

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

15

Fine-tuning the ConvNet

This strategy is to not only replace and retrain the classifier on top of the ConvNet on the new dataset, but to also fine-tune the weights of the pretrained network by continuing the backpropagation. It is possible to fine-tune all the layers of the ConvNet, or it's possible to keep some of the earlier layers fixed (due to overfitting concerns) and only fine-tune some higherlevel portion of the network. This is motivated by the observation that the earlier features of a ConvNet contain more generic features (e.g. edge detectors or color blob detectors) that should be useful to many tasks, but later layers of the ConvNet becomes progressively more specific to the details of the classes contained in the original dataset. In case of ImageNet for example, which contains many dog breeds, a significant portion of the representational power of the ConvNet may be devoted to features that are specific to differentiating between dog breeds.

Industry	Use Cases	Research	
7.74	Image Recognition	facebook	NYU
Adobe Bai	Face Recognition		
for Creative Recognition Cloud	e Gesture Recognition	STANFORD	DARPA
flickr Image classification Image Hadoop NETFLUX Recommendation Vandex Search Rankings	Video Search & Analytics	CONTVERSITI	
	Speech Recognition & Translation	DENSO	Carnegie Mellon University
	Recommendation Engines		_
	. Autoeonnesse.it	Masseducella Institute of Technology	Berkele

GPU NVIDIA Deep Learning Course: Class Training A	#1 - Introduction to D GPU ACC Deep, Conv	eep Learning ELERATI olutional N	• ON eural Network	
Batch Size	Training Time CPU	Training Time GPU	GPU Speed Up	
64 images	64 s	7.5 s	8.5X	
128 images	124 s	14.5 s	8.5X	
256 images	257 s	28.5 s	9.0X	
 ILSVRC12 winning model: "Supervision" 7 layers 5 convolutional layers + 2 fully-connected ReLU, pooling, drop-out, response normalization Implemented with Caffe 		 Dual 10-co 1 Tesla K40 CPU times GPU accele (cuBLAS) 	 Dual 10-core Ivy Bridge CPUs 1 Tesla K40 GPU CPU times utilized Intel MKL BLAS library GPU acceleration from CUDA matrix libraries (cuBLAS) 	
 Iraining time is for 2 30:08 / 1:08:45 	0 iterations		c: 🖑	
NVIDIA Deep Learning Cours	e		UNIVERSITÀ DEGLI STUDI DI MILA DIPARTIMENTO DI INFORMATICA	

