Histogram equalization

Stefano Ferrari

Università degli Studi di Milano stefano.ferrari@unimi.it

Elaborazione delle immagini (Image processing I)

academic year 2012-2013

Histogram

▶ The *histogram* of an *L*-valued image is a discrete function:

$$h(k) = n_k, \quad k \in [0, \ldots, L-1]$$

where n_k is the number of pixels with intensity k.

▶ Often it is preferable to consider the histogram normalized with respect to the number of pixels, $M \times N$:

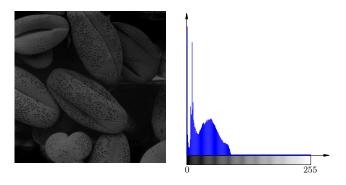
$$p(k) = \frac{n_k}{MN}$$

- ▶ *M* and *N* are the number of rows and columns of the image.
- ▶ The function p(k) estimates the probability density of k;
 - the sum $\sum_{k} p(k)$ is equal to 1.

Histogram based trasformations

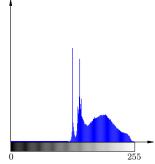
- ► The histogram provides an intuitive (visual) tool for evaluating some statistical properties of the image.
- ▶ Histogram based transformations are numerous:
 - enhancement,
 - compression,
 - segmentation;
- ▶ and can be easily implemented:
 - cheap;
 - dedicated hardware.

Dark image



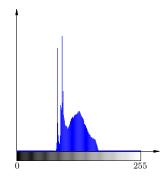
► The histogram components are localized to low intensity values.

Bright image



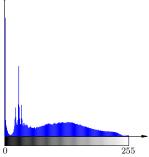
► The histogram components are localized to high intensity values.

Low contrast image



▶ The histogram components are localized in a narrow region of the intensity values.

High contrast image



- ► The histogram components are distributed over all the intensity range.
- ▶ The distribution is almost uniform, with few peaks.
- ▶ If the distribution is uniform, the image tends to have a high dynamic range and the details are more easily perceived.
- ► This is the effect pursued by the histogram based transformations.

Monotonic transformations

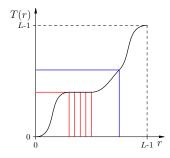
In order to study the histogram transformations, it is useful to consider the (continuous) monotonic transforms on $[0, L-1]^2$:

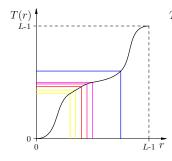
▶
$$T(r_2) \ge T(r_1), r_2 > r_1$$

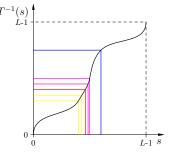
▶
$$0 \le T(r) \le L - 1$$
, $0 \le r \le L - 1$

▶ If T is strictly monotonically increasing, there is T^{-1} :

►
$$r = T^{-1}(s)$$
, $0 \le s \le L - 1$







Intensities as random variables

- ▶ The (continuous) intensities can be intended as random variables in [0, L-1].
- ▶ If s = T(r) and T(r) is continuous and differentiable:

$$p_s(s) = p_r(r) \left| \frac{dr}{ds} \right|$$

▶ In particular, the following transformation is interesting:

•
$$s = T(r) = (L-1) \int_0^r p_r(w) dw$$

► Then:

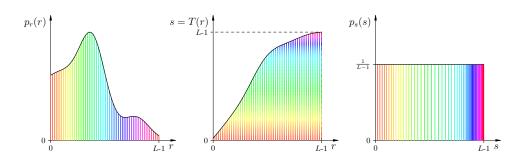
► Hence:

$$p_s(s) = p_r(r) \left| \frac{dr}{ds} \right| = p_r(r) \left| \frac{1}{(L-1)p_r(r)} \right|$$

$$= \frac{1}{L-1}, \qquad 0 \le s \le L-1$$

▶ That is: s is uniform, independently of p_r .

Equalization



- ▶ The equalization transformation, T(r), is steeper where r is more probable.
- ▶ It results in mapping intervals of r values with low probability into narrow intervals of s = T(r).
- ▶ On the contrary, intervals of *r* values with high probability are mapped into large intervals of *s*.

Equalization of a discrete random variable

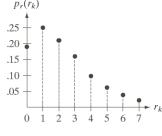
- ▶ r_k is the intensity level in $0, \ldots, L-1$
 - $p_r(r_k) = \frac{n_k}{MN}, \qquad k = 0, 1, ..., L-1$
- ▶ p_r can be equalized by assigning the intensity s_k to those pixels having intensity r_k :

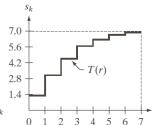
$$s_k = T(r_k) = (L-1) \sum_{j=0}^k p_r(r_j)$$

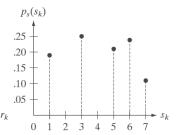
$$= \frac{L-1}{MN} \sum_{j=0}^k n_j, \qquad k = 0, 1, ..., L-1$$

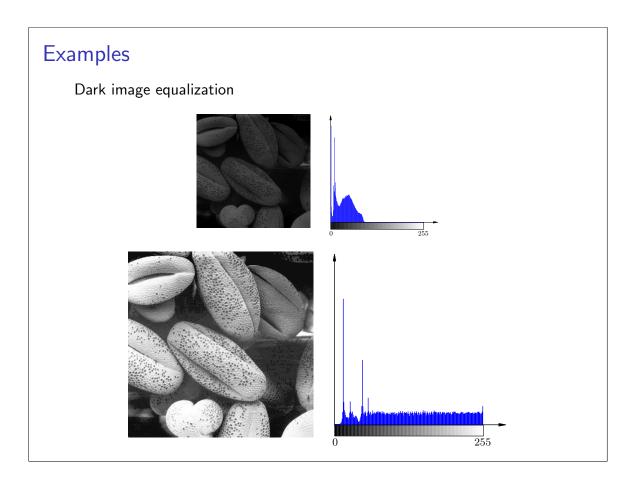
Equalization of a discrete random variable (2)

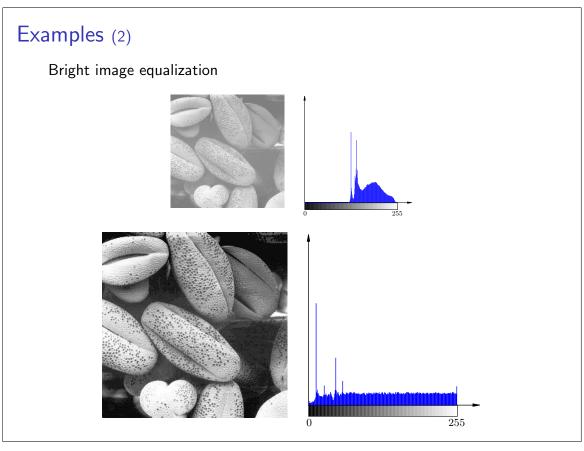
r_k	n_k	$p_r(r_k)$	$T(r_k)$	s_k	$p_s(s_k)$
$r_0 = 0$	790	0.19	1.33	1	0.19
$r_1 = 1$	1023	0.25	3.08	3	0.25
$r_2 = 2$	850	0.21	4.55	5	0.21
$r_3 = 3$	656	0.16	5.67	6	0.24
$r_4 = 4$	329	0.08	6.23	6	0.24
$r_5 = 5$	245	0.06	6.65	7	
$r_6 = 6$	122	0.03	6.86	7	0.11
$r_7 = 7$	81	0.02	7.00	7	

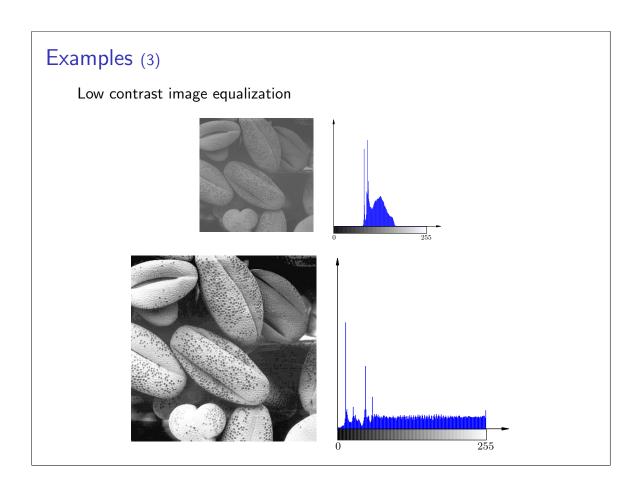


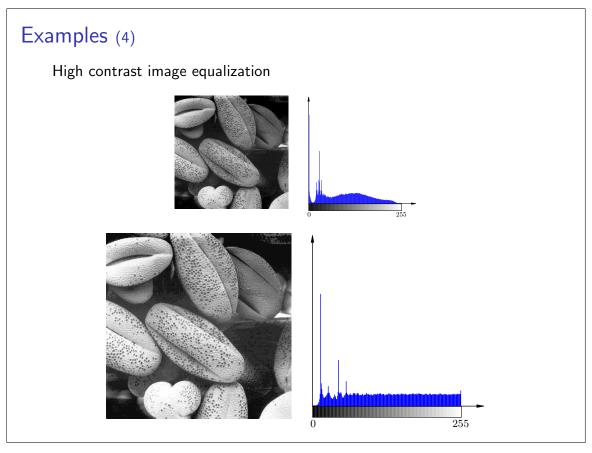




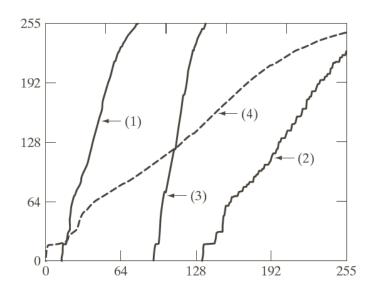








Examples (5)



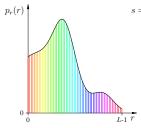
- ► The transformation of each image maps values from the range of the original images to the whole range of intensity levels.
- ▶ The transformation for (4) is close to the identity.

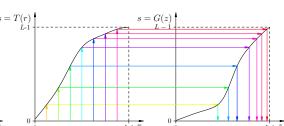
Histogram specification

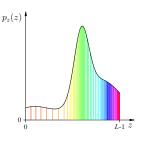
- ► The histogram equalization is a basic procedure that allow to obtain a processed image with a specified intensity distribution.
- ► Sometimes, the distribution of the intensities of a scene is known to be not uniform.
- ► The possibility of obtaining a processed image with a given distribution is appreciable:
 - Histogram matching
- ▶ The problem can be formalized as follows:
 - given an input image, whose pixels are distributed with probability density p_r ,
 - given the desired intensity distribution, p_z ,
 - find the transformation F, such that z = F(r).

Histogram specification (2)

- Let s be a random variable such that:
 - $s = T(r) = (L-1) \int_0^r p_r(w) dw$
 - \triangleright p_s is uniform
- ▶ Define a random variable z that satisfies:
 - $G(z) = (L-1) \int_0^z p_z(t) dt = s$ $p_s \text{ is uniform}$
- ▶ Hence: G(z) = s = T(r)
- ▶ The desired mapping F, such that z = F(r) can be obtained
 - $z = G^{-1}(T(r))$, i.e., $F = T \circ G^{-1}$



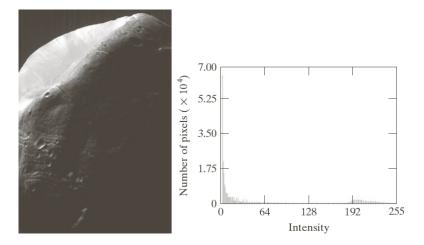




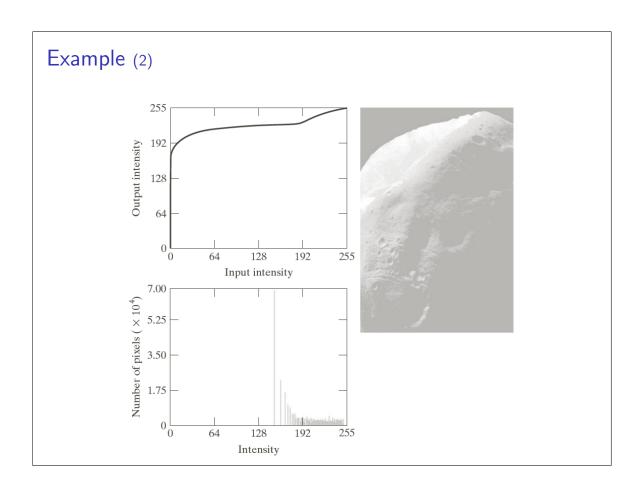
Histogram specification (3)

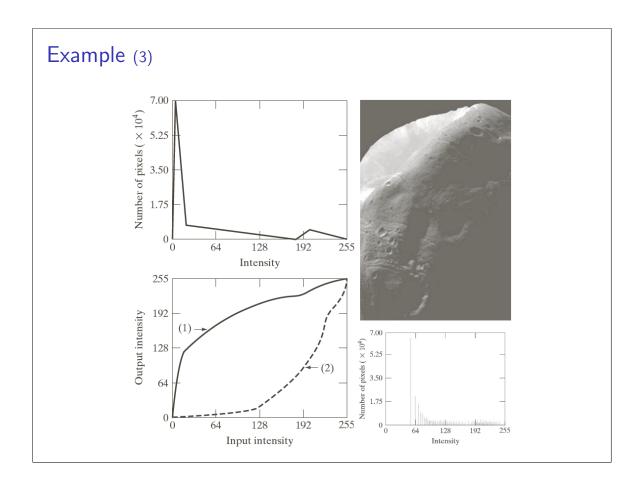
- \triangleright When discrete random variables are considered, p_z can be specified by its histogram.
- ▶ The histogram matching procedure can be realized:
 - 1. obtain p_r from the input image;
 - 2. obtain the mapping T using the equalization relation;
 - 3. obtain the mapping G from the specified p_z ;
 - 4. build F by scanning T and finding the matching value in G;
 - 5. apply the transformation F to the original image.
- ▶ In order to be invertible, G has to be strictly monotonic.
- ▶ In pratical cases, this property is rarely satisfied.
- Some approximations should be allowed
 - e.g., the first matching value can be accepted.

Example



▶ Large concentration of pixels in the dark region of the histogram.





Local histogram processing

- ▶ Histogram equalization is a global approach.
- ▶ Local histogram equalization is realized selecting, for each pixel, a suitable neighborhood on which the histogram equalization (or matching) is computed.
 - ► More computational intensive, but neighboring pixels shares most of their neighborhoods.
- ▶ Non overlapping regions may produce "blocky" effect.

Example

- b c
- (a) original image
- (b) equalized image
- (c) locally equalized image (3×3 neighborhood)

Histogram statistics

Some statistical indices can be easily computed from the histogram:

► Mean (average):

Variance:

$$\sigma^2 = \sum_{i=0}^{L-1} (r_i - m)^2 p(r_i)$$
Standard deviation: $\sigma = \sqrt{\sigma^2}$

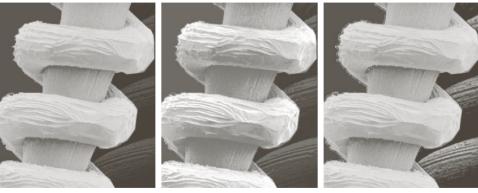
▶ *n*-th moment:

$$\mu_n = \sum_{i=0}^{L-1} (r_i - m)^n p(r_i)$$

Local statistical indices can be computed by bounding the histogram to a given neighborhood, S_{xy} :

$$\blacktriangleright m_{S_{xy}} = \sum_{i=0}^{L-1} r_i p_{S_{xy}}(r_i)$$

Example



- a b c
- (a) original image
- (b) equalized image
- (c) local statistics enhanced image (3×3 neighborhood)

Example (2)

- Only dark regions need to be enhanced
 - $ightharpoonup m_{S_{xy}} \leq k_0 m_G$
- ▶ Uniform regions have to be preserved
 - $\quad \sigma_{S_{xy}} \geq k_1 \sigma_G$
- ▶ Low contrasted regions have to be enhanced
 - $\sigma_{S_{xv}} \leq k_2 \sigma_G$

$$g(x,y) = \left\{ egin{aligned} E \cdot f(x,y) & & ext{if } m_{\mathcal{S}_{xy}} \leq k_0 m_G \\ & & ext{AND } k_1 \sigma_G \leq \sigma_{\mathcal{S}_{xy}} \leq k_2 \sigma_G \\ f(x,y) & & ext{otherwise} \end{aligned}
ight.$$

$$E = 4$$
, $k_0 = 0.4$, $k_1 = 0.02$, $k_2 = 0.4$.

Homeworks and suggested readings

DIP, Sections 3.2, 3.3

▶ pp. 120–143

GIMP

- ► Colors
 - ► Info
 - Histogram
 - Auto
 - Equalize

http://www.imageprocessingbasics.com/image-histogram-equalization/