
04/11/2018

1

Deep Learning in
Biometrics
Ruggero Donida Labati

Introduction to Deep Learning

Academic year 2018/2019

• Introduction
• Convolutionary Neural Networks
• Autoencoders
• Training Deep Networks
• Deep Belief Networks 
• Validation
• Transfer Learning
• Applications

Summary



04/11/2018

2

Introduction

Machine Learning V.S. Deep Learning



04/11/2018

3

Image Low-level  
vision features

(edges, SIFT, HOG, etc.)

Object detection
/ classification

Input data  
(pixels)

Learning
Algorithm
(e.g., SVM)

feature  
representation  
(hand-crafted)

Features are not learned

Traditional Recognition Approach

James Hays

Adapted from © James Hays

SIFT Spin image

Textons

SURF, MSER, LBP, Color-SIFT, Color histogram, GLOH, …..

HoG
and many others:

Feature extraction

Adapted from © James Hays



04/11/2018

4

• Features are key to recent progress in recognition

• Multitude of hand-designed features currently in use

• Where next? Better classifiers? building better features?

Felzenszwalb, Girshick,
McAllester and Ramanan, PAMI 2007

Yan & Huang
(Winner of PASCAL 2010 classificationcompetition)

Adapted from © R. Fergus

Motivation

• Mid-level cues

Continuation Parallelism Junctions Corners

“Tokens”  from Vision by D.Marr:

• Object parts:

• Difficult to hand-engineerWhat about learning them?

Mid level representations

Adapted from © R. Fergus



04/11/2018

5

• Learn hierarchy

• All the way from pixels  classifier

• One layer extracts features from output of previous layer

Layer 1 Layer 2 Layer 3 Simple
Classifier

Image/Video  
Pixels

• Train all layers jointly

Learning Feature Hierarchy (1/2)

Adapted from © R. Fergus

Learn useful higher‐level features from images

Feature representation

Input data

1st layer  
“Edges”

2nd layer  
“Object parts”

3rd layer  
“Objects”

Pixels

Lee et al., ICML2009;  
CACM 2011

Adapted from © James Hays

Learning Feature Hierarchy (2/2)



04/11/2018

6

• Supervised Learning
– End‐to‐end learning of deep architectures (e.g., deep
neural networks) with back‐propagation

– Works well when the amounts of labels is large

– Structure of the model is important (e.g.
convolutional structure)

• Unsupervised Learning
– Learn statistical structure or dependencies of the data  
from unlabeled data

– Layer‐wise training

– Useful when the amount of labels is not large

Adapted from © James Hays

Approaches to Learn Features

Taxonomy

NVIDIA Deep Learning Course



04/11/2018

7

Deep Learning approach

NVIDIA Deep Learning Course

What makes Deep Learning deep?

NVIDIA Deep Learning Course



04/11/2018

8

• Usually best when input space is locally structured – spatial or 
temporal: images, language, etc. vs arbitrary input features

• Images Example: view of a learned vision feature layer (Basis)

• Each square in the figure shows the input image that maximally 
activates one of  the 100 unit

Deep Learning tasks

Adapted from © Tony Martinez

• Biological Plausibility – e.g. Visual Cortex

• Hastad proof - Problems which can be represented 
with a polynomial number of nodes with k layers, may 
require an exponential number of nodes with k-1 
layers (e.g. parity)

• Highly varying functions can be efficiently 
represented with deep architectures
– Less weights/parameters to update than a less efficient 

shallow representation

• Sub-features created in deep architecture can 
potentially be shared between multiple tasks
– Type of Transfer/Multi-task learning

Why Deep Learning

Adapted from © Tony Martinez



04/11/2018

9

• Fukushima (1980) – Neo-Cognitron

• LeCun (1998) – Convolutional Neural 
Networks (CNN)
– Similarities to Neo-Cognitron

• Many layered MLP with backpropagation
– Tried early but without much success

• Very slow

• Diffusion of gradient

– Very recent work has shown significant accuracy 
improvements by "patiently" training deeper MLPs 
with BP using fast machines (GPUs) – may be 
best most general approach

Early Work

Adapted from © Tony Martinez

….

• Error attenuation, long fruitless training
• Recent – Long patient training with GPUs and 

special hardware
• Becoming more popular, Rectified Linear Units

Backpropagation Training Problems

Adapted from © Tony Martinez



04/11/2018

10

• More efficient gradient propagation, derivative is 0 or 
constant, just fold into learning rate

• More efficient computation.

• Sparse activation: For example, in a randomly 
initialized networks, only about 50% of hidden units 
are activated (having a non-zero output)

Rectified Linear Units

Adapted from © Tony Martinez

Convolutionary Neural Networks 



04/11/2018

11

• Networks built specifically for problems with low dimensional 
(e.g. 2-d) local structure

– Character recognition – where neighboring pixels will have 
high correlations and local features (edges, corners, etc.), 
while distant pixels (features) are un-correlated

– Natural images have the property of being stationary, 
meaning that the statistics of one part of the image are the 
same as any other part

– While standard NN nodes take input from all nodes in the 
previous layer, CNNs enforce that a node receives only a 
small set of features which are spatially or temporally close 
to each other called receptive fields from one layer to the 
next (e.g. 3x3, 5x5), thus enforcing ability to handle local 2-D 
structure.

• Can find edges, corners, endpoints, etc.

• Good for problems with local 2-D structure, but lousy for general 
learning with abstract features having no prescribed ordering

Convolutionary Neural Networks (CNN)

Adapted from © Tony Martinez

Convolution

Adapted from © Tony Martinez



04/11/2018

12

C layers are 
convolutions, S 
layers 
pool/sample

Often starts with 
fairly raw features 
at initial input and 
lets CNN 
discover 
improved feature 
layer for final 
supervised 
learner – eg. 
MLP/BP

CNN -

CNN - Schema

Adapted from © Tony Martinez

CNN - Terminology

Adapted from © Tony Martinez



04/11/2018

13

CNN - Sparse connectivity

Adapted from © Tony Martinez

• The 2-d planes of nodes (or their outputs) at subsequent layers 
in a CNN are called feature maps

• To deal with translation invariance, each node in a feature map 
has the same weights (based on the feature it is looking for), 
and each node connects to a different overlapping receptive 
field of the previous layer 

• Thus each feature map searches the full previous layer to see if 
and how often its feature occurs (precise position not critical)
– The output will be high at each node in the map corresponding to a 

receptive field where the feature occurs

– Later layers could concern themselves with higher order 
combinations of features and rough relative positions

– Each calculation of a node’s net value, Σxw in the feature map, is 
called a convolution, based on the similarity to standard 
overlapping convolutions

CNN – Translation Invariance

Adapted from © Tony Martinez



04/11/2018

14

• Each node (e.g. convolution) is calculated for each 
receptive field in the previous layer
– During training the corresponding weights are always tied to be 

the same 

– Thus a relatively small number of unique weight parameters to 
learn, although they are replicated many times in the feature 
map

– Each node output in CNN is sigmoid(Σxw + b) (just like BP)

– Multiple feature maps in each layer

– Each feature map should learn a different translation invariant 
feature

• Convolution layer causes total number of features to 
increase

CNN - Structure

Adapted from © Tony Martinez

• Convolution and sub-sampling layers are interleaved
• Sub-sampling (Pooling) allows number of features to be 

diminished, non-overlapped
– Reduces spatial resolution and thus naturally decreases 

importance of exactly where a feature was found, just 
keeping the rough location

– Averaging or Max-Pooling (Just as long as the feature is 
there, take the max, as exact position is not that critical)

– 2x2 pooling would do 4:1 compression, 3x3 9:1, etc.
– Pooling smooths the data and makes the data invariant to 

small translational changes
– Since after first layer, there are always multiple feature maps 

to connect to the next layer, it is a pre-made human decision 
as to which previous maps the current map receives inputs 
from

Sub-Sampling (Pooling)

Adapted from © Tony Martinez



04/11/2018

15

• Trained with BP but with weight tying in each feature 
map
– Randomized initial weights through entire network
– Just average the weight updates over the tied 

weights in feature map layers
• While all weights are trained, the structure of the CNN is 

currently usually hand crafted with trial and error.
– Number of total layers, number of receptive fields, 

size of receptive fields, size of sub-sampling 
(pooling) fields, which fields of the previous layer to 
connect to

– Typically decrease size of feature maps and increase 
number of feature maps for later layers

CNN - Training

Adapted from © Tony Martinez

CNN – LeNet 5

Adapted from © Tony Martinez



04/11/2018

16

Training Deep Networks

Adapted from © Tony Martinez

Training deep networks

• Build a feature space

– Note that this is what we do with SVM kernels, or 
trained hidden layers in BP, etc., but now we will build 
the feature space using deep architectures

– Unsupervised training between layers can 
decompose the problem into distributed sub-
problems (with higher levels of abstraction) to be 
further decomposed at subsequent layers



04/11/2018

17

Problems in training deep networks

• Difficulties of supervised training of deep networks
– Early layers of MLP do not get trained well
– Diffusion of Gradient – error attenuates as it propagates to earlier layers
– Leads to very slow training
– Exacerbated since top couple layers can usually learn any task "pretty well" 

and thus the error to earlier layers drops quickly as the top layers "mostly" 
solve the task– lower layers never get the opportunity to use their capacity 
to improve results, they just do a random feature map

– Need a way for early layers to do effective work
– Instability of gradient in deep networks: Vanishing or exploding gradient

• Product of many terms, which unless “balanced” just right, is unstable
• Either early or late layers stuck while “opposite” layers are learning

• Often not enough labeled data available while there may be lots of 
unlabeled data

– Can we use unsupervised/semi‐supervised approaches to take advantage of 
the unlabeled data

• Deep networks tend to have more sensitive training issues problems 
than shallow networks during supervised training

Adapted from © Tony Martinez

• One answer is greedy layer‐wise training
1. Train first layer using your data without the labels 

(unsupervised)
2. Then freeze the first layer parameters and start training the 

second layer using the output of the first layer as the 
unsupervised input to the second layer

3. Repeat this for as many layers as desired
4. Use the outputs of the final layer as inputs to a supervised 

layer/model and train the last supervised layer(s) (leave early 
weights frozen)

5. Unfreeze all weights and fine tune the full network by training 
with a supervised approach, given the pre‐training weight 
settings

Greedy Layer-Wise Training

Adapted from © Tony Martinez



04/11/2018

18

Deep Net with Greedy Layer Wise Training

Adapted from © Tony Martinez

• Greedy layer-wise training avoids many of 
the problems of trying to train a deep net in 
a supervised fashion
– Each layer gets full learning focus in its turn 

since it is the only current "top" layer
– Can take advantage of unlabeled data
– When you finally tune the entire network with 

supervised training the network weights have 
already been adjusted so that you are in a 
good error basin and just need fine tuning.  
This helps with problems of

• Ineffective early layer learning
• Deep network local minima

Greedy Layer-Wise Training

Adapted from © Tony Martinez



04/11/2018

19

Autoencoders

• Model distribution of input data

• Can use unlabeled data (unlimited)

• Can be refined with standard supervised
techniques (e.g. backprop)

• Useful when the amount of labels is small

Unsupervised Learning (1/2)



04/11/2018

20

• Main idea: model distribution of input data
– Reconstruction error + regularizer (sparsity, denoising, etc.)
– Log‐likelihood of data

• Models
– Basic: PCA, KMeans
– Denoising autoencoders
– Sparse autoencoders
– Restricted Boltzmann machines
– Sparse coding
– Independent Component Analysis
– …

Unsupervised Learning (2/2)

• Try to discover generic features of the data
– Learn identity function by learning important sub-

features (not by just passing through data)

– Compression, etc.

– Can use just new features in the new training set 
or concatenate both

Autoencoders

Adapted from © Tony Martinez



04/11/2018

21

• Bengio (2007) – After Deep Belief Networks (2006)

• Stack many (sparse) auto-encoders in succession and train 
them using greedy layer-wise training

• Drop the decode output layer each time

Stacked Auto-Encoders (1/2)

Adapted from © Tony Martinez

• Do supervised training on the last layer using final 
features

• Then do supervised training on the entire network to fine-
tune all weights

Stacked Auto-Encoders (2/2)

Adapted from © Tony Martinez



04/11/2018

22

• Auto encoders will often do a dimensionality reduction
– PCA-like or non-linear dimensionality reduction

• This leads to a "dense" representation which is nice in 
terms of parsimony
– All features typically have non-zero values for any input and the 

combination of values contains the compressed information

• A sparse representation uses more features where at any 
given time many/most of the features will have a 0 value
– Thus there is an implicit compression each time but with varying 

nodes

– This leads to more localist variable length encodings where a 
particular node (or small group of nodes) with value 1 signifies the 
presence of a feature (small set of bases)

– A type of simplicity bottleneck (regularizer)

– This is easier for subsequent layers to use for learning

Sparse Encoders

Adapted from © Tony Martinez

• Use more hidden nodes in the encoder

• Use regularization techniques which encourage 
sparseness (e.g. a significant portion of nodes have 0 
output for any given input)
– Penalty in the learning function for non-zero nodes

– Weight decay

– etc.

• De-noising Auto-Encoder
– Stochastically corrupt training instance each time, but still 

train auto-encoder to decode the uncorrupted instance, 
forcing it to learn conditional dependencies within the 
instance

– Better empirical results, handles missing values well

Implementing a sparse Auto-Encoder

Adapted from © Tony Martinez



04/11/2018

23

• Easier to learn if sparse

Sparse Representation

Adapted from © Tony Martinez

Properties of Stacked Auto-Encoders

• Concatenation approach (i.e. using both hidden 
features and original features in final (or other) 
layers) can be better if not doing fine tuning.  If fine 
tuning, the pure replacement approach can work well.

• Always fine tune if there is a sufficient amount of 
labeled data

• For real valued inputs, MLP training is like regression 
and thus could use linear output node activations, still 
sigmoid at hidden

• Stacked Auto-Encoders empirically not quite as 
accurate as DBNs (Deep Belief Networks)

Adapted from © Tony Martinez



04/11/2018

24

Deep Belief Networks 

• One of the reasons that made the training of deep neural networks a difficult task is 
related to the vanishing gradient, which results from gradient based training 
techniques and the backpropagation algorithm

• Considering a very simple deep network, with only one neuron per layer, a cost C and 
a sigmoid activation function:

• A small change in 𝒃𝟏 sets off a series of cascading changes in the network

∆𝒂𝟏 ൎ
𝒅𝝈 𝝎𝟏𝒂𝟎ା𝒃𝟏

𝒅𝒃𝟏
∆𝒃𝟏 or ∆𝒂𝟏 ൌ 𝝈ᇱ 𝒛𝟏 ∆𝒃𝟏 The chance in 𝒂𝟏, then causes a change in the 

weighted input 𝒛𝟐, which would be given by ∆𝒛𝟐 ൎ 𝝈ᇱ 𝒛𝟏 𝝎𝟐∆𝒃𝟏. Basically, a term 𝝈′ሺ𝒛𝒋ሻ 
and 𝝎𝒋 is picked up in every neuron

The resulting change in cost (divided by ∆𝒃𝟏), produced by the change ∆𝒃𝟏 is given by:

𝒅𝑪
𝒅𝒃𝟏

ൌ 𝝈ᇱ 𝒛𝟏 ൈ 𝝎𝟐 ൈ 𝝈ᇱ 𝒛𝟐 ൈ 𝝎𝟑 ൈ 𝝈ᇱ 𝒛𝟑 ൈ 𝝎𝟒 ൈ 𝝈ᇱ 𝒛𝟒 ൈ
𝒅𝑪

𝒅𝒂𝟒

• For a sigmoid, 𝝈ᇱ 𝟎 ൌ
𝟏

𝟒
, in this sense, the terms 𝝎𝒋𝝈ᇱ 𝒛𝒋 ൏

𝟏

𝟒
, contributing to a 

vanishing gradient

Vanishing Gradient and Backpropagation

Adapted from © ECE 8527 Introduction to Deep Learning and
Pattern Recognition



04/11/2018

25

• The vanishing gradient results in very slow training for the front layers of the network

• One of the solutions to this issue was proposed by Hinton (2006). He proposed to use a
Restricted Boltzmann Machine (RBM) to model each new layer of higher level features

• RBMs are energy based models, they associate a scalar
energy to each configuration of the variables of interest

• Energy based probabilistic models define a probability
distribution as:

𝒑 𝒙 ൌ
𝒆ష𝑬 𝒙

𝒁
where 𝒁 ൌ ∑ 𝒆ି𝑬 𝒙

𝒙

• An energy-based model can be learnt by performing
(stochastic) gradient descent on the empirical negative
log-likelihood of the training data, where the log-
likelihood and the loss function are:

𝑳 𝜽, 𝑫 ൌ
𝟏

𝑵
∑ 𝒍𝒐𝒈 𝒑ሺ𝒙𝒊ሻ𝒙𝒊𝝐𝑫 and 𝒍 𝜽, 𝑫 ൌ െ𝑳ሺ𝜽, 𝑫ሻ

𝑉ଷ

𝑉ସ

𝑉ଵ

𝑉ଶ

ℎଶ

ℎଶ

ℎଵ

RBM

Boltzmann Machines (BM)

Adapted from © ECE 8527 Introduction to Deep Learning and
Pattern Recognition

1. Forward Pass: Inputs 
are combined with an 
individual weights and a 
bias. Some hidden nodes 
are activated.

2. Backward Pass: 
Activations are combined 
with an individual weight 
and a bias. Results are 
passed to the visible layer.

3. Divergence calculation: 
Input 𝒙 and samples 𝒙෥ are 
compared in visible layer. 
Parameters are updated 
and steps are repeated

𝑉ଵ

𝑉ଶ
ℎଶ

ℎଵ

ℎଷ

𝑉ଵ

𝑉ଶ
ℎଶ

𝑐

ℎଷ

𝒘𝟏

𝒘𝟐

Input being passed to first 
hidden node

𝒉𝟏 activates in this example

𝑏

𝑉ଶ
ℎଶ

ℎଵ

ℎଷ

𝒘𝟏

𝒘𝟑

𝒘𝟒

Activations are passed to 
visible layer for reconstruction

𝑉ଵ

𝑉ଶ
ℎଶ

ℎଵ

ℎଷ

െ
𝒅𝒍𝒐𝒈𝒑 𝒙

𝒅𝜽

𝑼𝒑𝒅𝒂𝒕𝒆 𝑾, 𝒃, 𝒄

RBM Training Summary 

Adapted from © ECE 8527 Introduction to Deep Learning and
Pattern Recognition



04/11/2018

26

Deep Belief Networks (DBN)

• Geoff Hinton (2006)

• Uses Greedy layer-wise training but each layer is an 
RBM (Restricted Boltzmann Machine)

• RBM is a constrained

Boltzmann machine with
– No lateral connections between

– hidden (h) and visible (x) nodes

– Symmetric weights

– Does not use annealing/temperature, but that is all right 
since each RBM not seeking a global minima, but rather an 
incremental transformation of the feature space

– Typically uses probabilistic logistic node, but other 
activations possible

Adapted from © Tony Martinez

• Same greedy layer-wise approach

• First train lowest RBM (h0 – h1) 
using RBM update algorithm (note 
h0 is x)

• Freeze weights and train 
subsequent RBM layers

• Then connect final outputs to a 
supervised model and train that 
model

• Finally, unfreeze all weights, and 
train full DBN with supervised model 
to fine-tune weights

Deep Belief Network Training

Adapted from © Tony Martinez



04/11/2018

27

• After all layers have learned then the output of the last layer can 
be input to a supervised learning model

• Note that at this point we could potentially throw away all the 
downward weights in the network as they will not actually be 
used during the normal feedforward execution process (as we 
did with the Stacked Auto Encoder)
– Note that except for the downward bias weights b they are the 

same symmetric weights anyways

– If we are relaxing M times in the top layer then we would still need 
the downward weights for that layer

– Also if we are generating x values we would need all of them

• The final weight tuning is usually done with backpropagation, 
which only updates the feedforward weights, ignoring any 
downward weights

DBN Execution

Adapted from © Tony Martinez

Transfer Learning



04/11/2018

28

• Since modern ConvNets take 2‐3 weeks to 
train across multiple GPUs on ImageNet, it is 
common to see people release their final 
ConvNet checkpoints for the benefit of 
others who can use the networks for fine‐
tuning.

• For example, the Caffe library has a Model 
Zoo where people share their network 
weights.

Pretrained models

• Take a ConvNet pretrained on ImageNet, remove the last 
fully‐connected layer (this layer’s outputs are the 1000 
class scores for a different task like ImageNet), then treat 
the rest of the ConvNet as a fixed feature extractor for 
the new dataset. In an AlexNet, this would compute a 
4096‐D vector for every image that contains the 
activations of the hidden layer immediately before the 
classifier. We call these features CNN codes. It is 
important for performance that these codes are ReLUd
(i.e. thresholded at zero) if they were also thresholded
during the training of the ConvNet on ImageNet (as is 
usually the case). Once you extract the 4096‐D codes for 
all images, train a linear classifier (e.g. Linear SVM or 
Softmax classifier) for the new dataset.

ConvNets as feature extractors



04/11/2018

29

• This strategy is to not only replace and retrain the classifier on 
top of the ConvNet on the new dataset, but to also fine‐tune the 
weights of the pretrained network by continuing the 
backpropagation. It is possible to fine‐tune all the layers of the 
ConvNet, or it’s possible to keep some of the earlier layers fixed 
(due to overfitting concerns) and only fine‐tune some higher‐
level portion of the network. This is motivated by the 
observation that the earlier features of a ConvNet contain more 
generic features (e.g. edge detectors or color blob detectors) 
that should be useful to many tasks, but later layers of the 
ConvNet becomes progressively more specific to the details of 
the classes contained in the original dataset. In case of ImageNet 
for example, which contains many dog breeds, a significant 
portion of the representational power of the ConvNet may be 
devoted to features that are specific to differentiating between 
dog breeds.

Fine-tuning the ConvNet

Applications



04/11/2018

30

Face recognition: recognition performance

LFW dataset (13323 images, 5749 celebrities)
o deep learning strategies surpassed humans

o ൎ 99 % of accuracy for verification

o > 95 % of accuracy for closed‐set identification

Deep learning for voice signlas

• Speaker recognition

• Speach recognition



04/11/2018

31

Who is using deep learning?

NVIDIA Deep Learning Course

• https://it.mathworks.com/campaigns/produc
ts/offer/deep‐learning‐with‐matlab.html

• https://it.mathworks.com/videos/series/intro
duction‐to‐deep‐learning.html

MATLAB



04/11/2018

32

• MatConvNet is a MATLAB toolbox 
implementing Convolutional Neural 
Networks (CNNs) for computer vision 
applications

• http://www.vlfeat.org/matconvnet/

MatConvNet: CNNs for MATLAB

• Caffe is a deep learning framework made with 
expression, speed, and modularity in mind. It 
is developed by Berkeley AI Research (BAIR) 
and by community contributors.

• http://caffe.berkeleyvision.org/

Caffe



04/11/2018

33

• Theano is a Python library that allows you to define, 
optimize, and evaluate mathematical expressions 
involving multi‐dimensional arrays efficiently.

• http://deeplearning.net/software/theano/

Tehano

• TensorFlow™ is an open source software library for high 
performance numerical computation. Its flexible 
architecture allows easy deployment of computation 
across a variety of platforms (CPUs, GPUs, TPUs), and 
from desktops to clusters of servers to mobile and edge 
devices.

• Originally developed by researchers and engineers from 
the Google Brain team within Google’s AI organization, it 
comes with strong support for machine learning and 
deep learning and the flexible numerical computation 
core is used across many other scientific domains.

• https://www.tensorflow.org/

TensorFlow



04/11/2018

34

GPU

NVIDIA Deep Learning Course

• A tensor processing unit (TPU) is an AI 
accelerator application‐specific integrated 
circuit (ASIC) developed by Google 
specifically for neural network machine 
learning.

TPU



04/11/2018

35

• What can you do with a Raspberry PI and a 
Movidius?

• https://developer.movidius.com/

Intel Movidius

Ruggero Donida Labati - Università degli Studi di Milano


