process (such as heat).

» Spatial concentration differences in the gray level are equalized.
» The scale is modelled as the time and the diffusion process
produces the scale space.

» It can be shown that for an homogeneous diffusion process,
the version of the image f at the scale t, f;, can be computed
as the convolution of f with a Gaussian of variance t.

Scale spaces (2)
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Scale spaces (3)

a fo=f
b f

C fa

d fie

Scale spaces (1)

A scale space filter must ensure two important properties to the
generated scale space.
1. No new details have to be added as the scale parameter
increases.

» The image information content must decrease with the scale
parameter.
» It can be formalized with the maximum-minimum principle:

> local extrema cannot be enhanced.
2. The scale space does not depend on the scale parameter from
which the diffusion starts.

» Scale invariance principle.

» Starting with an image at the scale t; and applying the
smoothing operator at scale tp, the image at scale t; + t5 is
obtained.

Gaussian kernel is the only convolution kernel isotropic and
homogeneous that meet these two properties.
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Scale spaces (5)

a Gaussian diffusion b Box diffusion

» In b, nor maximum-minimum principle, neither scale invariance
(structures that disappear and appear again later) hold.

» In a, the smoothing progress as the square of the time: the
time needed to blur a detail is proportional to the square of its
size.

» A non linear scale coordinate is produced.

Scale spaces (6)

Several variants stem from these schema.

» Quadratic and exponential increasing scale parameter;
» accelerated diffusion process.

» Differential (Laplacian) scale spaces;
» the change of the image with the scale is explicited.

» Discrete scale spaces;
» the diffusion process is discretized.
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Subband coding

» Subband coding operates on the frequency domain.
» The image is decomposed in bandlimited components, called
subbands.

» The decomposition is invertible:
» from the subbands, the original image can be recovered.

» The decomposition is realized by means of FIR digital filters.
» FIR stands for Finite Impulse Response.

Digital filtering

» Digital filtering is formalized by the convolution of the input
signal, f(-), composed of discrete samples, with the filter, h(-)
composed of a finite number, K, of samples:

fF(ny= > h(k)*f(n— k)

k=—o00
where filter values out of [0, K — 1] are zero.
» When the impulse is input, the filter coefficients are output:

o

h(n)= > h(k)*5(n— k)

k=—o00
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Subband coding and decoding
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» Each module (coding/decoding) is composed of a filter banks,
each containing two filters.

» In a filter banks, the signal is passed through all the filters.

» | 2 is the downsampling operator, which discard the odd index
samples;

» 12 is the upsampling operator, which insert a 0 valued sample
after each sample.

Subband coding and decoding (2)

» The analysis filter bank decomposes the input sequence f(n)
in two (half length) subsequences, f; and f,.
» The filter hg is a lowpass filter, while hy is a highpass filter: f;

and f, have a content in different frequency interval: the
subbands.

> fi is called an approximation of f.
» f, is the detail of f.
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Subband coding and decoding (3)

» The synthesis filter bank recombines the subband
subsequences, fi and f,, to produce the sequence f.

» The two sequences, fi and f,, are upsampled and filtered
through the filters g and gy respectively, and then summed.

» If hg, h1, go, and gy are such that F=", they are called
perfect reconstruction filters.

Filter design

» In order to achieve the perfect reconstruction filters, the filters
must be related in two ways:

go(n) = (=1)"m(n) or  go(n) (=1)" ha(n)
gi(n) = (=1)""ho(n) gi(n) = (=1)"ho(n)

» The filters are cross modulated
> goﬁhlandngho

» and are biorthogonal:

(hi(2n — k), gi(k)) = 6(i —=j)o(n), i, j={0,1}
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Filter design (2)

» If they enjoy the following property:

(gi(n), gi(n+2m)) =46(i —j)o(n), i, j={0, 1}

the filter banks are orthonormal.

» Orthonormal filters, for even K, satisfy:

gi(n) = (=1)"go(K —1—n)
hi(n) = gi(K—1—n), i=A0, 1}

» Orthonormal filter banks are defined from only one of its
filters (prototype).

Image subband coding

» 1D orthogonal and biorthogonal filter banks can be used also
for image (2D) processing.

» Considering 1D filtering as a separable transform, rows and
columns can be processed in sequence.
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Image subband coding (2)

» The schema can
be iteratively used
for obtaining a
multiresolution
representation.

Wavelets definition

» The wavelets, v, p(-), are scaled and translated copies of the
same function, ¥:

UJa,b(X):\/%tD(X;b) a,bcR, a>0

» The function (-) that generates the wavelet is called mother
wavelet.

» The parameter a is the scale parameter.

» It describes the length of space window embraced by 9, .
» The parameter b is the shift parameter.

» It describes the position of the window along the space-line.
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Continuous Wavelet Transform
» The Continuous Wavelet Transform (CWT) is defined as:
W(a,b) = (f,vap) = f f(x) (x) dx

— ﬁ_{o f(X)w* (x;

)dx

» The amplitude of W(a, b) measures the similarity between f
and ¢a,b-
» In this sense, the CWT analyzes f(-).

Space-frequency window

> The Fourier transform of ), p(x) is

a

F() = tap(v) = e Py (av)

El

» 1, p(+) embraces large intervals for small values of a, short
intervals for large values of a

» W(a, b) can be reframed as (Parseval):

21 W(a, b) = <?, zp>

» |t can be shown that CWT has:

» high frequency resolution and low space resolution for high
values of a

» low frequency resolution and high space resolution for small
values of a
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Space-frequency window (2)

» Hence:

> ais large = CWT gives fine information on the FT of x, but
poor localization in space;

» ais small = CWT gives very local information in space, but
very general in frequency.

» Very useful property for real cases:

» short events has only high frequency components;
» long events are characterized by low frequencies.

Invertibility

> Invertibility is a desirable property for a signal transform.

» |t can be shown that if

o |7 2
oo [T,

v

— 00
the CWT W(a, b) is invertible:

f(x) = Cia} /_ - /_ h W(a, b) ¥a 5(x) dazdb

» Hence, it is possible to reconstruct f(:) from the coefficients
of its CWT, W(a, b).

» This operation is often called synthesis.
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Why wavelets?

» From C; < oo, it can be derived that $(0) = 0.
» Hence, (-) must oscillate.
» It can be also shown that () € L?(R);

> fel?s||fll =4/ [ F2(x)dx < o0

» 1) have some limitations in space and frequency.

» The term wavelet (small wave) derives from these conditions;
» ondina in ltalian, ondelette in French.

Morlet wavelet

Morlet wavelet

FT Morlet wavelet
T T

251

15F

05F

The Morlet wavelet (a), and its Fourier transform (b).
It is a planar wave localized by a Gaussian.

X

Y(x) = e¥e i
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Haar wavelet

Haar wavelet FT Haar wavelet
038 ; :

0.71

0.6

0.5

0.4

0.3

The Haar wavelet (a), and its Fourier transform (b).

1 0<x<1/2
PY(x)=¢ -1 1/2<x<1
0 otherwise

Taany AM | MA
(b)

100

Shannon wavelet

Shannon wavelet FT Shannon wavelet
T T T

0.8

0.6

0.4

0.2

It is a family parametrized by v}, (bandwidth) and v (center
frequency).

P (x) = /vpsinc(vpx) p2uTvex

The Shannon (or sinc) wavelet (a), and its Fourier transform (b).

Stefano Ferrari— Multi-dimensional signal processing— a.a. 2014/15

20



Mexican hat wavelet

Mexican Hat wavelet FT Mexican Hat wavelet
T T

The Mexican hat wavelet (a), and its Fourier transform (b).
It is the (negative normalized) second derivative of the Gaussian.

2 X2 2
= — ]_ _ — 202
vi) V3o < 2) °

CWT examples

f(x)
T

The signal f(-) is a Morlet wavelet shrinked by a factor of 0.667,
multiplied by 5.
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CWT examples: Morlet wavelet

Morlet Wavelet Transform
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CWT examples: Shannon wavelet

Shannon Wavelet Transform
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Space-frequency locality

The quantities x, Ay, 7, A,

_ 1 /°° 2
X=rm—— [ x[{(x)[" dx
0P J oo
82 =y [ e X dx
[P OZ S oo
_ 1 /OO VN
U= [ (v)|* dv
W( [1B(@)I[2
A2 = | =Pl e
[1( V)||2
characterize the wavelet's distribution in the space and frequency

domains.

Space-frequency locality (2)

» In fact, 7 is the center of mass of the wavelet in the space
domain, and the energy of 9 is concentrated in a 2A long
neighborhood of x.

» Same considerations hold for 7 and A, with respect to .

> Applying the above defined quantities to 1), p, it can be shown
that 9, p is concentrated around b + ax with radius aA,,
while ’(Z is concentrated around % with radius %.

» Hence, the region

v—»A, v+A4,

[b+ ax — al\, b+ ax + alA,] x ,
a a

is where the wavelet 1), ;, lives in the space-frequency domain.
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Space-frequency locality (3)

» The region

v—A, 7+A
[b—|—a)_<—aAX,b+3)_(+an]X - 2 V7V+a -

is called the space-frequency window of the wavelet.

~

» Actually, as usually 7 = 0 and ¢(0) = 0, the wavelet is
localized in symmetric disjointed bands, such as

_&_ﬂ] [ﬂ&
[a’ aUa’a'

\4

The shape of the window, 2aA, x 2%, depends on a.

v

Its position in space depends also on b.

v

The window area is constant: 4AA, .

As it can be shown that |[)(x)]|? < 2||x ¥(x)|| ||v & (¥)||
(Heisenberg), the window size has a lower bound;

» although it can depend upon the actual wavelet.

v

Space-frequency locality (4)

» Since the coefficients of the CWT W(a, b) reflect the
similarity of the signal f and 1), p, they describe the behavior
of the signal in the wavelet window.

» For a > 1, the wavelet is dilated, and its frequency content
move toward lower frequencies.

» The opposite for a < 1 (the wavelet is shrinked).

» Hence, fast events can be captured by wavelets with a small
a:
» the window base is 2a/A, wide, good localization in space
» and long events can be described by wavelet with large a:
» the window height is %, good frequency resolution.
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Discrete representation of the CWT

» The CWT W(a, b) can be represented as an image /(/,):

,,,,,,,,,,,, anstom

> | represents a given scale, a(i);
> j represents a given position, b(j);

» the color in /(i,}) is proportional to
the value (modulus or phase) of the
R coefficient W (a(/), b(y)).

» This operation is a discretization of the CWT.
» The parameters a and b are discretized.
» It is not the Discrete Wavelet Transform.
» It is just a sampling of W(a, b).
» How choosing a(i) and b(j)?
» Do not loose critical information.
» Can the signal f(x) be obtained from the {W(a(i), b(j))}
sampling?

Dyadic sampling

» To be able to reconstruct a signal from its sampling, the
sampling frequency have to be at least double of the maximum
frequency component of the signal (Nyquist's theorem).

» The frequency content of X(a, b) diminishes when a increases.

» Hence, the sampling frequency can be different for different
scales.

» This allows to save computational resources.
» Usually, sampling on the dyadic grid-:
» logarithmic law for scales: a = 2, Jj € Z;
» translations proportional to scales: b = ka, k € 7Z;
» the logarithmic law allows to cover a wide range of scales with
a relatively small number of scales (and samples).
» In general, sparser the sampling, more restrictions on the
wavelet.
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Short-time Fourier Transform (STFT)

» The Short-time (or Short-term) Fourier Transform (STFT) is
defined as:

(0.]
STFT(f(x)) = W(r,v) = / f(x)w(x —71)e” " dx
—0o0
» It is the FT of a signal windowed by the function w(-), while
it slid along the space.
» The function w(-) can be a Gaussian with a given width, o.
» This is the case of the Gabor transform.
» The STFT realizes a space-frequency transform.
» How STFT compares with CWT?

Space-frequency coverage

» Sampling vs. FT space-frequency coverage:

sampling FT
> >
O O
c c
(] (]
> ]
oy oy
(O] (O]
&= &=
space space
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Space-frequency coverage (2)
» STFT space-frequency coverage:

freq freq

time time

» CWT space-frequency coverage:

Mathematical view of the signal transforms

> Signals can be seen as functions (real, complex).
» Usually a subset of the functions can be considered.
» E.g., the continuous function (up to the n-th order), C", or
the L? functions (finite energy).
» These sets are (infinite dimensional) vector spaces.
» The transform describes the signal as a linear combination of
other functions (the basis vectors).

» Hence, the transformed signal is constituted of the coefficients
of the linear combination.
» l.e., the “importance” of each basis function for describing the
signal.
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Mathematical view of the signal transforms (2)

» The basis functions declared in the transforms limit the subset
of the representable functions:
» the vector space generated by the basis;
» setting to zero some coefficients (e.g., for noise suppression)
means considering only a subset of the vector space.
» Some other issues:
» The decomposition always exists?
» Which properties must have the signal to be transformed?
» Is the decomposition unique?
> Different coefficients can reconstruct the same signal?

Inner product

» The inner product, (-,-), on the vector space V is a function
V x V — R such that, for each v;, v» € V and a € R:
» (vi,v1) >0, with (vi,v1) =0iif vy =0;
> (vi,v2) = (w2, v1);
» (avy, vo) = (vi,avs) = avy, va)

An inner product induces the norm, || - ||: ||vi|| = v/{v1, v1)

v

v

Two vectors v; and vy are orthogonal if (vi,vp) = 0.

v

A basis {vk | vk € V'} is orthogonal if the vectors are
orthogonal each others.

v

A basis {vk | vk € V'} is orthonormal if the vectors are
orthogonal each others and have a unitary norm:

e )L k=J
<Vk7Vj>_5k—J_{ O, k#_]
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Bases

> If {vk| vk € V} is an orthonormal basis, every vector v € V
can be expressed as:

v = Z(v, Vi) Vk
k

» Two bases {vi | vk € V} and {wy | wx € V} are biorthogonal

if:
1, k=

<Vk’Wf>:5k‘f:{ 0, k#j

In this case, the following relations hold:

Yv eV v:z<v, Wi ) Vi and v:Z(v, Vi) W
k k

Back to the functions

> The inner product of the functions f and g, f, g € L?(R) is:

(f.e) = | f)g"(x) o

» It represents the projection of a signal onto the other.

» Hence, the FT of a signal and its inverse can be seen as a
decomposition in terms of basis composed of sinusoidal and
cosinusoidal functions.

» Same apply for CWT and its inverse.
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