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1. Convolutional Neural Networks
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• We know it is good to learn a small model

• From this fully connected model, do we really 
need all the edges? 

• Can some of these be shared?

Starting from Feedforward Neural Networks
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• Some patterns are much smaller than the whole 
image

“beak” detector

Can represent a small region with fewer parameters?

Learning from an Image
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• What about training a lot of such “small” 
detectors and each detector must “move 
around”?

“upper-left 

beak” detector

“middle beak”

detector

They can be compressed

to the same parameters.

Same Pattern Appears in Different Places
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• A CNN is a neural network with some 
convolutional layers (and some other layers)

• A convolutional layer has a number of filters 
that does convolutional operation

FILTER

Beak detector The 

convolution

output is high 

if the input 

image is

similar to the 

filter

A Convolutional Layer
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6 x 6 input 

image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

……

These are the network 

parameters to be learned.

Each filter detects a 

small pattern (3 x 3). 

Convolutional Kernels
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Convolution (1/3)

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 input 

image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

3 -1

stride=1

Dot 

product

Analyze this task
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1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 input 

image

3 -3

This one can be 

one of the 

convolutioanl

layer of the CNN

Convolution (2/3)

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1
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0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

stride=1

Convolution (3/3)

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 

Ph.D. degree in Computer Science, Università degli Studi di Milano

Convolutional Layer

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

Repeat this for each filter

stride=1

Two 4 x 4 images, forming 2 x 4 x 4 matrix

Feature
Map
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Filter 1

-1 1 -1

-1 1 -1

-1 1 -1
Filter 2

1 -1 -1

-1 1 -1

-1 -1 1

1 -1 -1

-1 1 -1

-1 -1 1

-1 1 -1

-1 1 -1

-1 1 -1

-1 1 -1

-1 1 -1

-1 1 -1
Color image

Color Images: 3 RGB Channels
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image
convolution

-1 1 -1

-1 1 -1
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1x

2x

……

36x

……
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Fully-

connected

Convolution v.s. Fully Connected (1st Layer)
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1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

Only connect to 9 
inputs, not fully 
connected

Less parameters!!!

Convolution v.s. Fully Connected (1/3)
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1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

6 x 6 image
Even parameters!!! (previously computed)

Convolution v.s. Fully Connected (2/3)
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• CNNs and fully connected networks can be used to 
solve the same problems

• CNNs reduce the number of connections

• CNNs can share the previous computations between 
the neurons

• CNNs can use pooling operations to reduce the 
computational complexity

Convolution v.s. Fully Connected (3/3)
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CNN Architecture
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• Subsampling pixels will not change the object

• We can subsample the pixels to make image 
smaller
➢fewer parameters to characterize the image

Subsampling

bird

bird

Why Pooling?
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Layer 1 Layer 2
Simple

Classifier

Image/Video  

Pixels Layer 3

Pooling
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1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

3 0

13

-1 1

30

2 x 2 image

Each filter 

is a channel

New image 

but smaller

Conv

Max
Pooling

Max Pooling
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Sub-sampling (Pooling) allows 
number of features 
to be diminished, non-overlapped
–Reduces spatial resolution and thus naturally 
decreases importance of exactly where a feature was 
found, just keeping the rough location

–Averaging or Max-Pooling
o 2x2 pooling would do 4:1 compression, 3x3 9:1, etc.

–Pooling smooths the data and makes the data 
invariant to small translational changes

–Since after first layer, there are always multiple 
feature maps to connect to the next layer, it is a pre-
made human decision as to which previous maps the 
current map receives inputs from

Sub-sampling (Pooling) 
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Max Pooling: Example
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The number of channels 

is the number of filters

Smaller than the original 

image

The Whole CNN (1/2)
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The Whole CNN (2/2)

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 

Ph.D. degree in Computer Science, Università degli Studi di Milano

Optional Step: Rectified Linear Units (ReLU)

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 

Ph.D. degree in Computer Science, Università degli Studi di Milano

25

26



01/12/2020

14

Convolution

ReLU

ReLU: Example
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Flattening
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Fully Connected Layers (1/2)

1

2

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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Fully Connected Layers (2/2)

• The neuron in the fully-connected layer detects a certain feature

• It preserves its value

• It communicates this value to both the “dog” and the “cat” classes

• Both classes check out the feature and decide whether it's relevant to 

them
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Loss Function

• The loss function informs us of how accurate our 

network is, which we then use in optimizing our 

network in order to increase its effectiveness

• In the context of artificial neural networks, we call 

this calculation a “cost function” or a mean 

squared error

• Some frequently used loss functions:
‒ mean squared error

‒ cross-entropy function

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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Softmax and Cross-Entropy
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Softmax

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 

Ph.D. degree in Computer Science, Università degli Studi di Milano

• The purpose of the Cross-Entropy is to take the 
output probabilities (P) and measure the distance 
from the truth values

• Cross-Entropy is defined as

Cross-Entropy

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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Cross-Entropy: Example

The categorical cross-entropy is computed as follows
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Why use the Cross-Entropy Function Rather 

Than the Mean Squared Error?

• At the beginning of the backpropagation process, the 

output value is usually minimal and gradient is also 

usually very low, making it difficult for the neural network 

to actually utilize the data it has in adjusting the weights 

and optimizing itself

• The cross-entropy function, through its logarithm, allows 

the network to better asses such small errors and work to 

eliminate them

• The cross-entropy function is only that useful with 

convolutional neural networks, most particularly for 

purposes of classification

• For regression problems, the mean squared error 

becomes more preferable

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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Output: 1000x1 probability vector 

one corresponding to each class

ImageNet DB

Alexnet
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VGG16 is a convolutional neural network model proposed by K. 

Simonyan and A. Zisserman from the University of Oxford in the paper 

“Very Deep Convolutional Networks for Large-Scale Image Recognition”. 

The model achieves 92.7% top-5 test accuracy in ImageNet, which is a 

dataset of over 14 million images belonging to 1000 classes.

VGG-16 (Classification and Detection)

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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2. Training CNNs

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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Training

• Back-propagation
‒ Sparse Connections of CNNs decrease the complexity 

of Back-Propagation

‒ ReLU activation function relieves the vanishing 

gradient problem

• Stochastic Gradient Descent

Slide credit from Nadav Cohen, “Adam: A Method for Stochastic Optimization”

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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Loss Minimization Problem

Slide credit from Nadav Cohen, “Adam: A Method for Stochastic Optimization”
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Large-Scale Setting

Slide credit from Nadav Cohen, “Adam: A Method for Stochastic Optimization”

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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Optimization Methods Requirements

Slide credit from Nadav Cohen, “Adam: A Method for Stochastic Optimization”
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Stochastic Gradient Descent (SGD)

Slide credit from Nadav Cohen, “Adam: A Method for Stochastic Optimization”

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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Variants to the Basic SGD

• Nestrov’s Accelerated Gradient 

• Adaptive Gradient (AdaGrad)

• Root Mean Square Propagation (RMSProp)

• Adaptive Moment Estimation (Adam)

Slide credit from Nadav Cohen, “Adam: A Method for Stochastic Optimization”

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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ADAM

Slide credit from Nadav Cohen, “Adam: A Method for Stochastic Optimization”

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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How to Train a CNN?

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 

Ph.D. degree in Computer Science, Università degli Studi di Milano

3. Greedy Layer-wise Training

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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• Difficulties of supervised training of deep networks
₋Early layers of MLP do not get trained well

₋Diffusion of Gradient – error attenuates as it propagates to earlier 
layers

₋Leads to very slow training

₋Exacerbated since top couple layers can usually learn any task 
"pretty well" and thus the error to earlier layers drops quickly as 
the top layers "mostly" solve the task– lower layers never get the 
opportunity to use their capacity to improve results, they just do a 
random feature map

₋Need a way for early layers to do effective work

₋Instability of gradient in deep networks: Vanishing or exploding 
gradient

o Product of many terms, which unless “balanced” just right, is 
unstable

o Either early or late layers stuck while “opposite” layers are 
learning

Problems in Training Deep Neural Networks 

(1/2)

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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• Often not enough labeled data available while 
there may be lots of unlabeled data
₋Can we use unsupervised/semi-supervised 
approaches to take advantage of the unlabeled data

• Deep networks tend to have more sensitive 
training issues problems than shallow networks 
during supervised training

Problems in Training Deep Neural Networks 

(2/2)

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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• One answer is greedy layer-wise training
1. Train first layer using your data without the labels 

(unsupervised)

2. Then freeze the first layer parameters and start 
training the second layer using the output of the first 
layer as the unsupervised input to the second layer

3. Repeat this for as many layers as desired

4. Use the outputs of the final layer as inputs to a 
supervised layer/model and train the last supervised 
layer(s) (leave early weights frozen)

5. Unfreeze all weights and fine tune the full network 
by training with a supervised approach, given the 
pre-training weight settings

Greedy Layer-wise Training

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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Deep Net with Greedy Layer-wise Training
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• Greedy layer-wise training avoids many of the 
problems of trying to train a deep net in a 
supervised fashion
–Each layer gets full learning focus in its turn since it is 
the only current "top" layer

–Can take advantage of unlabeled data

–When you finally tune the entire network with 
supervised training the network weights have already 
been adjusted so that you are in a good error basin 
and just need fine tuning.  This helps with problems of

o Ineffective early layer learning

o Deep network local minima

Greedy Layer-wise Training

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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• Model distribution of input data

• Can use unlabeled data (unlimited)

• Can be refined with standard supervised 
techniques (e.g. backprop)

• Useful when the amount of labels is small

Unsupervised Learning (1/2)

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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• Main idea: model distribution of input data
₋ Reconstruction error + regularizer (sparsity, 

denoising, etc.)

₋ Log-likelihood of data

• Models
₋ Basic: PCA, KMeans

₋ Denoising autoencoders

₋ Sparse autoencoders

₋ Restricted Boltzmann machines

₋ Sparse coding

₋ Independent Component Analysis

₋ …

Unsupervised Learning (2/2)

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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• Try to discover generic features of the data
₋ Learn identity function by learning important sub-

features (not by just passing through data)

₋ Compression, etc.

₋ Can use just new features in the new training set or 
concatenate both

Autoencoders

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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• Stack many (sparse) auto-encoders in succession and 
train them using greedy layer-wise training

• Drop the decode output layer each time

Stacked Autoencoders (1/2)

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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• Do supervised training on the last layer using final 
features

• Then do supervised training on the entire network to 
fine- tune all weights

Stacked Autoencoders (2/2)

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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• RBMs are energy-based models, they associate a
scalar energy to each configuration of the variables of
interest

• Energy based probabilistic models define a
probability distribution as:

𝑝 𝑥 =
𝑒−𝐸 𝑥

𝑍
where 𝑍 = σ𝑥 𝑒

−𝐸 𝑥

• An energy-based model can be learnt by performing
(stochastic) gradient descent on the empirical
negative log-likelihood of the training data, where
the log-likelihood and the loss function are:

𝐿 𝜃, 𝐷 =
1

𝑁
σ
𝑥𝑖𝜖𝐷 𝑙𝑜𝑔 𝑝(𝑥

𝑖) and 𝑙 𝜃, 𝐷 = −𝐿(𝜃, 𝐷)

𝑉3

𝑉4

𝑉1

𝑉2

ℎ2

ℎ2

ℎ1

RBM

Boltzmann Machines (BM)
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1. Forward Pass: Inputs are 
combined with an individual 
weights and a bias. Some 
hidden nodes are activated.

2. Backward Pass: Activations 
are combined with an 
individual weight and a bias. 
Results are passed to the 
visible layer.

3. Divergence calculation: Input 
𝑥 and samples 𝑥 are compared 
in visible layer. Parameters are 
updated and steps are 
repeated

𝑉1

𝑉2
ℎ2

ℎ1

ℎ3

𝑉1

𝑉2
ℎ2

𝑐

ℎ3

𝑤1

𝑤2

Input being passed to first hidden 
node

ℎ1 activates in this example

𝑏

𝑉2
ℎ2

ℎ1

ℎ3

𝑤1

𝑤3

𝑤4

Activations are passed to visible 
layer for reconstruction

𝑉1

𝑉2
ℎ2

ℎ1

ℎ3

−
𝑑𝑙𝑜𝑔𝑝 𝑥

𝑑𝜃

𝑈𝑝𝑑𝑎𝑡𝑒 𝑊, 𝑏, 𝑐

RBM Training

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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Deep Belief Networks (DBN)

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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4. Software for Deep Learning

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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How and Where?

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 

Ph.D. degree in Computer Science, Università degli Studi di Milano

• Hunderds of ML 
toolboxes are now
avaiblaes

• Deeplearn tools
₋ Apache Singa
₋ Amazon Machine 

Learning
₋ Azure ML Studio
₋ Caffe
₋ H2O
₋ Massive Online Analysis 

(MOA)
₋ MLlib (Spark)

₋ mlpack,

₋ Matlab toolboxes

₋ Pattern

₋ Scikit-Learn

₋ Shogun

₋ low

₋ Theano

₋ Torch

₋ Veles

SW Libraries and Toolboxes

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 

Ph.D. degree in Computer Science, Università degli Studi di Milano

63

64

http://singa.apache.org/docs/overview.html
https://aws.amazon.com/machine-learning/
https://studio.azureml.net/
http://caffe.berkeleyvision.org/
http://www.h2o.ai/
http://moa.cms.waikato.ac.nz/
http://spark.apache.org/mllib/
http://mlpack.org/
http://www.clips.ua.ac.be/pattern
http://scikit-learn.org/stable/
http://www.shogun-toolbox.org/
https://www.tensorflow.org/
http://deeplearning.net/software/theano/
http://torch.ch/
https://velesnet.ml/
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• https://it.mathworks.com/campaigns/products/o
ffer/deep-learning-with-matlab.html

• https://it.mathworks.com/videos/series/introduc
tion-to-deep-learning.html

Matlab
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• Caffe is a deep learning framework made with 
expression, speed, and modularity in mind. It is 
developed by Berkeley AI Research (BAIR) 
and by community contributors.

• http://caffe.berkeleyvision.org/

Caffe
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• Theano is a Python library that allows you to 
define, optimize, and evaluate mathematical 
expressions involving multi-dimensional arrays 
efficiently.

• http://deeplearning.net/software/theano/

Theano
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• TensorFlow™ is an open source software library for 
high performance numerical computation. Its flexible 
architecture allows easy deployment of computation 
across a variety of platforms (CPUs, GPUs, TPUs), 
and from desktops to clusters of servers to mobile and 
edge devices.

• Originally developed by researchers and engineers 
from the Google Brain team within Google’s AI 
organization, it comes with strong support for machine 
learning and deep learning and the flexible numerical 
computation core is used across many other scientific 
domains.

• https://www.tensorflow.org/

TensorFlow
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• PyTorch is a Python package that provides two high-
level features
‒ Tensor computation (like NumPy) with strong GPU acceleration

‒ Deep neural networks built on a tape-based autograd system

• https://pytorch.org/

PyTorch
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5. Design of Biometric Systems
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http://ruder.io/transfer-learning/

Transfer Learning 

to Avoid Overfitting
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https://github.com/BVLC/caffe/wiki/Model-

Zoo

Pretrained Models
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• Remove the fully connected layers

• Use the CNN as a feature extractor and train a new classifier

CNNs as Feature Extractors

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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Fine-tuning (1/2)
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• This strategy is to not only replace and retrain the 
classifier on top of the ConvNet on the new dataset, 
but to also fine-tune the weights of the pretrained 
network by continuing the backpropagation

• It is possible to fine-tune all the layers of the ConvNet, 
or it’s possible to keep some of the earlier layers fixed 
(due to overfitting concerns) and only fine-tune some 
higher-level portion of the network

• This is motivated by the observation that the earlier 
features of a ConvNet contain more generic features 
(e.g. edge detectors or color blob detectors) that 
should be useful to many tasks, but later layers of the 
ConvNet becomes progressively more specific to the 
details of the classes contained in the original dataset

Fine-tuning (2/2)
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Fine-tuning in Face Recognition

Fabio Scotti – Ruggero Donida Labati – Università degli Studi di Milano
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• Multiclass

• Binary

«What object is it?»
Class 

= 

Tree

«Is it a tree?»
Class 

= 

YES

«same class?»
Class 

= 

YES

Classical Image Classifiers
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• Multiclass = Identifier

• Binary = Verification

«who is this person?»
Class 

= 

Donald

«are the same
person?»

Class 

= 

NO

Biometric Classifiers
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Identification Using Deep Learning

Trained Classifier

Sample

Integer Identifier

Deep Learning

Use samples of every individual during the training step

Algoritmic

For each template i in Gallery

M(i) = identiry_verification(Fresh, Gallery(i))

end

ID = argmax(M)

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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Identification Verification: Imbalanced Classes

01_01 01_02 01_03 02_01 02_02 02_03 03_01 03_02 03_03

01_01 Genuine comparisons

01_02 Impostor comparisons

01_03

02_01

02_02

02_03

03_01

03_02

03_03

# genuine comparisons:

𝑁𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 ×𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑆𝑢𝑏𝑗𝑒𝑐𝑡 × (𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑆𝑢𝑏𝑗𝑒𝑐𝑡−1)

# impostor comparisons:
(𝑁𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠×𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑆𝑢𝑏𝑗𝑒𝑐𝑡)

2 − (𝑁𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠×𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑆𝑢𝑏𝑗𝑒𝑐𝑡 × (𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑆𝑢𝑏𝑗𝑒𝑐𝑡−1))
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Identity Verification Using

Algorithmic Matchers

Training

Verification

Template A
Matcher

DB

Template B
Matching

Score

Similitude or 

distance

Training:

Just ask the net

to map the ID of the 

user

Soft 
max

ID

Features are extracted here
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Identity Verification Using

Siamese Networks

Y. Taigman, M. Yang, M. Ranzato and L. Wolf, "DeepFace: Closing the Gap to Human-Level 

Performance in Face Verification," 2014 IEEE Conference on Computer Vision and Pattern 

Recognition, Columbus, OH, 2014, pp. 1701-1708
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Triplet Loss

F. Schroff, D. Kalenichenko and J. Philbin, "FaceNet: A unified embedding for face recognition 

and clustering," 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 

2015, pp. 815-823.
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ei = error for a specific partition

General Approach: 

Cross Validation (CV)
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SAMPLE

Leave One Out!

(LOO)

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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• Is an extreme case of k-FCV → k equals the 
number of examples in the data set

• In each step only one instance is used to test 
the model whereas the rest of instances are 
used to learn it.

Data Set Partitioning: Leave One Out

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 

Ph.D. degree in Computer Science, Università degli Studi di Milano

85

86



01/12/2020

44

Data Set Partitioning: Leave One Out
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SAMPLE

Leave One Person Out!

(LOPO)

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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MI

X

Is the network 

learning the 

identities?

LOPO

L(NP)O

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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ValidationTraining Test

Design Results

Training Deep Neural Networks for 

Identification
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How to use Deep Learning with few images

Data Augmentation

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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Same number,

but shifted/tilted, plus different types of noise

Data Augmentation:

Add Noise

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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Landmark perturbation for face alignment.

Flipping

patches (clipping)

color casting

blurring

Data Augmentation:

Also for Large Datasets

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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Evolution of Face Datasets
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6. Biometric Applications

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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Different Deep Learning Techniques for 

Different Biometric Traits
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Kalaivani Sundararajan,D. L. Woodard, Deep Learning for Biometrics: A Survey, ACM Comput. 
Surv. 51, 3, May 2018.
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6.1 Face

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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Kalaivani Sundararajan,D. L. Woodard, Deep Learning for Biometrics: A Survey, ACM Comput. 
Surv. 51, 3, May 2018.

Some Deep Learning Approaches for 

Face Recognition
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Yi Sun, Yuheng Chen, Xiaogang Wang, and Xiaoou Tang, Deep learning face representation by joint identification-
verification, in Proc. of the 27th Int. Conf. on Neural Information Processing Systems, 2014.

Examples of Face Recognition Methods (1/2)

Feature extraction

Matching

– PCA for dimensionality reduction

– Log likelyhood ratio

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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Jinguo Liu, Yafeng Deng, and Chang Huang, Targeting ultimate accuracy: Face recognition via deep embedding, 
2015.

Examples of Face Recognition Methods (1/2)
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Some Results for Face Recognition

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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Chenfei Xu, Qihe Liu, Mao Ye, Age invariant face recognition and retrieval by coupled auto-encoder networks, 
Neurocomputing, vol. 222, 2017, pp. 62-71.

Age Invariant Face Recognition
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Chenfei Xu, Qihe Liu, Mao Ye, Age invariant face recognition and retrieval by coupled auto-encoder networks, 
Neurocomputing, vol. 222, 2017, pp. 62-71.

Rotation Invariant Face Recognition
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H. Li, Z. Lin, X. Shen, J. Brandt and G. Hua, A convolutional neural network cascade for face detection,  in Proc. 
of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 5325-5334.

Face Detection (1/2)
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X. Sun, P. Wu, S.C.H. Hoi, Face detection using deep learning: An improved faster RCNN approach, 
Neurocomputing, volume 299, 2018, pp. 42-50.

Face Detection (2/2)
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H. Fan, E. Zhou, Approaching human level facial landmark localization by deep learning, Image and Vision 
Computing, vol. 47, 2016, pp. 27-35.

Estimation of Fiducial Points
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A. Anand, R. Donida Labati, A. Genovese, E. Muñoz, V. Piuri and F. Scotti, Age estimation based on face images and pre-trained Convolutional Neural
Networks, in Proc. of the IEEE Symp. on Computational Intelligence for Security and Defense, pp. 1-7, November 27-30, 2017.

Age Estimation
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Some Results for Age Estimation
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K .Zhang, C. Gao, L. Guo. M. Sun, X. Yuan, T.X. Han, Z. Zhao, B. Li, Age Group and Gender Estimation in the 
Wild With Deep RoR Architecture, IEEE Access, vol. 5 , 2017.

Gender and Ethnicity Estimation
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Some Results for Gender and Ethnicity 

Estimation
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Emotion Estimation

N. Jain, S. Kumar, A. Kumar, P. Shamsolmoali, M. Zareapoor, Hybrid deep neural networks for face emotion

recognition, Pattern Recognition Letters, 2018.
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6.2 Fingerprint
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K. Cao and A. K. Jain, Automated Latent Fingerprint Recognition, in IEEE Trans. on Pattern Analysis and Machine 
Intelligence, 2017.

Latent Fingerprint
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Some Results for Fingerprint Recognition
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Kalaivani Sundararajan,D. L. Woodard, Deep Learning for Biometrics: A Survey, ACM Comput. 
Surv. 51, 3, May 2018.

• Local features

• Repetitive pattern

• Rotations

• Non-linear distortions

Live fingerprint acquisitions?

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 
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J. M. Shrein, Fingerprint classification using convolutional neural networks and ridge orientation images, 2017 
IEEE Symposium Series on Computational Intelligence (SSCI), 2017, pp. 1-8.

Fingerprint Classification
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L. N. Darlow and B. Rosman, Fingerprint minutiae extraction using deep learning, IEEE International Joint 
Conference on Biometrics (IJCB), 2017, pp. 22-30

Minutiae Extraction
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Pore Extraction (1/2)

R. Donida Labati, A. Genovese, E. Muñoz, V. Piuri, F. Scotti, A novel pore extraction method for heterogeneous fingerprint
images using Convolutional Neural Networks, Pattern Recognition Letters, Vol. 113, 2018, pp. 58-66.
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R. Donida Labati, A. Genovese, E. Muñoz, V. Piuri, F. Scotti, A novel pore extraction method for heterogeneous fingerprint
images using Convolutional Neural Networks, Pattern Recognition Letters, Vol. 113, 2018, pp. 58-66.

Pore Extraction (2/2)
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6.3 Iris
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N. Liu, M. Zhang, H. Li, Z. Sun, T. Tan, DeepIris: Learning pairwise filter bank for heterogeneous iris verification, 
Pattern Recognition Letters, vol. 82, 2016, pp. 154-161.

Iris Recognition
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Some Results for Iris Recognition

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 

Ph.D. degree in Computer Science, Università degli Studi di Milano

121

122



01/12/2020

62

E. Jalilian, A. Uhl, Iris Segmentation Using Fully Convolutional Encoder–Decoder Networks. In Deep Learning for 
Biometrics, Springer, Cham, 2017.

Iris Segmentation
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6.4 Other Biometric Traits
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R. Donida Labati, E. Muñoz, V. Piuri, R. Sassi, F. Scotti, Deep-ECG: Convolutional Neural Networks for ECG 

biometric recognition, Pattern Recognition Letters, 2018.

Electrocardiographic Signals (ECG)
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Some Results for Speaker Recognition
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Some Results for Signature Verification
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Some Results for Palmprint Verification
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Some Results for Gait Recognition
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6.4 Other Applications
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Iris Segmentation

C. Wang, J. Muhammad, Y. Wang, Z. He and Z. Sun, "Towards Complete and Accurate Iris Segmentation Using 

Deep Multi-Task Attention Network for Non-Cooperative Iris Recognition," in IEEE Transactions on Information 

Forensics and Security, vol. 15, pp. 2944-2959, 2020.
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Aging

A. Genovese, V. Piuri, F. Scotti, "Towards explainable face aging with Generative Adversarial Networks", in Proc. 

of the 26th IEEE Int. Conf. on Image Processing (ICIP 2019), Taipei, Taiwan, pp. 3806-3810, September 22-25, 

2019
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Pose Compensation

C. Rong, X. Zhang and Y. Lin, "Feature-Improving Generative Adversarial Network for Face Frontalization," in 

IEEE Access, vol. 8, pp. 68842-68851, 2020, doi: 10.1109/ACCESS.2020.2986079.
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Generative Adversarial Networks for Data 

Augmentation

https://machinelearning.apple.com/research/gan
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Super-resolution

E. Ribeiro, A. Uhl and F. Alonso-Fernandez, "Iris super-resolution using CNNs: is photo-realism 

important to iris recognition?," in IET Biometrics, vol. 8, no. 1, pp. 69-78, 1 2019
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7. Summary

Ruggero Donida Labati - Deep Learning in Biometrics - 2020-201 

Ph.D. degree in Computer Science, Università degli Studi di Milano

135

136



01/12/2020

69

Deep Learning

• Convolutional neural networks

• Greedy layer-wise training

• Software for deep learning
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Deep Learning for Biometrics

• Design of biometric systems

• Applications of artificial intelligence in 
biometrics
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Thank you!
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