

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI INFORMATICA

Machine Learning in Biometrics

Deep Learning in Biometrics

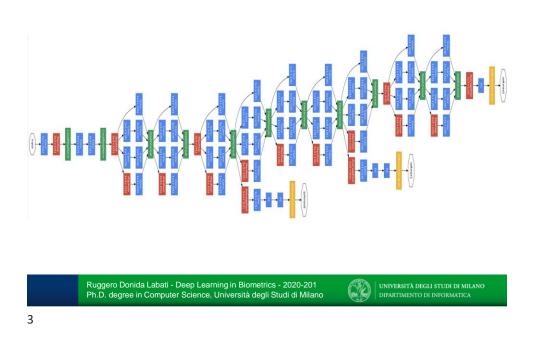
Ruggero Donida Labati

Academic year 2020/2021

Content

- 1. Convolutional neural networks
- 2. Training CNNs
- 3. Greedy layer-wise training
- 4. Software for deep learning
- 5. Design of biometric systems
- 6. Biometric applications
 - 1) Face
 - 2) Fingerprint
 - 3) Iris
 - 4) Other biometric traits
 - 5) Other applications
- 7. Summary

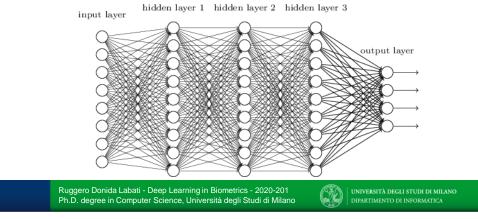
1



1. Convolutional Neural Networks

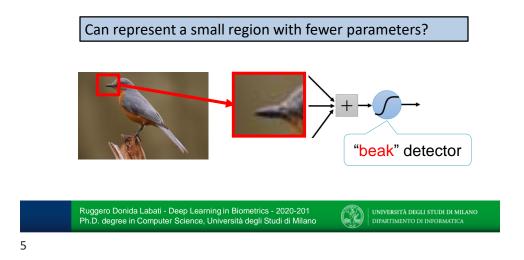
Starting from Feedforward Neural Networks

- We know it is good to learn a small model
- From this fully connected model, do we really need all the edges?
- Can some of these be shared?



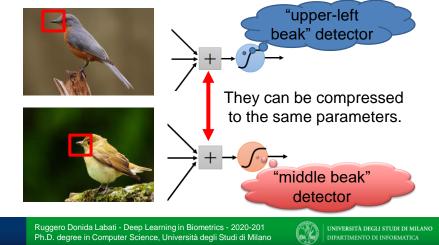
Learning from an Image

• Some patterns are much smaller than the whole image



Same Pattern Appears in Different Places

 What about training a lot of such "small" detectors and each detector must "move around"?

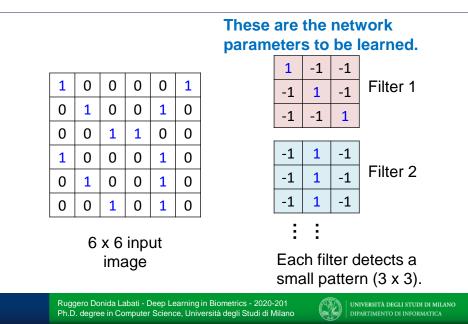


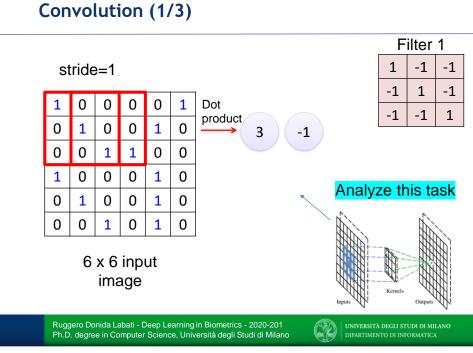
A Convolutional Layer

- A CNN is a neural network with some convolutional layers (and some other layers)
- A convolutional layer has a number of filters that does convolutional operation



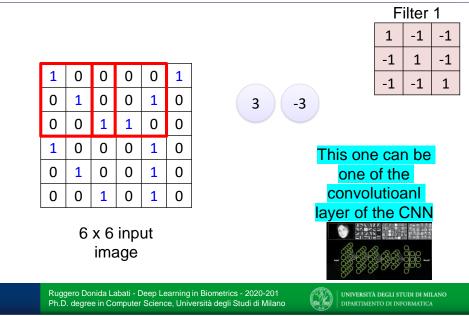
Convolutional Kernels



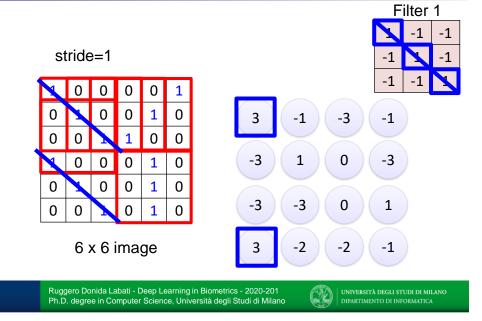


9

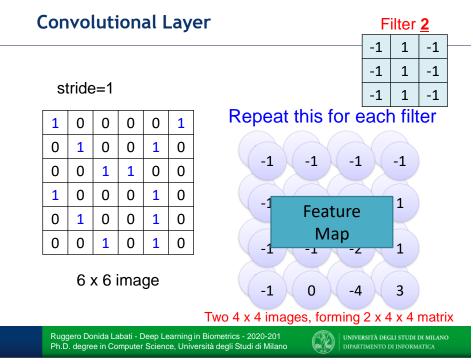
Convolution (2/3)

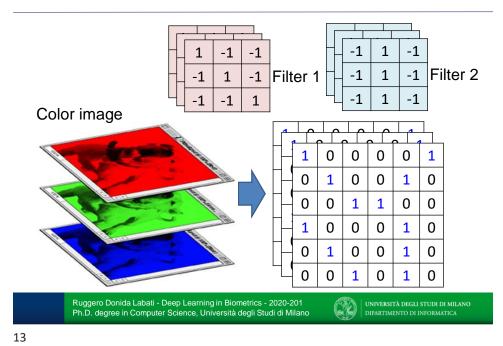


Convolution (3/3)



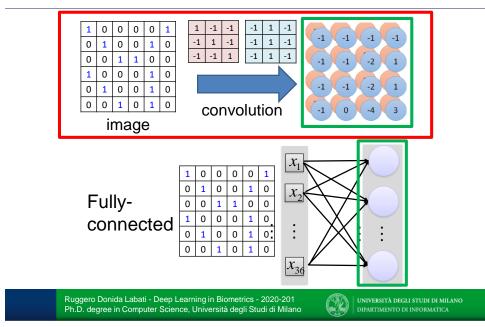
11

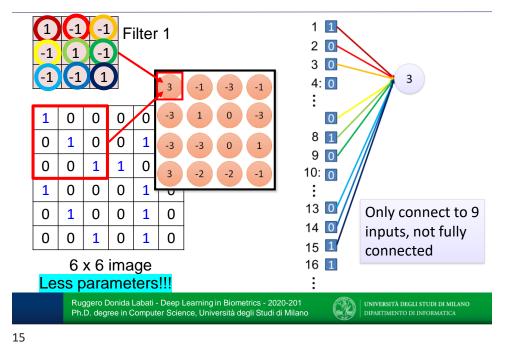




Color Images: 3 RGB Channels

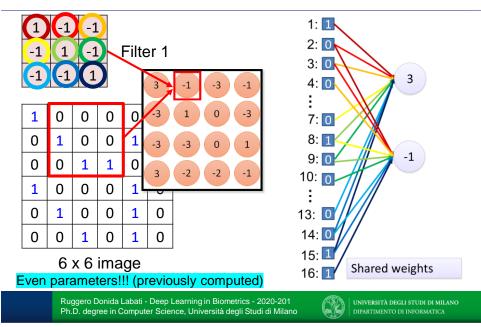
Convolution v.s. Fully Connected (1st Layer)





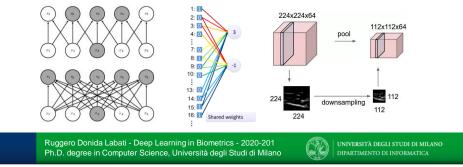
Convolution v.s. Fully Connected (1/3)

Convolution v.s. Fully Connected (2/3)



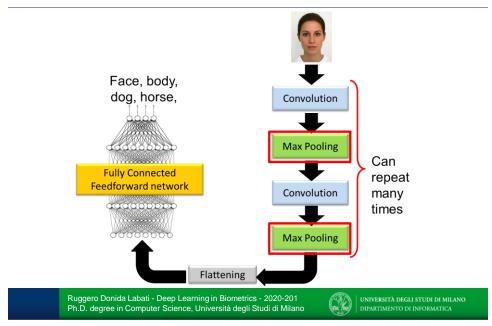
Convolution v.s. Fully Connected (3/3)

- CNNs and fully connected networks can be used to solve the same problems
- CNNs reduce the number of connections
- CNNs can share the previous computations between the neurons
- CNNs can use pooling operations to reduce the computational complexity



17

CNN Architecture



Why Pooling?

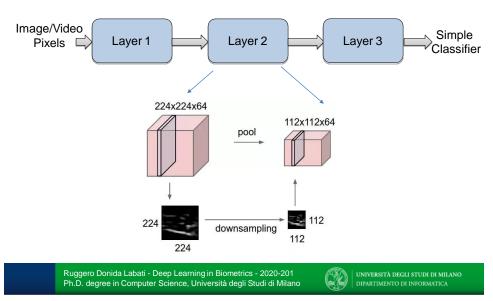
 Subsampling pixels will not change the object bird

We can subsample the pixels to make image smaller

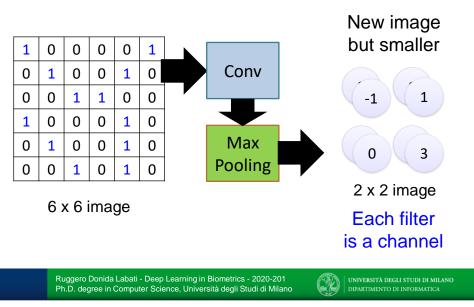
>fewer parameters to characterize the image

	Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano	UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI INFORMATICA
19		

Pooling



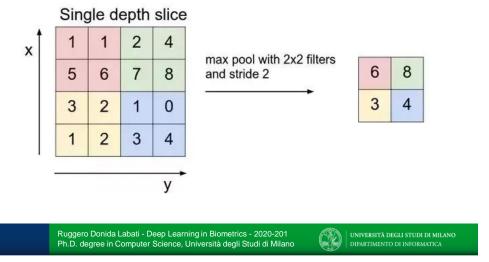
Max Pooling



21

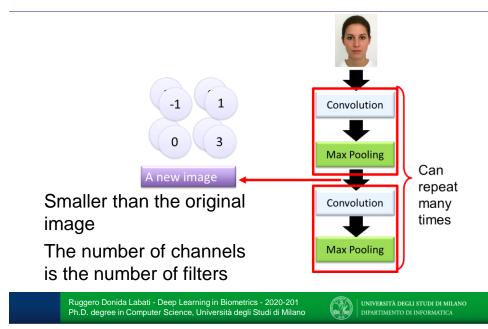
Sub-sampling (Pooling) 224x224x64 112x112x64 Sub-sampling (Pooling) allows number of features 112 224 downsampling to be diminished, non-overlapped -Reduces spatial resolution and thus naturally decreases importance of exactly where a feature was found, just keeping the rough location -Averaging or Max-Pooling • 2x2 pooling would do 4:1 compression, 3x3 9:1, etc. -Pooling smooths the data and makes the data invariant to small translational changes -Since after first layer, there are always multiple feature maps to connect to the next layer, it is a premade human decision as to which previous maps the current map receives inputs from Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 UNIVERSITÀ DEGLI STUDI DI MILANO Ph.D. degree in Computer Science, Università degli Studi di Milano

Max Pooling: Example

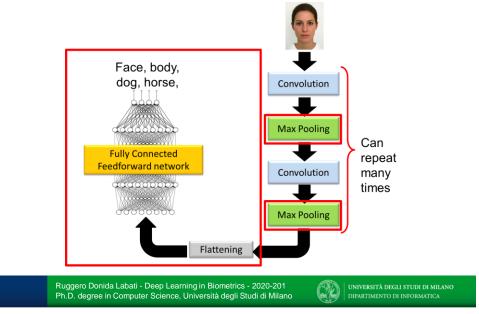


23

The Whole CNN (1/2)

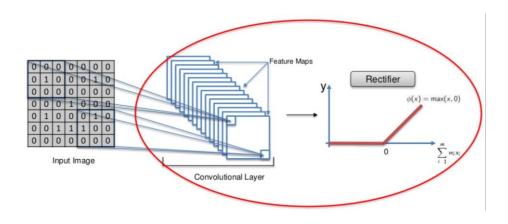


The Whole CNN (2/2)

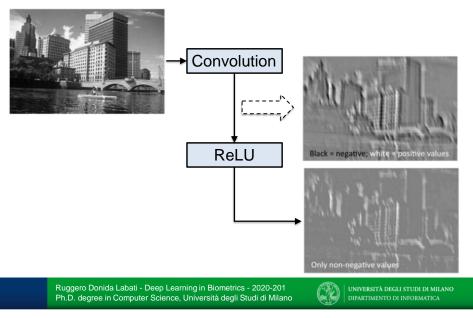


25

Optional Step: Rectified Linear Units (ReLU)

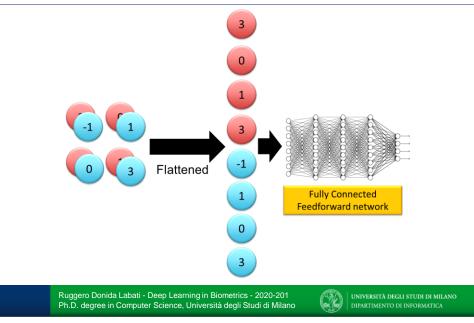


ReLU: Example

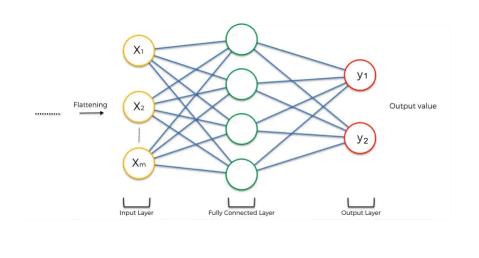


27

Flattening



Fully Connected Layers (1/2)



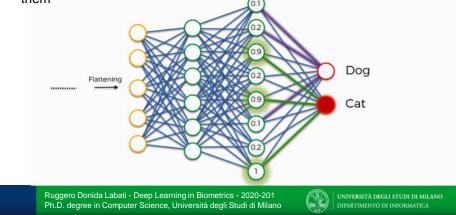
Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 <u>Ph.D. degree in Co</u>mputer Science, Università degli Studi di Milano

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI INFORMATICA

29

Fully Connected Layers (2/2)

- · The neuron in the fully-connected layer detects a certain feature
- · It preserves its value
- It communicates this value to both the "dog" and the "cat" classes
- Both classes check out the feature and decide whether it's relevant to them



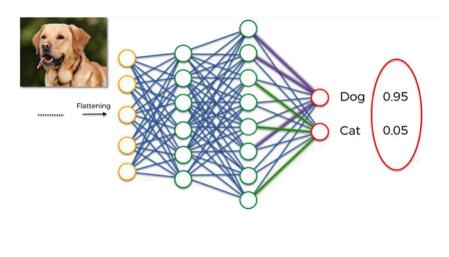
Loss Function

- The loss function informs us of how accurate our network is, which we then use in optimizing our network in order to increase its effectiveness
- In the context of artificial neural networks, we call this calculation a "cost function" or a mean squared error
- · Some frequently used loss functions:
 - mean squared error
 - cross-entropy function

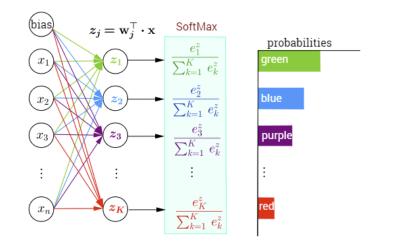
Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano

31

Softmax and Cross-Entropy



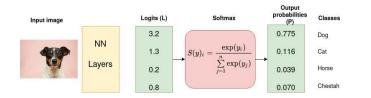
Softmax



Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano

33

Cross-Entropy



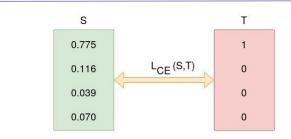
- The purpose of the Cross-Entropy is to take the output probabilities (P) and measure the distance from the truth values
- · Cross-Entropy is defined as

$$L_{\rm CE} = -\sum_{i=1}^{n} t_i \log(p_i)$$
, for n classes,

where t_i is the truth label and p_i is the Softmax probability for the i^{th} class.



Cross-Entropy: Example



The categorical cross-entropy is computed as follows

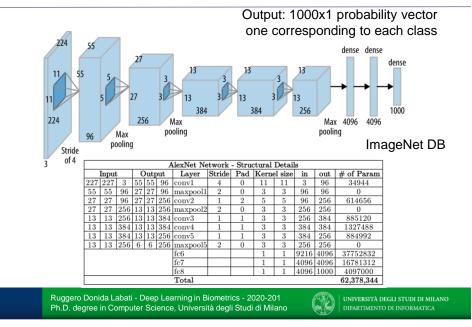
$$\begin{split} L_{CE} &= -\sum_{i=1} T_i \log(S_i) \\ &= -\left[1 \log_2(0.775) + 0 \log_2(0.126) + 0 \log_2(0.039) + 0 \log_2(0.070)\right] \\ &= -\log_2(0.775) \\ &= 0.3677 \end{split}$$
Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201
Ph.D. degree in Computer Science, Università degli Studi di Milano

35

Why use the Cross-Entropy Function Rather Than the Mean Squared Error?

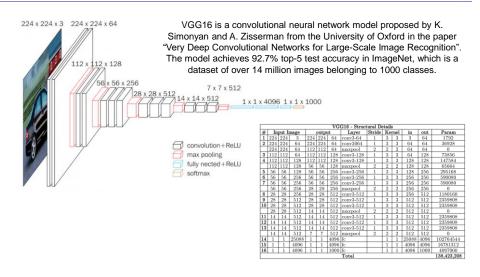
- At the beginning of the backpropagation process, the output value is usually minimal and gradient is also usually very low, making it difficult for the neural network to actually utilize the data it has in adjusting the weights and optimizing itself
- The cross-entropy function, through its logarithm, allows the network to better asses such small errors and work to eliminate them
- The cross-entropy function is only that useful with convolutional neural networks, most particularly for purposes of **classification**
- For regression problems, the mean squared error becomes more preferable

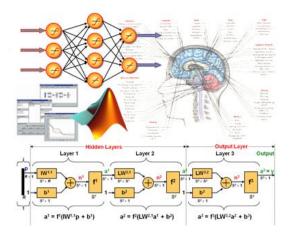
Alexnet



37

VGG-16 (Classification and Detection)





2. Training CNNs

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano

39

Training

- Back-propagation
 - Sparse Connections of CNNs decrease the complexity of Back-Propagation
 - ReLU activation function relieves the vanishing gradient problem
- Stochastic Gradient Descent

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano

Loss Minimization Problem

Loss minimization problem:

$$\min_{W} \left\{ L(W) := \frac{1}{m} \sum_{i=1}^{m} \ell(W; x_i, y_i) + \lambda r(W) \right\}$$

- $\{(x_i, y_i)\}_{i=1}^m$ training instances (x_i) and corresponding labels (y_i)
- W network parameters to learn
- $\ell(W; x_i, y_i)$ loss of network parameterized by W w.r.t. (x_i, y_i)
- r(W) regularization function (e.g. $||W||_2^2$)
- $\lambda > 0$ regularization weight

Slide credit from Nadav Cohen, "Adam: A Method for Stochastic Optimization"				
	Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano		UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI INFORMATICA	

41

Large-Scale Setting

- Many network parameters (e.g. dim(W) ~ 10⁸)
 ⇒ computing Hessian (second order derivatives) is expensive
- Many training examples (e.g. m ∼ 10⁶)
 ⇒ computing full objective at every iteration is expensive

Optimization Methods Requirements

- First-order update based on objective value and gradient only
- Stochastic update based on subset of training examples:

$$L_t(W) := \frac{1}{b} \sum_{j=1}^b \ell(W; x_{i_j}, y_{i_j}) + \lambda r(W)$$

 $\{(x_{i_i}, y_{i_i})\}_{i=1}^b$ - random *mini-batch* chosen at iteration t

Slide credit from Nadav Cohen, "Adam: A Method for Stochastic Optimization"

43

Stochastic Gradient Descent (SGD)

Update rule:

$$V_t = \mu V_{t-1} - \alpha \nabla L_t (W_{t-1})$$

$$W_t = W_{t-1} + V_t$$

- $\alpha > 0$ *learning rate* (typical choices: 0.01, 0.1)
- $\mu \in [0, 1)$ momentum (typical choices: 0.9, 0.95, 0.99)

Momentum smooths updates, enhancing stability and speed.

Variants to the Basic SGD

- Nestrov's Accelerated Gradient
- Adaptive Gradient (AdaGrad)
- Root Mean Square Propagation (RMSProp)
- Adaptive Moment Estimation (Adam)

Slide credit from Nadav Cohen, "Adam: A Method for Stochastic Optimization"

45

ADAM

Motivation

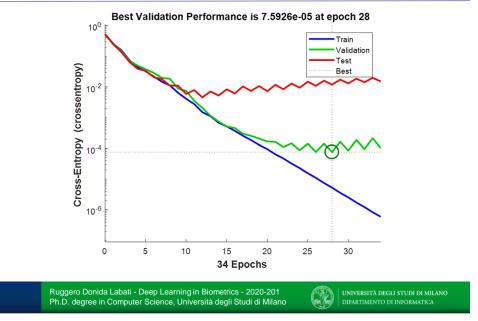
Combine the advantages of:

- AdaGrad works well with sparse gradients
- RMSProp works well in non-stationary settings

Idea

- Maintain exponential moving averages of gradient and its square
- Update proportional to $\frac{\text{average gradient}}{\sqrt{\text{average squared gradient}}}$

How to Train a CNN?



47

3. Greedy Layer-wise Training



Problems in Training Deep Neural Networks (1/2)

Difficulties of supervised training of deep networks

 Early layers of MLP do not get trained well

Diffusion of Gradient – error attenuates as it propagates to earlier layers

-Leads to very slow training

-Exacerbated since top couple layers can usually learn any task "pretty well" and thus the error to earlier layers drops quickly as the top layers "mostly" solve the task– lower layers never get the opportunity to use their capacity to improve results, they just do a random feature map

-Need a way for early layers to do effective work

Instability of gradient in deep networks: Vanishing or exploding gradient

- Product of many terms, which unless "balanced" just right, is unstable
- Either early or late layers stuck while "opposite" layers are learning

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201	UNIVERSITÀ DEGLI STUDI DI MILANO
Ph.D. degree in Computer Science, Università degli Studi di Milano	DIPARTIMENTO DI INFORMATICA

49

Problems in Training Deep Neural Networks (2/2)

 Often not enough labeled data available while there may be lots of unlabeled data

-Can we use unsupervised/semi-supervised approaches to take advantage of the unlabeled data

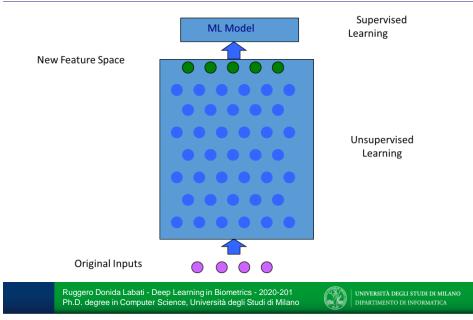
 Deep networks tend to have more sensitive training issues problems than shallow networks during supervised training

Greedy Layer-wise Training

- One answer is greedy layer-wise training
 - 1. Train first layer using your data without the labels (unsupervised)
 - 2. Then freeze the first layer parameters and start training the second layer using the output of the first layer as the unsupervised input to the second layer
 - 3. Repeat this for as many layers as desired
 - Use the outputs of the final layer as inputs to a supervised layer/model and train the last supervised layer(s) (leave early weights frozen)
 - 5. Unfreeze all weights and fine tune the full network by training with a supervised approach, given the *pre-training* weight settings

51

Deep Net with Greedy Layer-wise Training



Greedy Layer-wise Training

Greedy layer-wise training avoids many of the problems of trying to train a deep net in a supervised fashion

 Each layer gets full learning focus in its turn since it is the only current "top" layer
 Can take advantage of unlabeled data
 When you finally tune the entire network with supervised training the network weights have already been adjusted so that you are in a good error basin and just need fine tuning. This helps with problems of

 Ineffective early layer learning
 Deep network local minima

Unsupervised Learning (1/2)

- Model distribution of input data
- Can use unlabeled data (unlimited)
- Can be refined with standard supervised techniques (e.g. backprop)
- Useful when the amount of labels is small

Unsupervised Learning (2/2)

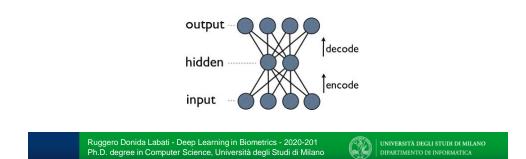
- · Main idea: model distribution of input data
 - Reconstruction error + regularizer (sparsity, denoising, etc.)
 - Log-likelihood of data
- Models
 - Basic: PCA, KMeans
 - Denoising autoencoders
 - Sparse autoencoders
 - Restricted Boltzmann machines
 - Sparse coding
 - Independent Component Analysis
 - ...

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano	UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI INFORMATICA	

55

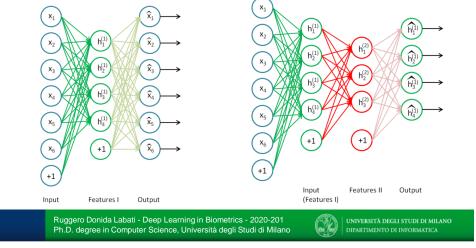
Autoencoders

- Try to discover generic features of the data
 - Learn identity function by learning important subfeatures (not by just passing through data)
 - Compression, etc.
 - Can use just new features in the new training set or concatenate both



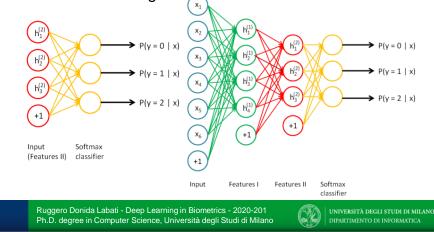
Stacked Autoencoders (1/2)

- Stack many (sparse) auto-encoders in succession and train them using greedy layer-wise training
- · Drop the decode output layer each time



Stacked Autoencoders (2/2)

- Do supervised training on the last layer using final features
- Then do supervised training on the entire network to fine- tune all weights



Boltzmann Machines (BM)

- RBMs are energy-based models, they associate a scalar energy to each configuration of the variables of interest
- Energy based probabilistic models define a probability distribution as:

$$p(x) = \frac{e^{-E(x)}}{Z}$$
 where $Z = \sum_{x} e^{-E(x)}$

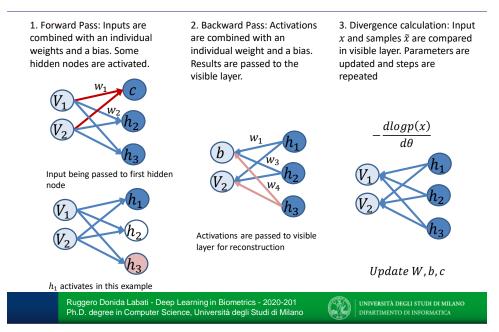
 An energy-based model can be learnt by performing (stochastic) gradient descent on the empirical negative log-likelihood of the training data, where the log-likelihood and the loss function are:

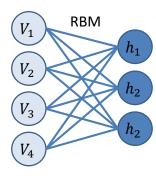
$$L(\theta, D) = \frac{1}{N} \sum_{x^i \in D} \log p(x^i)$$
 and $l(\theta, D) = -L(\theta, D)$

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano

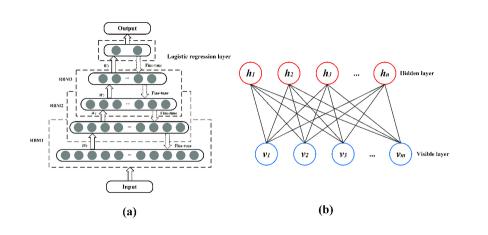
59

RBM Training





Deep Belief Networks (DBN)



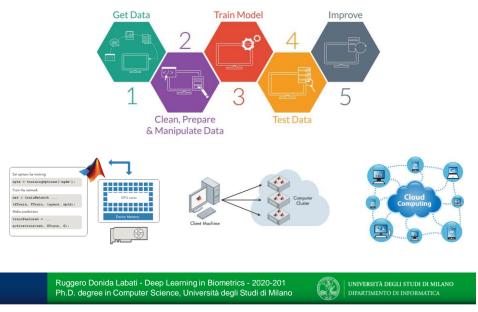
Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201	UNIVERSITÀ DEGLI STUDI DI MILANO
Ph.D. degree in Computer Science, Università degli Studi di Milano	DIPARTIMENTO DI INFORMATICA

61

4. Software for Deep Learning

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI INFORMATICA

How and Where?

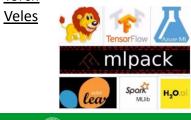


63

SW Libraries and Toolboxes

- Hunderds of ML toolboxes are now avaiblaes
- Deeplearn tools
 - Apache Singa
 - Amazon Machine Learning
 - Azure ML Studio
 - <u>Caffe</u>
 - <u>– H2O</u>
 - Massive Online Analysis (MOA)
 - MLlib (Spark)

- _ mlpack,
- Matlab toolboxes
- Pattern
- <u>Scikit-Learn</u>
- Shogun
- <u>low</u>
- Theano
- _ <u>Torch</u>



Matlab

- <u>https://it.mathworks.com/campaigns/products/o</u> <u>ffer/deep-learning-with-matlab.html</u>
- <u>https://it.mathworks.com/videos/series/introduc</u> <u>tion-to-deep-learning.html</u>

Caffe

- Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR) and by community contributors.
- http://caffe.berkeleyvision.org/

Theano

- Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently.
- <u>http://deeplearning.net/software/theano/</u>

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano

67

TensorFlow

- TensorFlow[™] is an open source software library for high performance numerical computation. Its flexible architecture allows easy deployment of computation across a variety of platforms (CPUs, GPUs, TPUs), and from desktops to clusters of servers to mobile and edge devices.
- Originally developed by researchers and engineers from the Google Brain team within Google's AI organization, it comes with strong support for machine learning and deep learning and the flexible numerical computation core is used across many other scientific domains.
- https://www.tensorflow.org/

UNIVERSITÀ DEGLI STUDI DI MILANO

theano

PyTorch

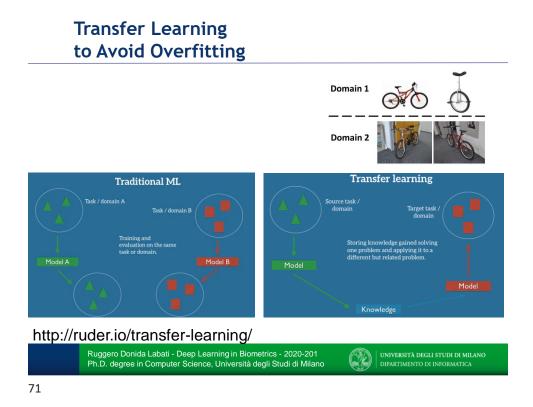
- PyTorch is a Python package that provides two highlevel features
 - Tensor computation (like NumPy) with strong GPU acceleration
 - Deep neural networks built on a tape-based autograd system
- https://pytorch.org/

PYTÖRCH

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano

69

5. Design of Biometric Systems



Pretrained Models

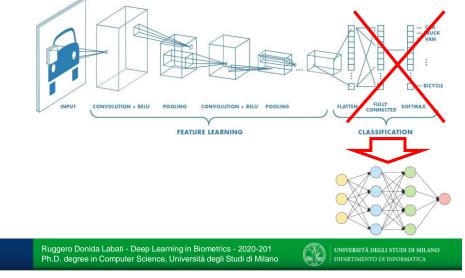
https://github.com/BVLC/caffe/wiki/Model-Zoo

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano

72

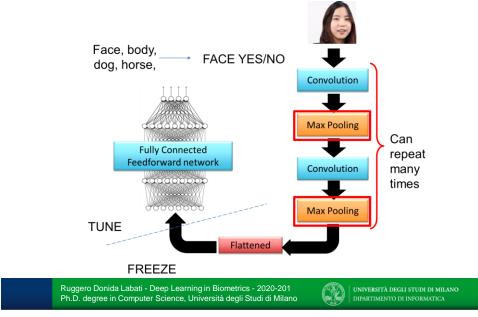
CNNs as Feature Extractors

- · Remove the fully connected layers
- Use the CNN as a feature extractor and train a new classifier



73

Fine-tuning (1/2)



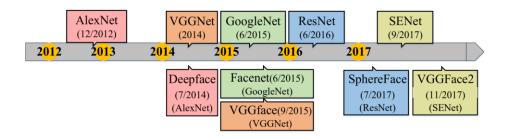
Fine-tuning (2/2)

- This strategy is to not only replace and retrain the classifier on top of the ConvNet on the new dataset, but to also fine-tune the weights of the pretrained network by continuing the backpropagation
- It is possible to fine-tune all the layers of the ConvNet, or it's possible to keep some of the earlier layers fixed (due to overfitting concerns) and only fine-tune some higher-level portion of the network
- This is motivated by the observation that the earlier features of a ConvNet contain more generic features (e.g. edge detectors or color blob detectors) that should be useful to many tasks, but later layers of the ConvNet becomes progressively more specific to the details of the classes contained in the original dataset

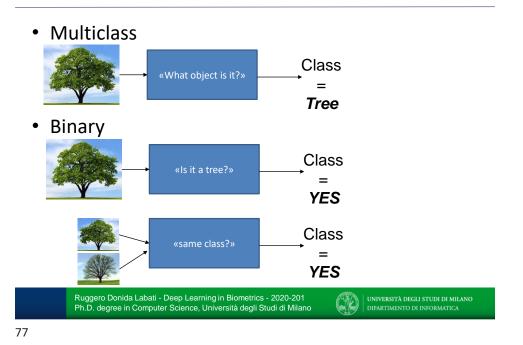
Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano	UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI INFORMATICA

75

Fine-tuning in Face Recognition

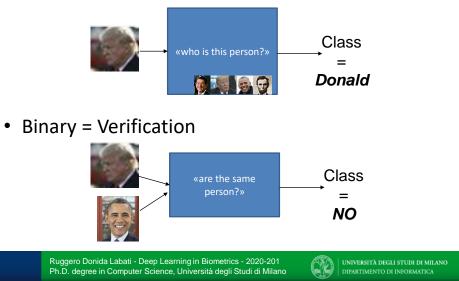


Classical Image Classifiers



Biometric Classifiers

• Multiclass = Identifier



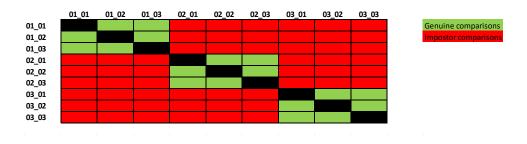
Identification Using Deep Learning

Deep Learning Sample Trained Classifier Integer Identifier Use samples of every individual during the training step Algoritmic For each template i in Gallery M(i) = identiry_verification(Fresh, Gallery(i)) end ID = argmax(M)

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201	
Ph.D. degree in Computer Science, Università degli Studi di Milano	DIPARTIME

79

Identification Verification: Imbalanced Classes

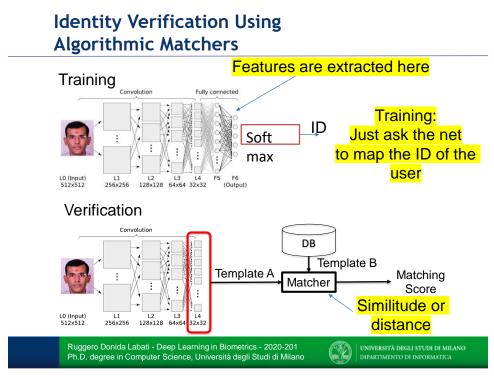


genuine comparisons:

 $N_{subjects} \times N_{sampleSubject} \times (N_{sampleSubject}-1)$

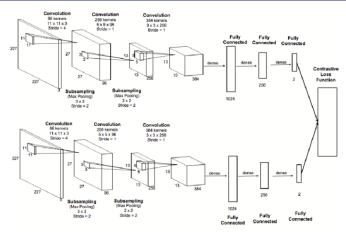
impostor comparisons:

 $(N_{subjects} \times N_{sampleSubject})^2 - (N_{subjects} \times N_{sampleSubject} \times (N_{sampleSubject} - 1))$



81

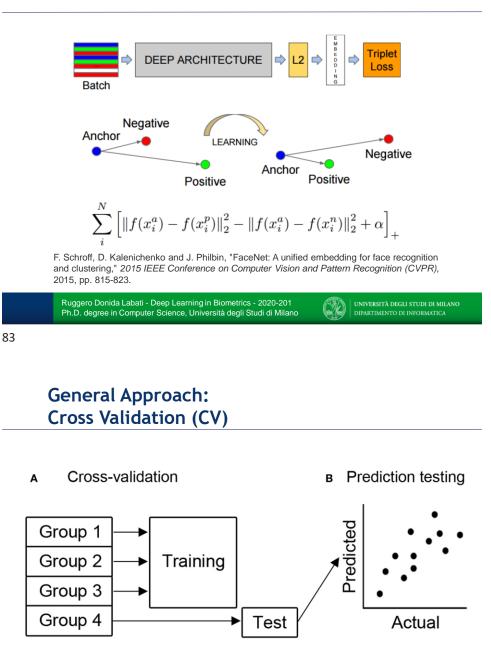
Identity Verification Using Siamese Networks



Y. Taigman, M. Yang, M. Ranzato and L. Wolf, "DeepFace: Closing the Gap to Human-Level Performance in Face Verification," 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, 2014, pp. 1701-1708

Ph.D. degree in Computer Science, Università degli Studi di Milano		ida Labati - Deep Learning in Biometrics - 2020-201 in Computer Science, Università degli Studi di Milano	Ø	UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI INFORMATICA
--	--	--	---	---

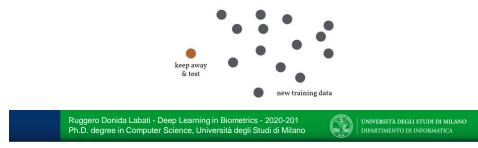
Triplet Loss

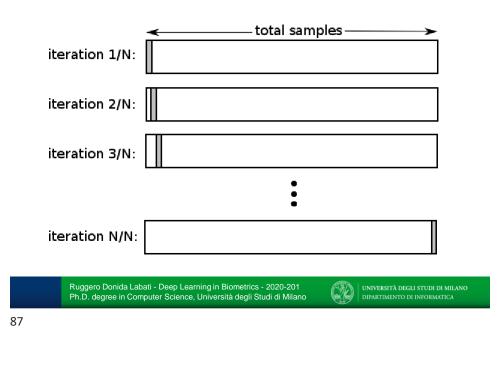


 e_i = error for a specific partition

Data Set Partitioning: Leave One Out

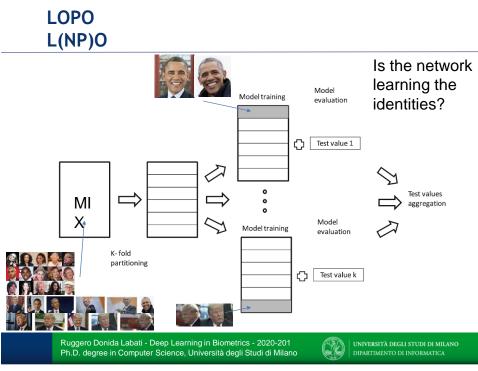
- Is an extreme case of k-FCV → k equals the number of examples in the data set
- In each step only one instance is used to test the model whereas the rest of instances are used to learn it.





Data Set Partitioning: Leave One Out

Leave One Person Out! (LOPO)

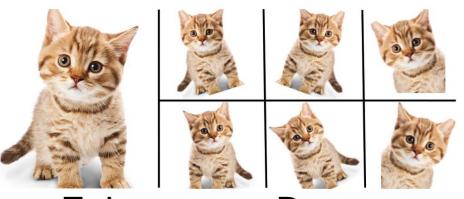


89

Training Deep Neural Networks for Identification

Data Augmentation

How to use Deep Learning with few images



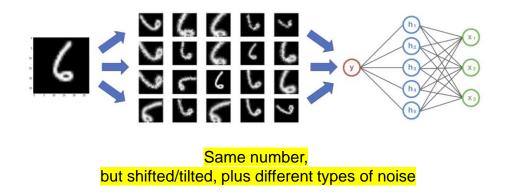
Enlarge your Dataset

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano

DIPARTIMENTO DI INFORMATI

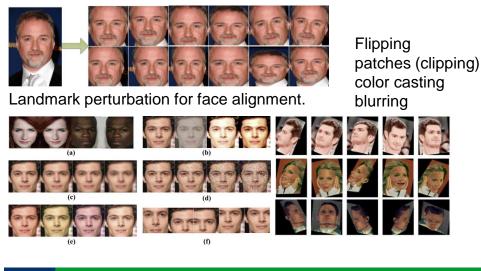
91

Data Augmentation: Add Noise



Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano

Data Augmentation: Also for Large Datasets



Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano

93

Evolution of Face Datasets



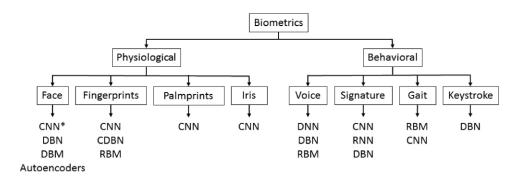
6. Biometric Applications

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano

DIPARTIMENTO DI INFORMATICA

95

Different Deep Learning Techniques for Different Biometric Traits



Kalaivani Sundararajan, D. L. Woodard, Deep Learning for Biometrics: A Survey, ACM Comput. Surv. 51, 3, May 2018.

6.1 Face

97

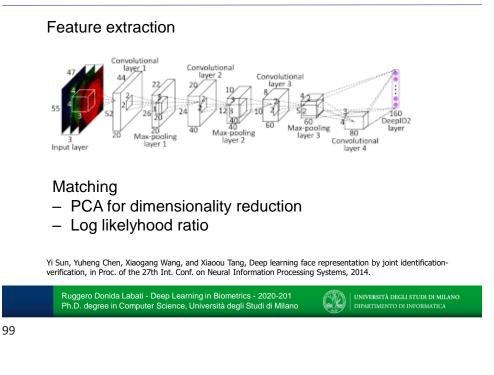
Some Deep Learning Approaches for Face Recognition

Method	Recognition mode	Input	#Convolution layers	#Pooling layers	#Fully connected layers	Classification	fnets
Sun et al. [136]	Verification	60 face patches (39 × 31 and 31 × 31 patches)	4 layers (20×4×4 SW, 40×3×3 SW, 60×3×3 LS, 80×2×2 US)	3 (max pooling with 2×2 filters)	1 (160-dim DeepID features)	Joint Bayesian	60
Sun et al. [135]	Verification	25 face patches	4 lay ers (20 \times 4 \times 4 SW, 40 \times 3 \times 3 SW, 60 \times 3 \times 3 LS, 80 \times 2 \times 2 LS)	3 (max pooling with 2 × 2 filters)	1 (160-dim DeepID2 features)	Joint Bay esian	25
Sun et al [137]	Verification	25 face patches	$\begin{array}{l} 4 \ \text{layers} \ (128 \times 4 \times 4 \ \text{SW}, \ 128 \times 3 \times 3 \ \text{SW}, \\ 128 \times 3 \times 3 \ \text{LS}, \ 128 \times 2 \times 2 \ \text{LS}) \end{array}$	3 (max pooling with 2×2 filters)	4 (512-dim DeepID2+ features)	Joint Bayesian	25
Hu et al. [59]	Verification - Medium	58×58 faces	3 layers ($16 \times 5 \times 5$, $32 \times 4 \times 4$, $48 \times 3 \times 3$)	3 layers (2 \times 2 filters)	1 (160-dim)	Joint Bayesian	1
Taigman et al. [142]	Verification	152×152 RGB faces	$\begin{array}{c} 5 \text{ lay ers } (32 \times 11 \times 11 \text{ SW}, 16 \times 9 \times 9 \text{ SW}, \\ 16 \times 9 \times 9 \text{ LS}, 16 \times 7 \times 7 \text{ LS}, 16 \times 5 \times 5 \\ \text{ LS}) \end{array}$	1 layer (3 \times 3 filters)	1 (4096-dim)	Weighted χ^2 similarity	1
Zhu et al. [176]	Identification	96× 96 grayscale faces	3 lay ers (32× 5× 5 LS, 32× 5× 5 LS, 32×5×5 LS)	2 layers (2×2 filters)	1 (96× 96 reconstruction layer)	LDA	1
Pattabhi et al [108]	Identification	28×32 faces	2 layers (6 \times 5 \times 5, 12 \times 5 \times 5)	2 layers (2 \times 2 filters)		Neural network	1
Liu et al. [84]	Verification & Identification	7 face patches	9 layers	Yes	1 layer	softmax layer & triplet loss	7
Zhou et al. [174]	Verification	4 face patches	10 lay ers	Yes	1 layer	softmax layer	4
Chen et al. [18]	Verification & Identification	100× 100 faces	$\begin{array}{c} 10 \mathrm{layer s} (32\times3\times3, 64\times3\times3 (2), \\ 1 28\times3\times3, 96\times3\times3, 192\times3\times3, \\ 128\times3\times3, 256\times3\times3, 160\times3\times3, \\ 320\times3\times3) \end{array}$	5 layers (2×2 (4), 7×7 mean)	1 (10548-dim)	Joint Bay esian	1
Parkhi et al [107]	Verification	224 × 224 face patches	13 layers (64 ×3 × 3 (2), 128 × 3 × 3 (2), 25 6 × 3 × 3 (3), 51 2 × 3 × 3 (3))	5 layers (2 × 2 max-pooling)	3 (4096, 4096, 2622)	triplet loss metric learning	1
Schroff et al. [128]	Verification, identification & clustering	224 × 224 face patches	$\begin{array}{c} 11 \ layers \left(64 \times 7 \times 7, \ 64 \times 1 \times 1, \\ 64 \times 3 \times 3, \ 192 \times 1 \times 1, \ 192 \times 3 \times 3, \\ 384 \times 1 \times 1, \ 384 \times 3 \times 3, \ 256 \times 1 \times 1, \\ 256 \times 3 \times 3, \ 256 \times 1 \times 1, \ 256 \times 3 \times 3) \end{array}$	4 layers (3 \times 3 filters)	3 (32×128, 32× 128, 128)	triplet loss emb edding	1
Wen et al. [153]	Verification		$\begin{array}{c} 6 \text{ layers } (128 \times 3 \times 3, 128 \times 3 \times 3 \ (2), \\ 128 \times 3 \times 3, 256 \times 3 \times 3LS, \\ 256 \times 3 \times 3LS, 256 \times 3 \times 3LS) \end{array}$	41ayers (2× 2)	1 (512-dim)	softmax & center loss	1
Sun et al [138]	Verification	25 face patches	$\begin{array}{c} 10 \ \text{layers} \ (64 \times 3 \times 3, \ 64 \times 3 \times 3, \\ 96 \times 3 \times 3, \ 96 \times 3 \times 3, \ 192 \times 3 \times 3, \\ 192 \times 3 \times 3, \ 256 \times 3 \times 3, \ 256 \times 3 \times 3, \\ 256 \times 3 \times 3LS, \ 256 \times 3 \times 3LS) \end{array}$	4 (max pooling with 2×2 filters)	1 (512-dim)	Joint Bayesian	25

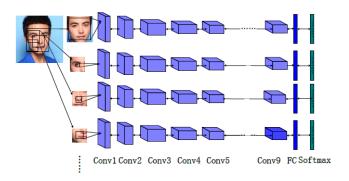
Kalaivani Sundararajan, D. L. Woodard, Deep Learning for Biometrics: A Survey, ACM Comput. Surv. 51, 3, May 2018.

Suiv	v. 51, 5, May 2018.	
	Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano	A DEGLI STUDI DI MILANO NTO DI INFORMATICA

Examples of Face Recognition Methods (1/2)



Examples of Face Recognition Methods (1/2)



Jinguo Liu, Yafeng Deng, and Chang Huang, Targeting ultimate accuracy: Face recognition via deep embedding, 2015.

Some Results for Face Recognition

			Training			Verification	Open set	Closed
Methods	Arch.	Dataset	#img	#subj	Protocol	acc (%)	acc (%)	acc (%)
Cao et al. [14]	Joint Bayesian	-	-	-	unrestricted	96.33 ± 1.08	-	-
Chen et al. [17]	LBP	-	-	-	unrestricted	95.17 ± 1.13	-	-
Lu et al. [89]	Gaussian Face	-	-	-	unrestricted	98.52 ± 0.66	-	-
Best et al. [11]	COTS-s1+s4	-	-	-	unrestricted	-	66.5	35
Sun et al. [136]	CNN	CelebFaces+	202,599	10,177	unrestricted	97.45 ± 0.26	-	-
Sun et al. [135]	CNN	CelebFaces+	202,599	10,177	unrestricted	96.39 ± 0.13	-	-
Sun et al. [137]	CNN	CelebFaces+, WDRef	290,000	12,000	Jain	99.47 ± 0.12	80.7	95.0
Taigman et al. [142]	CNN	SFC	4,000,000	4,000	unrestricted	97.35 ± 0.25	-	-
Liu et al. [84]	CNN	Private	1,200,000	18,000	unrestricted	99.41	95.80	98.03
Chen et al. [18]	CNN	CASIA-WebFace	490,356	10,548	unrestricted	97.45 ± 0.70	-	-
Parkhi et al. [107]	CNN	Private	2,600,000	2,622	unrestricted	98.95	-	-
Schroff et al. [128]	CNN	Private	100M-200M	8M	unrestricted	99.63 ± 0.09	-	-
Zhou et al. [174]	CNN	Megvii	5,000,000	20,000	-	99.5	-	-
Taigman et al. [143]	CNN	SFC	4,500,000	55,000	unrestricted	97.17	46.3	72.3
Wen et al. [153]	CNN	private dataset	700,000	-	-	99.28	-	-
Sun et al. [138]	CNN	CelebFaces+, WDRef	290,000	12,000	-	99.30	-	-
Peng et al. [109]	CNN	CASIA WebFace	494,414	10,575	-	96.60	-	-

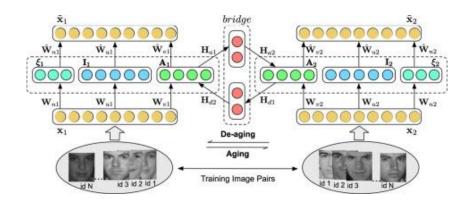
Table 2. Face Recognition Results: LFW (13,323 Images, 5,749 Celebrities)

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano

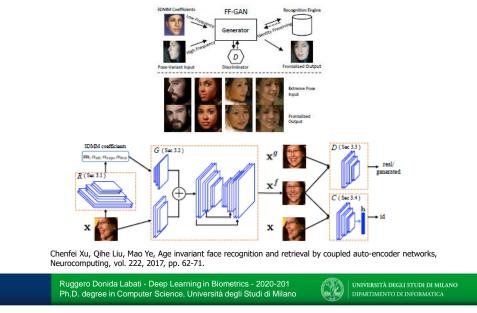
UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI INFORMATICA

101

Age Invariant Face Recognition



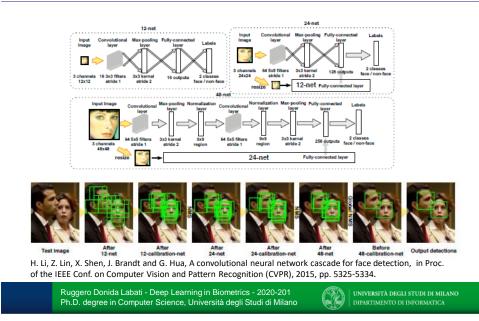
Chenfei Xu, Qihe Liu, Mao Ye, Age invariant face recognition and retrieval by coupled auto-encoder networks, Neurocomputing, vol. 222, 2017, pp. 62-71.

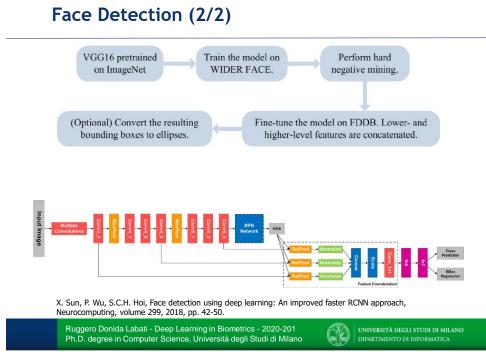


Rotation Invariant Face Recognition

103

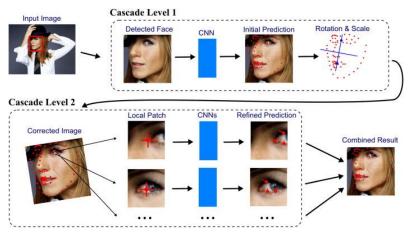
Face Detection (1/2)





105

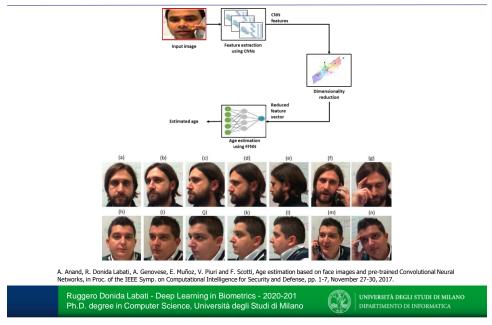
Estimation of Fiducial Points



H. Fan, E. Zhou, Approaching human level facial landmark localization by deep learning, Image and Vision Computing, vol. 47, 2016, pp. 27-35.

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201	UNIVERSITÀ DEGLI STUDI DI MILANO
Ph.D. degree in Computer Science, Università degli Studi di Milano	DIPARTIMENTO DI INFORMATICA

Age Estimation



107

Some Results for Age Estimation

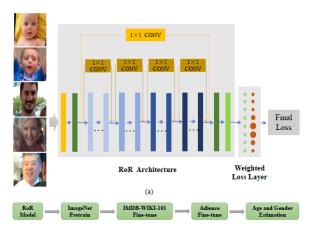
	Test	ing			Traini	ng			
Attribute	Dataset	#img	Methods	Arch.	Dataset	#img	#classes	MAE	Acc (%)
			Guo et al. [49]	BIF + KCCA	-	-	-	3.98	-
		-	Guo et al. [48]	BIF + KPLS	-	-	-	4.04	-
	MORPH-II	5-fold CV	Huerta et al. [62]	CNN	MORPH-II	55,134	Regr.	3.88	-
		42,635	Yi et al. [162]	CNN	MORPH-II	10,634	Regr.	3.63	-
		5,670	Qiu et al. [111]	CNN [*]	MORPH-II	47,582	Regr.	3.41	-
		44,634	Li et al. [81]	CNN	MORPH-II	10,500	Regr.	3.61	-
Age		1,095	Wang et al. [151]	CNN [*]	MORPH-II	4,380	Regr.	4.77	-
		5-fold CV	Liu et al. [83]	CNN [*]	MORPH-II	-	Regr.	2.89	-
			Rothe et al. [121]	CNN	IMDB-Wiki	523,051	101	2.68	-
			Han et al. [52]	CNN	IMDB-Wiki	523,051	Regr	3.0	85.3
		5-fold CV	Levi et al. [79]	CNN [*]	Adience	26,000	8	-	84.70 ± 2
	Adience		Liu et al. [83]	CNN'	Adience, MORPH-II, ChaLearn	-		-	98.2 ± 0.
			Rothe et al. [121]	CNN	IMDB-Wiki	523,051	20	-	96.6 ± 0.
			Liu et al. [83]	CNN	MORPH-II, FG-Net	-	-	0.315	-
	ChaLearn	1136	Ranjan et al. [116]	CNN	ChaLearn, Adience, MORPH	7,000	Regr	0.359	-
			Rothe et al. [121]	CNN [*]	IMDB-Wiki	523,051	101	0.282	-
			Liu et al. [87]	CNN"	CASIA WebFace, MORPH-II	1,315,000	-	0.287	-
			Ranjan et al. [115]	CNN'	IMDB-Wiki, Adience, MORPH	299,818	Regr	0.293	-
			Han et al. [52]	CNN [*]	IMDB-Wiki	523,051	3	0.289	-

Deep learning approach.

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI INFORMATICA

Gender and Ethnicity Estimation



K .Zhang, C. Gao, L. Guo. M. Sun, X. Yuan, T.X. Han, Z. Zhao, B. Li, Age Group and Gender Estimation in the Wild With Deep RoR Architecture, IEEE Access, vol. 5 , 2017.

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano

109

Some Results for Gender and Ethnicity Estimation

	Test	ing			Trainir	ng			
Attribute	Dataset	#img	Methods	Arch.	Dataset	#img	#classes	MAE	Acc (%)
		-	Guo et al. [49]	BIF + KCCA	-	-	-	-	98.45
	MORPH-II	-	Guo et al. [48]	BIF + KPLS	-	-	-	-	98.35
Gender		42,635	Yi et al. [162]	CNN	MORPH-II	10,634	2	-	97.90
		44,634	Li et al. [81]	CNN	MORPH-II	10,500	2	-	98.48
			Han et al. [52]	CNN	IMDB-Wiki	523,051	2	-	98.0
	AR	1,275	Jiang et al. [67]	CNN	FERET, CAS-PEAL	10,800	2	-	70.50
		3,288	Juefei et al. [69]	CNN	MugshotDB, Pinellas	89,003	2	-	85.62
	Adience	5-fold CV	Levi et al. [79]	CNN	Adience	26,000	2	-	86.80 ± 1.4
Ethnicity	MORPH-II	-	Guo et al. [49]	BIF + KCCA	-	-	-	-	98.95
		-	Guo et al. [48]	BIF + KPLS	MORPH-II	10,634	2	-	99.0
		42,635	Yi et al. [162]	CNN [*]	MORPH-II	10,634	2	-	98.60
			Han et al. [52]	CNN [*]	IMDB-Wiki	523,051	3	-	98.6

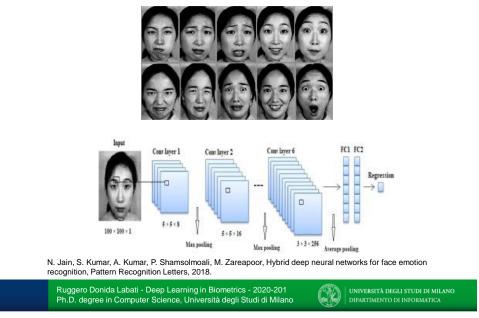
CV, cross-validation; LOPO, leave one person out.

*Deep learning approach.

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI INFORMATICA

Emotion Estimation

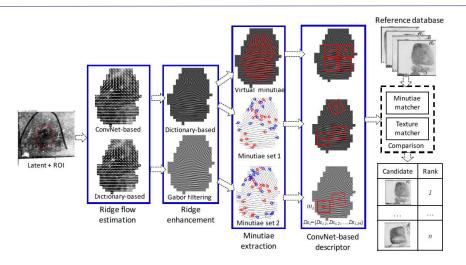


111

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI INFORMATICA

Latent Fingerprint



K. Cao and A. K. Jain, Automated Latent Fingerprint Recognition, in IEEE Trans. on Pattern Analysis and Machine Intelligence, 2017.

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano

113

Some Results for Fingerprint Recognition

Dataset	Methods	Representation	EER(%)	Rank1 (%)
	Hong et al. [57]	Gabor	24.34	-
FVC 2002	Chikkerur et al. [22]	STFT	21.99	-
	Sahasrabudhe et al. [122]	cRBM*	22.65	-
	Sahasrabudhe et al. [123]	cDBN*	23.95	-
NIST SD27	COTS latent AFIS	COTS	-	67.0
	CAO et al. [13]	CNN	-	65.0
WVU DB	COTS latent AFIS	COTS	-	71.0
	CAO et al. [13]	CNN*	-	75.0

^{*}Deep learning approach.

UNIVERSITÀ DEGLI STUDI DI MILANO

Live fingerprint acquisitions?

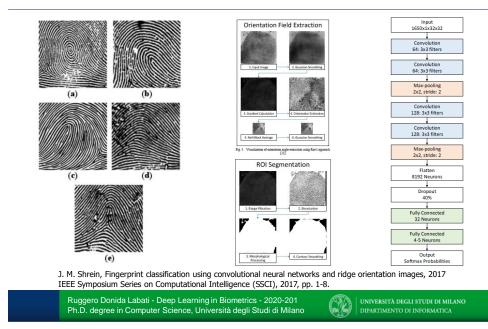
- Local features
- Repetitive pattern
- Rotations
- Non-linear distortions

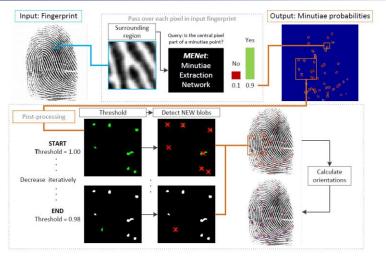
Kalaivani Sundararajan, D. L. Woodard, Deep Learning for Biometrics: A Survey, ACM Comput. Surv. 51, 3, May 2018.

	Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano		UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI INFORMATICA
--	--	--	---

115

Fingerprint Classification





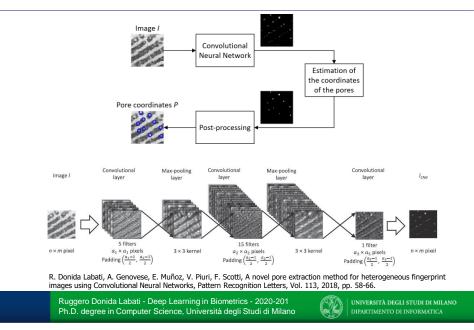
Minutiae Extraction

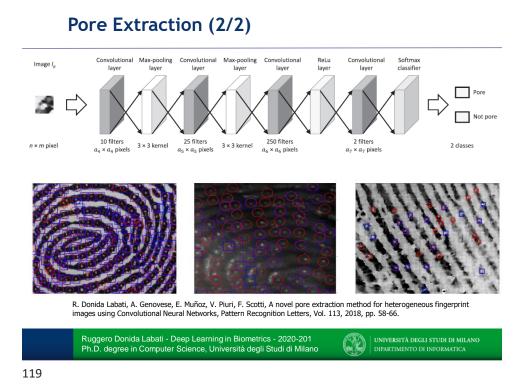
L. N. Darlow and B. Rosman, Fingerprint minutiae extraction using deep learning, IEEE International Joint Conference on Biometrics (IJCB), 2017, pp. 22-30

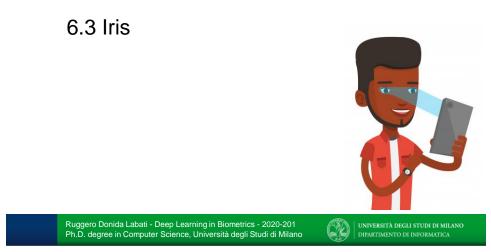
Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano

117

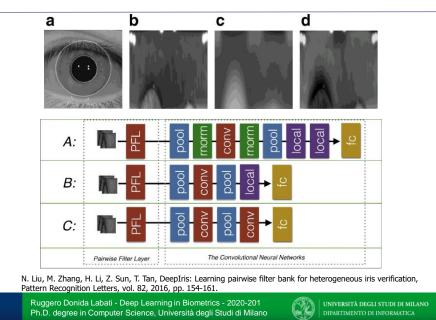
Pore Extraction (1/2)







Iris Recognition



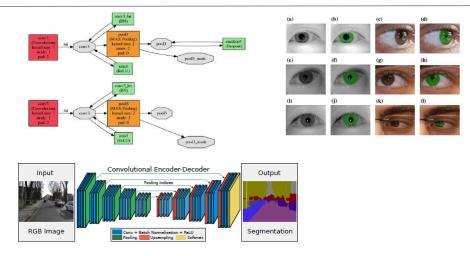
121

Some Results for Iris Recognition

Dataset	Methods	Representation	EER(%)
	Daugman et al. [24]	Gabor	8.35
MICHE-I	Raghavendra et al. [113]	LBP	5.22
	Raja et al. [114]	SAE	3.93
	Daugman et al. [24]	Gabor	3.57
VSSIRIS	Raghavendra et al. [113]	LBP	9.45
	Raja et al. [114]	SAE*	1.70
	Weinberger et al. [152]	LMNN	1.73
Q-FIRE	Liu et al. [85]	MDML	1.67
	Liu et al. [86]	CNN	0.15
LG2200	Daugman et al. [24]	Gabor	7.12
	Gangwar et al. [41]	CNN	2.40
LG4000	Daugman et al. [24]	Gabor	5.30
	Gangwar et al. [41]	CNN	1.82

*Deep learning approach.

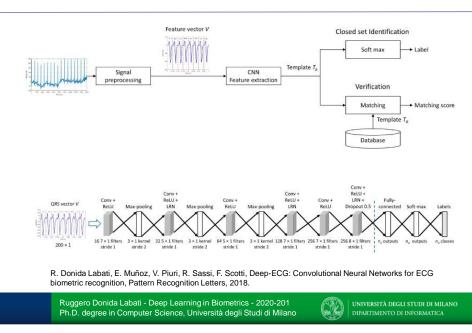
Ł



Iris Segmentation

E. Jalilian, A. Uhl, Iris Segmentation Using Fully Convolutional Encoder–Decoder Networks. In Deep Learning for Biometrics, Springer, Cham, 2017.

123



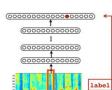
Electrocardiographic Signals (ECG)

125

Some Results for Speaker Recognition

Testing					Training			
Dataset	#trials	#subj	Methods	Arch.	Dataset	#trials	#subj	EER(%)
SRE 2012	C2,C5	-	Li et al. [78]	UBM-EM (4096)	SRE 2012	-	1,918	2.18
				DNN				1.66
	C2	1,040	Kenny et al. [70]	DNN	SRE 2012	4,432	1,040	2.16
SRE 2012 training data	male	1,000	Vasilakakis et al. [148]	GMM	SRE 2012 training data	28,920	1,818	0.45
				DBN				0.58
SRE 2010 telephone	-	7,196	Garcia et al. [42]	GMM	Switchboard I & II	33,039	3,114	6.92
				DNN				4.20
			Saleem et al. [125]	DNN	SRE 2004 & 2005 & 2006			2.18
SRE 2006	51,068	816	Ghahabi et al. [44]	i-vector	SRE 2004 & 2005	6,000	-	7.18
				DBN				6.44
			Ghahabi et al. [46]	RBM*	SRE 2004 & 2005	6,125	-	7.58
			Ghahabi et al. [47]	DBN & DNN	SRE 2004 & 2005 & 2006	-	-	4.76

*Deep learning approach.



Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano

Datasets	Methods	Representation	EER(%)	FAR(%)	FRR(%)	Acc(%)
	Fallah et al. [36]	Mellin transform, MFCC, etc.	3.0	-	-	-
SVS 2004	Ansari et al. [6]	Fuzzy modeling	2.46	-	-	-
	Fayyaz et al. [38]	SAE	2.15	-	-	-
	Lai et al. [75]	RNN	2.37	-	-	-
	Ferrer et al. [39]	Geometric features	-	13.12	15.41	86.65
GPDS-300	Vargas et al. [145]	High-pressure pts	-	14.66	10.01	87.67
	Ribeiro et al. [118]	DBN	-	14.67	20.25	82.85
	Hafemann et al. [51]	CNN	10.70	9.08	20.60	-
	Haemann et al. [50]	CNN	3.47	5.13	6.55	-
	Dey et al. [29] CNN*		-	23.17	23.17	76.83
	Contraction of the second seco	hif the	ayba Af Mary Mary	0		
		ep Learning in Biometrics - 2020 cience, Università degli Studi di			IVERSITÀ DEGLI Artimento di II	STUDI DI MILANO NFORMATICA

Some Results for Signature Verification

127

Some Results for Palmprint Verification

Datasets	Methods	Representation	Recognition Accuracy(%)	EER(%)
	Lu et al. [90]	Enhanced GRCM	98.0	-
	Xu et al. [157]	Quaternion PCA+Quaternion DWT	98.83	-
PolyU	Jia et al. [65]	KPCA on HOL	99.73	-
	Jalali et al. [64]	CNN	99.98	-
	Minaee et al. [102]	Scattering networks	100.0	-
	Dian et al. [30]	CNN*	-	0.0443

*Deep learning approach.

Datasets	Methods	Representation	Accuracy(%)				
	Different views						
	Kusakunniran et al. [74]	CCA	68.5				
	Yu et al. [164]	GEI+NN	23.76				
	Wu et al. [156]	CNN	84.67				
	Yan et al. [159]	CNN	30.55				
	Alotaibi et al. [5]	CNN	85.51				
CASIA-B	Hossain et al. [58]	RBM*	92.50				
	Wolf et al. [155] 3D-CNN*		97.35				
	Different scenes						
	Hu et al. [60]	LF+iHMM	71.76				
	Kusakunniran et al. [73]	STIP	79.66				
	Yan et al. [159]	CNN	95.0				
	Alotaibi et al. [5]	CNN	86.70				
OU-ISIR	Muramatsu et al. [103]	TCM+	72.80				
	Muramatsu et al. [104]	wQVIM	70.51				
	Wu et al. [156]	CNN	94.8				
	Zhang et al. [166]	CNN	80.50				
	Shiraga et al. [129]	CNN	90.45				
	Li et al. [80]	CNN	95.04				

Some Results for Gait Recognition

*Deep learning approach.

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano

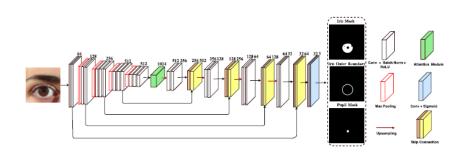
UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI INFORMATICA

129

6.4 Other Applications

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano

Iris Segmentation



C. Wang, J. Muhammad, Y. Wang, Z. He and Z. Sun, "Towards Complete and Accurate Iris Segmentation Using Deep Multi-Task Attention Network for Non-Cooperative Iris Recognition," in IEEE Transactions on Information Forensics and Security, vol. 15, pp. 2944-2959, 2020.

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano

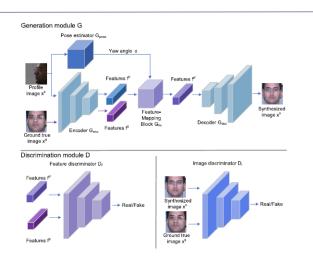
UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI INFORMATICA

131

Aging

A. Genovese, V. Piuri, F. Scotti, "Towards explainable face aging with Generative Adversarial Networks", in Proc. of the 26th IEEE Int. Conf. on Image Processing (ICIP 2019), Taipei, Taiwan, pp. 3806-3810, September 22-25, 2019

Pose Compensation

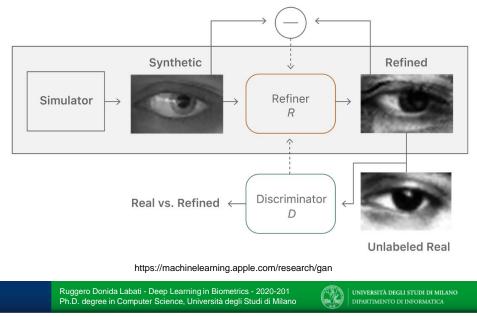


C. Rong, X. Zhang and Y. Lin, "Feature-Improving Generative Adversarial Network for Face Frontalization," in IEEE Access, vol. 8, pp. 68842-68851, 2020, doi: 10.1109/ACCESS.2020.2986079.

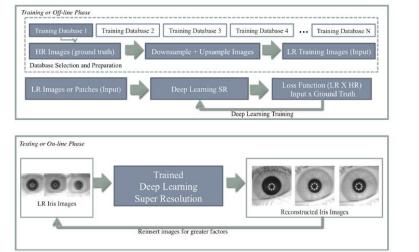
Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano Dipartimento di Informatica

133

Generative Adversarial Networks for Data Augmentation



Super-resolution



E. Ribeiro, A. Uhl and F. Alonso-Fernandez, "Iris super-resolution using CNNs: is photo-realism important to iris recognition?," in IET Biometrics, vol. 8, no. 1, pp. 69-78, 1 2019

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano

135

7. Summary

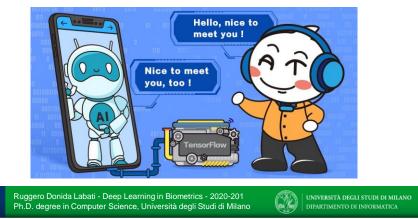
Deep Learning

- Convolutional neural networks
- Greedy layer-wise training
- Software for deep learning

137

Deep Learning for Biometrics

- Design of biometric systems
- Applications of artificial intelligence in biometrics



Thank you!

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 Ph.D. degree in Computer Science, Università degli Studi di Milano

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI INFORMATICA

139