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Sharpening

» The term sharpening is referred to the techniques suited for
enhancing the intensity transitions.

» In images, the borders between objects are perceived because
of the intensity change: more crisp the intensity transitions,
more sharp the image.

» The intensity transitions between adjacent pixels are related
to the derivatives of the image.

» Hence, operators (possibly expressed as linear filters) able to
compute the derivatives of a digital image are very interesting.
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First derivative of an image

» Since the image is a discrete function, the traditional
definition of derivative cannot be applied.
» Hence, a suitable operator have to be defined such that it
satisfies the main properties of the first derivative:
1. it is equal to zero in the regions where the intensity is constant;
2. it is different from zero for an intensity transition;
3. it is constant on ramps where the intensity transition is
constant.
» The natural derivative operator is the difference between the
intensity of neighboring pixels (spatial differentiation).

» For simplicity, the monodimensional case can be considered:

of
Ox

» Since % is defined using the next pixel:
> it cannot be computed for the last pixel of each row (and
column);
» it is different from zero in the pixel before a step.

=f(x+1)—f(x)

Second derivative of an image

» Similarly, the second derivative operator can be defined as:

o*f
0x?

f(x+1)—f(x)—(f(x) — f(x—1))
f(x+1)—2f(x)+ f(x—1)

» This operator satisfies the following properties:

1. it is equal to zero where the intensity is constant;

2. it is different from zero at the begin of a step (or a ramp) of
the intensity;

3. it is equal to zero on the constant slope ramps.

» Since % is defined using the previous and the next pixels:

» it cannot be computed with respect to the first and the last
pixels of each row (and column);

» it is different from zero in the pixel that precedes and in the

one that follows a step.
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Derivatives of an image: an example
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» Usually the sharpening filters make use of the second order
operators.
» A second order operator is more sensitive to intensity
variations than a first order operator.
» Besides, partial derivatives has to be considered for images.
» The derivative in a point depends on the direction along which
it is computed.
» Operators that are invariant to rotation are called isotropic.
» Rotate and differentiate (or filtering) has the same effects of
differentiate and rotate.
» The Laplacian is the simpler isotropic derivative operator (wrt.
the principal directions):
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Laplacian filter

» In a digital image, the second derivatives wrt. x and y are
computed as:

P ft 1 y) = 2f(x y) + F(x— 1. y)
52 = [x+ly X,y x—1,y
0*f

8y2 = f(Xay+1)_2f(X7y)+f(X7.y_1)

» Hence, the Laplacian results:

Vf(x,y) = f(x+1,y)+f(x—1,y)+f(x,y+1)
+f(X7 y—].)—4f(X, .y)

» Also the derivatives along to the diagonals can be considered:

V3f(x,y) + f(x—1,y—1)+f(x+1,y+1)
+ fx—Ly+1)+f(x+1,y—1)—4f(x, y)

Laplacian filter (2)

1 —4 1 Laplacian filter invariant to 90° rotations

1 -8 1 Laplacian filter invariant to 45° rotations
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Laplacian filter: example

» The Laplacian has often negative values.

» In order to be visualized, it must be properly scaled to the
representation interval [0, ..., L —1].

(b) (c)
(a) Original image, (b) its Laplacian, (c) its Laplacian scaled such
that zero is displayed as the intermediate gray level.

Laplacian filter: example (2)
» The Laplacian is positive at the onset of a step and negative
at the end.

» Subtracting the Laplacian (or a fraction of it) from the image,
the height of the step is increased.

()

(a) Original image, (b) Laplacian filtered, (c) Laplacian with
diagonals filtered.
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Unsharp masking

» [t consists of:

1. defocusing the original image;

2. obtaining the mask as the difference between the original
image and its defocused copy;

3. adding the mask to the original image.

» The process can be formalized as:

g=f+k-(f—"fxh)

» The technique known as unsharp masking is a method of
common use in graphics for making the images sharper.

where f is the original image, h is the smoothing filter and k
is a constant for tuning the mask contribution.

» If k > 1, the process is called highboost filtering.

Unsharp masking (2)

Original signal

Blurred signal
s

Unsharp mask
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Gradient

» The gradient of a function is the vector formed by its partial
derivatives.

» For a bidimensional function, f(x, y):

of
Ex oOx
Vi =grad(f) = =
[gy] g
dy

» The gradient vector points toward the direction of maximum
variation.

» The gradient magnitude, M(x, y) is:

M(x, y) = mag(Vf) = \/g? + g

» It is also called gradient image.
» Often approximated as M(x, y) ~ |g«| + |gy /.

Derivative operators

» Basic definitions:
gx(x, y) = f(x+1,y)—f(x, y)

gy(Xa y) = f(X7 y+1)_ f(X7 _)/)

-1

| -1|1 8y:

1

» Roberts operators:
gx(x, y) =f(x+1,y+1) = f(x, y)

g}/(X)y):f(X7y+1)_f(X_1’y)

-110 0 -1
8x- 8y-
011 1|0
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Derivative operators (2)

» Sobel operators:

gx(x,y)=—f(x—-1,y —1)=2f(x -1, y)
—f(x—1,y+1)+f(x+1,y—-1)
+2f(x+1,y)+f(x+1,y+1)

g(x,y)=—f(x—1,y—1)—2f(x, y — 1)
—f(x+1,y—-1)+f(x—1,y+1)
+2f(x, y+1)+f(x+1,y+1)

-11-2)-1 -110 1
&1 0|1 0|0 g:-|-2|0|2
1121 -110 1

Example of gradient based application

P b

i |
» The Sobel filtering reduces the visibility of those regions in
which the intensity changes slowly, allowing to highlight the

defects (and making defects detection easier for automatic
processing).
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Combined methods

» Often, a single technique is not sufficient for obtaining the
desired results.

» For example, the image (a) is affected by noise and has a
narrow dynamic range.

» Laplacian filtering (b)
enhance the details,
but also the noise.

8 » The gradient is less
sensitive to the noise
than the Laplacian
(which is a second
order operator).

Combined methods (2)

» The gradient, smoothed in order to avoid the noise, can be
used for weighting the contribution of the Laplacian.

» The image (c), the Sobel filtering gradient smoothed using a
5 x b5 averaging filter is reported.

» This mask multiplied
by the Laplacian
results in the image in
(d).

» The intensity changes
are preserved, while
the noise has been
attenuated.
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Combined methods (3)

» The image (d) can be added to the original image, which
results in the image (e).

» The dynamical range can be enlarged applying a power
transformation (e).

» The intensity
transformation make
the noise more visible,
but also enhance
other details, such as
the tissues around the
skeleton.

Bilateral Filtering *

Giving f an image, g is the image after bilateral filtering:
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where W, is the normalization factor:

Wy = 3 erp (ALY op (UMD~ TOIEY

qeN, !

and N, is a suitable neighborhood of p.

» What is the effect produced by the filter?

» Notes:
» when o; grows, the filter tends to an averaging filter;
» the filter is not linear.
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Bilateral Filtering *

@ (b)

(a) original image (100 x 100, 256 gray levels)
(b) after filtering with Gaussian filter (7 x 7, 05 = 3)
(c) after filtering with bilateral filter (7 x 7, 05 = 3, 0; = 50)

Bilateral Filtering *
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(a)

(b)

(a) Original image (107 x 90, 256 gray levels)
(b) after filtering with Gaussian filter (7 x 7, 05 = 3)
(c) after filtering with bilateral filter (7 x 7, 05 = 3, 0; = 30)
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