
30/10/2018

1

Deep Learning in
Biometrics
Ruggero Donida Labati

Basic Concepts on Machine Learning

Academic year 2018/2019

• Introduction
• Perceptron and Feedforward Neural Networks
• Overfitting
• kNN
• SVM
• Validation

Summary



30/10/2018

2

Introduction

Regression
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Regression: Polynomial Curve Fitting

• Polynomial curve fitting

• Statistical regression

• Feedforward neural networks

• Radial basis functions neural networks

Regression: Some Approaches
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• Identifying to which of a set of categories a 
new observation belongs, on the basis of a 
training set of data

• Supervised learning

Classification

Classification: Pattern Recognition
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Classification: 2D Example

• Linear classifier

• Quadratic classifier

• K‐nearest neighbors

• Feedforward neural networks

• Support vector machines

Classification: Some Approaches
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• Cluster analysis or clustering is the task of grouping a 
set of objects in such a way that objects in the same 
group (called a cluster) are more similar (in some 
sense or another) to each other than to those in 
other groups (clusters).

Unsupervised Learning: Clustering

Clustering: Example
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• K‐means

• Self organized maps

• Fuzzy c‐means

• Autoencoders

Unsupervised Learning: Some Approaches

Perceptron and
Feedforward Neural Networks
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• A neural network can be defined as a 
model of reasoning based on the human 
brain. The brain 
consists of a densely interconnected set of 
nerve cells, or basic information-
processing units, called neurons.

• The human brain incorporates nearly 10 
billion neurons and 60 trillion connections, 
synapses, between them. By using 
multiple neurons simultaneously, the brain 
can perform its functions much faster than 
the fastest computers in existence today.

Neurons and synapses

Adapted from © Kris Hauser

• Each neuron has a very simple
structure, but an army of such elements
constitutes a tremendous processing
power.

• A neuron consists of a cell body, soma, a 
number of fibers called dendrites, and a 
single long fiber called the axon.

Connections

Adapted from © Kris Hauser



30/10/2018

9

Soma Soma

Synapse

Synapse

Dendrites

Axon

Synapse

Dendrites

Axon

Biological neural network

Adapted from © Kris Hauser

• Axon terminal releases chemicals, called neurotransmitters.
• These act on the membrane of the receptor dendrite to 

change its polarization.
• (The inside is usually 70mV more negative than the outside.)
• Decrease in potential dierence: excitatory synapse
• Increase in potential dierence: inhibitory synapse
• If there is enough net excitatory input, the axon is 

depolarized.
• The resulting action potential travels along the axon.
• (Speed depends on the degree to which the axon is covered 

with myelin.)
• When the action potential reaches the terminal buttons, it 

triggers the release of neurotransmitters.

Very simplified description of
neural information processing

Adapted from © Kris Hauser
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• Our brain can be considered as a highly
complex, non-linear and parallel information-
processing system.

• Information is stored and processed in a neural 
network simultaneously throughout the whole 
network, rather than at specific locations. In other 
words, in neural networks, both data and its 
processing are global rather than local.

• Learning is a fundamental and essential 
characteristic of biological neural networks. The 
ease with which they can learn led to attempts to 
emulate a biological neural network in a computer.

19

Learning process

Adapted from © Kris Hauser
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Artificial neural network (1/2)

Adapted from © Kris Hauser
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• An artificial neural network consists of a number of
very simple processors, also called neurons,
which are analogous to the biological neurons in
the brain.

• The neurons are connected by weighted
links passing signals from one neuron to 
another.

• The output signal is transmitted through the 
neuron’s outgoing connection. The outgoing 
connection splits into a number of branches that 
transmit the same signal. The outgoing 
branches terminate at the incoming connections
of other neurons in the network.

Artificial neural network (2/2) 

Adapted from © Kris Hauser

Biological Neural Network Artificial Neural Network
Soma Neuron
Dendrite Input
Axon Output
Synapse Weight

Analogy between biological and artificial 
neural networks

Adapted from © Kris Hauser
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• Learning from experience: Complex difficult to solve 
problems, but with plenty of data that describe the problem

• Generalizing from examples: Can interpolate from previous 
learning and give the correct response to unseen data

• Rapid applications development: NNs are generic 
machines and quite independent from domain knowledge

• Adaptability: Adapts to a changing environment, if is 
properly designed 

• Computational efficiency: Although the training off a neural 
network demands a lot of computer power, a trained network 
demands almost nothing in recall mode

• Non-linearity: Not based on linear assumptions about the 
real word

Characteristics of artificial neural networks

Adapted from © Kris Hauser

Diagram of a neuron
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The neuron as a simple computing element

Adapted from © Kris Hauser
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• The neuron computes the weighted sum of the
input signals and compares the result with a
threshold value, 𝜗. If the net input is less than
the threshold, the neuron output is –1. But if the net
input is greater than or equal to the threshold, the 
neuron becomes activated and its output attains a 
value +1.

• The neuron uses the following transfer or
activation function:

• This type of activation function is called a
sign function.

n

X  xiwi
i1 1, if X  

Y  
1, if X  

Basic neuron model

Adapted from © Kris Hauser
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Single-layer two-input perceptron

Adapted from © Kris Hauser
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• The operation of Rosenblatt’s perceptron is 
based on the McCulloch and Pitts neuron 
model. The model consists of a linear 
combiner followed by a hard limiter.

• The weighted sum of the inputs is applied 
to the hard limiter, which produces an 
output equal to +1 if its input is positive and 
-1 if it is negative.

The perceptron (1/2)

Adapted from © Kris Hauser

• The aim of the perceptron is to classify inputs, 
x1, x2, . . ., xn, into one of two classes, say A1

and A2.

• In the case of an elementary perceptron, the n-
dimensional space is divided by a hyperplane
into two decision regions. The hyperplane is
defined by the linearly separable function:

The perceptron (2/2)

n

 xiwi   0
i1

Adapted from © Kris Hauser
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x1
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Class A1
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A2

2

1

x1w1 + x2w2   = 0

(a) Two-input perceptron. (b) Three-input perceptron.

x1

x3
x1w1 + x2w2 + x3w3   = 0

1
2

Linear separability in the perceptrons

29
Adapted from © Kris Hauser

• This is done by making small adjustments 
in the weights to reduce the difference 
between the actual and desired outputs of 
the perceptron.

• The initial weights are randomly assigned, 
usually in the range [- 0.5, 0.5], and then 
updated to obtain the output consistent with 
the training examples.

How does the perceptron learn its 
classification tasks? (1/2)

Adapted from © Kris Hauser
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• If at iteration p, the actual output is Y(p) and the desired 
output is Yd (p), then the error is given by:

where p = 1, 2, 3, . . .

Iteration p here refers to the pth training example 
presented to the perceptron.

• If the error, e(p), is positive, we need to increase 
perceptron output Y(p), but if it is negative, we need to 
decrease Y(p).

e(p)Yd (p)Y(p)

How does the perceptron learn its 
classification tasks? (2/2)

Adapted from © Kris Hauser

• wi ( p 1)  wi ( p)   xi ( p) e( p)

where p = 1, 2, 3, . . .
 is the learning rate, a positive constant less

than unity.

• The perceptron learning rule was first proposed

by Rosenblatt in 1960. Using this rule we can

derive the perceptron training algorithm for

classification tasks.

The perceptron learning rule

32
Adapted from © Kris Hauser
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Perceptron’s training algorithm (1/2)

Step 1: Initialisation
Set initial weights w1, w2,…, wn and threshold 𝜗
to random numbers in the range [-0.5, 0.5].

Step 2: Activation
Activate the perceptron by applying inputs x1(p), 
x2(p),…, xn(p) and desired output Yd (p).
Calculate the actual output at iteration p = 1


Y ( p )  step  x i ( p ) w i ( p )   

 

 i1

where n is the number of the perceptron inputs, and 
step is a step activation function.

Adapted from © Kris Hauser

Step 4: Iteration
Increase iteration p by one, go back to Step 2 and
repeat the process until convergence.

Step 3: Weight training
Update the weights of the perceptron

Perceptron’s training algorithm (2/2)

where wi(p) is the weight correction at iteration p.

The weight correction is computed by the delta rule:

wi ( p 1)  wi ( p) wi ( p)

wi ( p)    xi ( p) e(p)

34
Adapted from © Kris Hauser
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Example of perceptron learning:
the logical operation AND

Adapted from © Kris Hauser

Two-dimensional plots of basic logical 
operations

x1

1

(a) AND (x1  x2)

1

(b) OR (x1  x2)

x2 x2 x2

1

x1

1

x1

1

1

(c) Exclusive-OR
(x1  x2)

00 0

A perceptron can learn the operations AND and OR, but
not Exclusive-OR.

Adapted from © Kris Hauser
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Activation functions

• A multilayer perceptron is a feedforward 
neural network with one or more hidden 
layers.

• The network consists of an input layer of 
source neurons, at least one middle or 
hidden layer of computational neurons, 
and an output layer of computational 
neurons.

• The input signals are propagated in a 
forward direction on a layer-by-layer basis.

Multilayer neural networks

Adapted from © Kris Hauser
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Multilayer perceptron with two hidden layers
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Adapted from © Kris Hauser

• A hidden layer “hides” its desired output. Neurons 
in the hidden layer cannot be observed through the 
input/output behaviour of the network. There is no 
obvious way to know what the desired output of the 
hidden layer should be.

• Commercial ANNs incorporate three and 
sometimes four layers, including one or two hidden 
layers. Each layer can contain from 10 to 1000 
neurons. Experimental neural networks may have 
five or even six layers, including three or four 
hidden layers, and utilise millions of neurons.

What does the middle layer hide?

Adapted from © Kris Hauser
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• Learning in a multilayer network proceeds 
the same way as for a perceptron.

• A training set of input patterns is presented 
to the network.

• The network computes its output pattern, 
and if there is an error - or in other words a 
difference between actual and desired 
output patterns - the weights are adjusted 
to reduce this error.

Back-propagation neural network (1/2)

Adapted from © Kris Hauser

• In a back-propagation neural network, the learning 
algorithm has two phases.

• First, a training input pattern is presented to the 
network input layer. The network propagates the 
input pattern from layer to layer until the output 
pattern is generated by the output layer.

• If this pattern is different from the desired output, 
an error is calculated and then propagated 
backwards through the network from the output 
layer to the input layer. The weights are modified 
as the error is propagated.

Back-propagation neural network (2/2)

Adapted from © Kris Hauser
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Three-layer back-propagation neural network

43
Adapted from © Kris Hauser

The back-propagation training algorithm (1/6)

Step 1: Initialisation
Set all the weights and threshold levels of the 
network to random numbers uniformly distributed 
inside a small range:

where Fi is the total number of inputs of neuron i in the
network. The weight initialisation is done on a neuron-
by-neuron basis.

Fi 
2.4 





, 

Fi

2.4

Adapted from © Kris Hauser
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The back-propagation training algorithm (2/6)

Step 2: Activation

Activate the back-propagation neural network by

applying inputs x1(p), x2(p),…, xn(p) and desired

outputs yd,1(p), yd,2(p),…, yd,n(p).

(a) Calculate the actual outputs of the neurons in the
hidden layer:

where n is the number of inputs of neuron j in the hidden 
layer, and sigmoid is the sigmoid activation function.


 xi ( p ) wij ( p )   j 



 i1

 n
y j ( p )  sigmoid

Adapted from © Kris Hauser

The back-propagation training algorithm (3/6)

Step 2: Activation (continued)

(b) Calculate the actual outputs of the neurons in the 
output layer:

where m is the number of inputs of neuron k in the output 
layer.


yk ( p)  sigmoid  x jk ( p) w jk ( p)  k 



 j1

 m

Adapted from © Kris Hauser
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The back-propagation training algorithm (4/6)

Step 3: Weight training

Update the weights in the back-propagation network 
propagating backward the errors associated with output 
neurons.
(a) Calculate the error gradient for the neurons in the 
output layer:

k ( p)  yk ( p) 1 yk ( p)ek ( p)
where

Calculate the weight corrections:

wjk ( p)   y j ( p) k (p)
Update the weights at the output neurons:

wjk ( p 1)  wjk ( p)  wjk ( p)

ek ( p)  yd ,k ( p)  yk ( p)

Adapted from © Kris Hauser

The back-propagation training algorithm (5/6)

Step 3: Weight training (continued)

(b) Calculate the error gradient for the neurons in the 
hidden layer:

l

 j ( p)  y j ( p) [1 y j ( p)]   k ( p) w jk ( p)
k1

Calculate the weight corrections:

Update the weights at the hidden neurons:

wij ( p)   xi ( p)  j ( p)

wij ( p 1)  wij ( p)  wij ( p)

48
Adapted from © Kris Hauser
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The back-propagation training algorithm (6/6)

Step 4: Iteration
Increase iteration p by one, go back to Step 2 and 
repeat the process until the selected error criterion is
satisfied.

As an example, we may consider the three-layer back-
propagation network. Suppose that the network is required
to perform logical operation Exclusive-OR. Recall that a 
single-layer perceptron could not do this operation. Now
we will apply the three-layer net.

Adapted from © Kris Hauser

Overfitting
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Adapted from © Kris Hauser

Polynomial Curve Fitting

Adapted from © Kris Hauser

Sum of Square Error Function
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Adapted from © Kris Hauser

0th Order Polynomial

Adapted from © Kris Hauser

1st Order Polynomial
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Adapted from © Kris Hauser

3rd Order Polynomial

Adapted from © Kris Hauser

9th Order Polynomial
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Root‐Mean‐Square (RMS) Error:

Adapted from © Kris Hauser

Overfitting

KNN
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• Values of concept 
f(x) given on 
training set 
D = {(xi,f(xi)) for i=1,…,N}
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Example: Table Lookup
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X• Suppose we have a 
distance metric
d(x,x’) between 
examples

• A nearest‐neighbors 
model classifies a 
point x by:
1. Find the closest 

point xi in the 
training set

2. Return the label f(xi)

+

Nearest-Neighbors Models
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• NN extends the 
classification value at 
each example to its 
Voronoi cell

• Idea: classification 
boundary is spatially 
coherent (we hope)

Voronoi diagram in a 2D 
space
https://en.wikipedia.org/wiki/Voronoi_diag
ram

Nearest-Neighbors Models

• d(x,x’) measures how “far” two examples are from one 
another, and must satisfy:
– d(x,x) = 0
– d(x,x’) ≥ 0
– d(x,x’) = d(x’,x)

• Common metrics
– Euclidean distance (if dimensions are in same units)
– Manhattan distance (different units)

• Axes should be weighted to account for spread
– d(x,x’) = αh|height‐height’| + αw|weight‐weight’|

• Some metrics also account for correlation between 
axes (e.g., Mahalanobis distance)

Distances
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• Training time is nil

• Naïve k‐NN: O(N) time to make a prediction

• Special data structures can make this faster
– k‐d trees
– Locality sensitive hashing

• … but are ultimately worthwhile only when d is 
small, N is very large, or we are willing to 
approximate

See 
R&N

Computational Properties of kNN

SVM
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• Binary classification can be viewed as the task of 
separating classes in feature space:

wTx + b = 0

wTx + b < 0
wTx + b > 0

f(x) = sign(wTx + b)

Adapted from © 
Machine Learning Group
University of Texas at Austin

Perceptron Revisited: Linear Separator

• Which of the linear separators is optimal? 

Adapted from © 
Machine Learning Group
University of Texas at Austin

Linear Separators
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• Distance from example xi to the separator is 

• Examples closest to the hyperplane are support vectors. 

• Margin ρ of the separator is the distance between support 
vectors.

w

xw b
r i

T 


r

ρ

Adapted from © 
Machine Learning Group
University of Texas at Austin

Classification Margin

• Maximizing the margin is good according to intuition and PAC 
theory.

• Implies that only support vectors matter; other training 
examples are ignorable. 

Adapted from © 
Machine Learning Group
University of Texas at Austin

Maximum Margin Separation
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• What if the training set is not linearly separable?

• Slack variables ξi can be added to allow 
misclassification of difficult or noisy examples, 
resulting margin called soft.

ξi

ξi

Adapted from © 
Machine Learning Group
University of Texas at Austin

Soft Margins

• The classifier is a separating hyperplane.

• Most “important” training points are support 
vectors; they define the hyperplane.

• Quadratic optimization algorithms can identify 
which training points xi are support vectors with 
non‐zero Lagrangian multipliers αi.

Adapted from © 
Machine Learning Group
University of Texas at Austin

Linear SVMs: Overview



30/10/2018

36

• Datasets that are linearly separable with some noise work 
out great:

• But what are we going to do if the dataset is just too hard? 

• How about… mapping data to a higher‐dimensional space:

0

0

0

x2

x

x

x

Adapted from © 
Machine Learning Group
University of Texas at Austin

Non-linear SVMs: Overview

• General idea:   the original feature space can 
always be mapped to some higher‐dimensional 
feature space where the training set is separable:

Φ:  x → φ(x)

Adapted from © 
Machine Learning Group
University of Texas at Austin

Non-linear SVMs: Feature Spaces



30/10/2018

37

• Linear: K(xi,xj)= xi
Txj

– Mapping Φ:    x →  φ(x), where φ(x) is x itself

• Polynomial of power p: K(xi,xj)= (1+ xi
Txj)

p

– Mapping Φ:    x →  φ(x), where φ(x) has           dimensions 

• Gaussian (radial‐basis function): K(xi,xj) =
– Mapping Φ:  x→  φ(x), where φ(x) is infinite‐dimensional: every point 

is mapped to a function (a Gaussian); combination of functions for 
support vectors is the separator.

• Higher‐dimensional space still has intrinsic dimensionality d (the 
mapping is not onto), but linear separators in it correspond to non‐
linear separators in original space.

2

2

2
ji

e
xx 










 
p

pd

Adapted from © 
Machine Learning Group
University of Texas at Austin

Examples of Kernel Functions

Validation
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• Samples from X are typically unavailable

• Take out some of the training set

– Train on the remaining training set

– Test on the excluded instances

– Cross‐validation

Assessing Performance of a Learning Algorithm

• Split original set of examples, train
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Hypothesis space H
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Cross-validation (1/3)
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• Evaluate hypothesis on testing set

Hypothesis space H

Testing set

++

+
+

+

--

-

-

-

-

+
+

Test

Cross-validation (2/3)

• Compare true concept against prediction
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+
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-
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-
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9/13 correct 

Cross-validation (3/3)
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• k‐fold cross‐validation

Train Test

Datas
et

Common Splitting Strategies (1/2)

• k‐fold cross‐validation

• Leave‐one‐out (n‐fold cross validation)

Train Test

Dataset

Common Splitting Strategies (2/2)
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• k‐fold cross validation requires

– k training steps on n(k‐1)/k datapoints

– k testing steps on n/k datapoints

– (There are efficient ways of computing L.O.O. 
estimates for some nonparametric techniques, 
e.g. Nearest Neighbors)

• Average results reported

Computational Complexity

• The method could learn information 
discriminative of the identity

• The traditional k‐fold cross‐validation method 
can be optimistic

• Leave N individuals out

Cross-validation in Biometrics


