
30/10/2018

1

Deep Learning in
Biometrics
Ruggero Donida Labati

Basic Concepts on Machine Learning

Academic year 2018/2019

• Introduction
• Perceptron and Feedforward Neural Networks
• Overfitting
• kNN
• SVM
• Validation

Summary

30/10/2018

2

Introduction

Regression

30/10/2018

3

Regression: Polynomial Curve Fitting

• Polynomial curve fitting

• Statistical regression

• Feedforward neural networks

• Radial basis functions neural networks

Regression: Some Approaches

30/10/2018

4

• Identifying to which of a set of categories a
new observation belongs, on the basis of a
training set of data

• Supervised learning

Classification

Classification: Pattern Recognition

30/10/2018

5

Output space

x

y

A=0

B=1
C=2

D=3

-0.5

0

0.5

1

1.5

2

2.5

3

Classification: 2D Example

• Linear classifier

• Quadratic classifier

• K‐nearest neighbors

• Feedforward neural networks

• Support vector machines

Classification: Some Approaches

30/10/2018

6

• Cluster analysis or clustering is the task of grouping a
set of objects in such a way that objects in the same
group (called a cluster) are more similar (in some
sense or another) to each other than to those in
other groups (clusters).

Unsupervised Learning: Clustering

Clustering: Example

30/10/2018

7

• K‐means

• Self organized maps

• Fuzzy c‐means

• Autoencoders

Unsupervised Learning: Some Approaches

Perceptron and
Feedforward Neural Networks

30/10/2018

8

• A neural network can be defined as a
model of reasoning based on the human
brain. The brain
consists of a densely interconnected set of
nerve cells, or basic information-
processing units, called neurons.

• The human brain incorporates nearly 10
billion neurons and 60 trillion connections,
synapses, between them. By using
multiple neurons simultaneously, the brain
can perform its functions much faster than
the fastest computers in existence today.

Neurons and synapses

Adapted from © Kris Hauser

• Each neuron has a very simple
structure, but an army of such elements
constitutes a tremendous processing
power.

• A neuron consists of a cell body, soma, a
number of fibers called dendrites, and a
single long fiber called the axon.

Connections

Adapted from © Kris Hauser

30/10/2018

9

Soma Soma

Synapse

Synapse

Dendrites

Axon

Synapse

Dendrites

Axon

Biological neural network

Adapted from © Kris Hauser

• Axon terminal releases chemicals, called neurotransmitters.
• These act on the membrane of the receptor dendrite to

change its polarization.
• (The inside is usually 70mV more negative than the outside.)
• Decrease in potential dierence: excitatory synapse
• Increase in potential dierence: inhibitory synapse
• If there is enough net excitatory input, the axon is

depolarized.
• The resulting action potential travels along the axon.
• (Speed depends on the degree to which the axon is covered

with myelin.)
• When the action potential reaches the terminal buttons, it

triggers the release of neurotransmitters.

Very simplified description of
neural information processing

Adapted from © Kris Hauser

30/10/2018

10

• Our brain can be considered as a highly
complex, non-linear and parallel information-
processing system.

• Information is stored and processed in a neural
network simultaneously throughout the whole
network, rather than at specific locations. In other
words, in neural networks, both data and its
processing are global rather than local.

• Learning is a fundamental and essential
characteristic of biological neural networks. The
ease with which they can learn led to attempts to
emulate a biological neural network in a computer.

19

Learning process

Adapted from © Kris Hauser

Input Layer Output Layer

Middle Layer

In
p

u
t

S
ig

n
a

ls

O
u

t
p

u
t

S
ig

n
a

ls

Artificial neural network (1/2)

Adapted from © Kris Hauser

30/10/2018

11

• An artificial neural network consists of a number of
very simple processors, also called neurons,
which are analogous to the biological neurons in
the brain.

• The neurons are connected by weighted
links passing signals from one neuron to
another.

• The output signal is transmitted through the
neuron’s outgoing connection. The outgoing
connection splits into a number of branches that
transmit the same signal. The outgoing
branches terminate at the incoming connections
of other neurons in the network.

Artificial neural network (2/2)

Adapted from © Kris Hauser

Biological Neural Network Artificial Neural Network
Soma Neuron
Dendrite Input
Axon Output
Synapse Weight

Analogy between biological and artificial
neural networks

Adapted from © Kris Hauser

30/10/2018

12

• Learning from experience: Complex difficult to solve
problems, but with plenty of data that describe the problem

• Generalizing from examples: Can interpolate from previous
learning and give the correct response to unseen data

• Rapid applications development: NNs are generic
machines and quite independent from domain knowledge

• Adaptability: Adapts to a changing environment, if is
properly designed

• Computational efficiency: Although the training off a neural
network demands a lot of computer power, a trained network
demands almost nothing in recall mode

• Non-linearity: Not based on linear assumptions about the
real word

Characteristics of artificial neural networks

Adapted from © Kris Hauser

Diagram of a neuron

Neuron Y

Input Signals

x1

x2

xn

Output Signals

Y

Y

Y

w2

w1

wn

Weights

The neuron as a simple computing element

Adapted from © Kris Hauser

30/10/2018

13

• The neuron computes the weighted sum of the
input signals and compares the result with a
threshold value, 𝜗. If the net input is less than
the threshold, the neuron output is –1. But if the net
input is greater than or equal to the threshold, the
neuron becomes activated and its output attains a
value +1.

• The neuron uses the following transfer or
activation function:

• This type of activation function is called a
sign function.

n

X xiwi
i1 1, if X

Y
1, if X

Basic neuron model

Adapted from © Kris Hauser

Threshold

Inputs

x1

x2

Output

Y

Hard
Limiter

w2

w1

Linear
Combiner

Single-layer two-input perceptron

Adapted from © Kris Hauser

30/10/2018

14

• The operation of Rosenblatt’s perceptron is
based on the McCulloch and Pitts neuron
model. The model consists of a linear
combiner followed by a hard limiter.

• The weighted sum of the inputs is applied
to the hard limiter, which produces an
output equal to +1 if its input is positive and
-1 if it is negative.

The perceptron (1/2)

Adapted from © Kris Hauser

• The aim of the perceptron is to classify inputs,
x1, x2, . . ., xn, into one of two classes, say A1

and A2.

• In the case of an elementary perceptron, the n-
dimensional space is divided by a hyperplane
into two decision regions. The hyperplane is
defined by the linearly separable function:

The perceptron (2/2)

n

 xiwi 0
i1

Adapted from © Kris Hauser

30/10/2018

15

x1

x2 x2

Class A1

Class
A2

2

1

x1w1 + x2w2 = 0

(a) Two-input perceptron. (b) Three-input perceptron.

x1

x3
x1w1 + x2w2 + x3w3 = 0

1
2

Linear separability in the perceptrons

29
Adapted from © Kris Hauser

• This is done by making small adjustments
in the weights to reduce the difference
between the actual and desired outputs of
the perceptron.

• The initial weights are randomly assigned,
usually in the range [- 0.5, 0.5], and then
updated to obtain the output consistent with
the training examples.

How does the perceptron learn its
classification tasks? (1/2)

Adapted from © Kris Hauser

30/10/2018

16

• If at iteration p, the actual output is Y(p) and the desired
output is Yd (p), then the error is given by:

where p = 1, 2, 3, . . .

Iteration p here refers to the pth training example
presented to the perceptron.

• If the error, e(p), is positive, we need to increase
perceptron output Y(p), but if it is negative, we need to
decrease Y(p).

e(p)Yd (p)Y(p)

How does the perceptron learn its
classification tasks? (2/2)

Adapted from © Kris Hauser

• wi (p 1) wi (p) xi (p) e(p)

where p = 1, 2, 3, . . .
 is the learning rate, a positive constant less

than unity.

• The perceptron learning rule was first proposed

by Rosenblatt in 1960. Using this rule we can

derive the perceptron training algorithm for

classification tasks.

The perceptron learning rule

32
Adapted from © Kris Hauser

30/10/2018

17

Perceptron’s training algorithm (1/2)

Step 1: Initialisation
Set initial weights w1, w2,…, wn and threshold 𝜗
to random numbers in the range [-0.5, 0.5].

Step 2: Activation
Activate the perceptron by applying inputs x1(p),
x2(p),…, xn(p) and desired output Yd (p).
Calculate the actual output at iteration p = 1

Y (p) step x i (p) w i (p)

 i1

where n is the number of the perceptron inputs, and
step is a step activation function.

Adapted from © Kris Hauser

Step 4: Iteration
Increase iteration p by one, go back to Step 2 and
repeat the process until convergence.

Step 3: Weight training
Update the weights of the perceptron

Perceptron’s training algorithm (2/2)

where wi(p) is the weight correction at iteration p.

The weight correction is computed by the delta rule:

wi (p 1) wi (p) wi (p)

wi (p) xi (p) e(p)

34
Adapted from © Kris Hauser

30/10/2018

18

Example of perceptron learning:
the logical operation AND

Adapted from © Kris Hauser

Two-dimensional plots of basic logical
operations

x1

1

(a) AND (x1 x2)

1

(b) OR (x1 x2)

x2 x2 x2

1

x1

1

x1

1

1

(c) Exclusive-OR
(x1 x2)

00 0

A perceptron can learn the operations AND and OR, but
not Exclusive-OR.

Adapted from © Kris Hauser

30/10/2018

19

Activation functions

• A multilayer perceptron is a feedforward
neural network with one or more hidden
layers.

• The network consists of an input layer of
source neurons, at least one middle or
hidden layer of computational neurons,
and an output layer of computational
neurons.

• The input signals are propagated in a
forward direction on a layer-by-layer basis.

Multilayer neural networks

Adapted from © Kris Hauser

30/10/2018

20

Multilayer perceptron with two hidden layers

Input
layer

First
hidden
layer

Second
hidden
layer

Output
layer

O
u

t
p

u
t

S
ig

 n
a

ls

In
 p

 u
t

S
 i

g
n

a
ls

Adapted from © Kris Hauser

• A hidden layer “hides” its desired output. Neurons
in the hidden layer cannot be observed through the
input/output behaviour of the network. There is no
obvious way to know what the desired output of the
hidden layer should be.

• Commercial ANNs incorporate three and
sometimes four layers, including one or two hidden
layers. Each layer can contain from 10 to 1000
neurons. Experimental neural networks may have
five or even six layers, including three or four
hidden layers, and utilise millions of neurons.

What does the middle layer hide?

Adapted from © Kris Hauser

30/10/2018

21

• Learning in a multilayer network proceeds
the same way as for a perceptron.

• A training set of input patterns is presented
to the network.

• The network computes its output pattern,
and if there is an error - or in other words a
difference between actual and desired
output patterns - the weights are adjusted
to reduce this error.

Back-propagation neural network (1/2)

Adapted from © Kris Hauser

• In a back-propagation neural network, the learning
algorithm has two phases.

• First, a training input pattern is presented to the
network input layer. The network propagates the
input pattern from layer to layer until the output
pattern is generated by the output layer.

• If this pattern is different from the desired output,
an error is calculated and then propagated
backwards through the network from the output
layer to the input layer. The weights are modified
as the error is propagated.

Back-propagation neural network (2/2)

Adapted from © Kris Hauser

30/10/2018

22

Three-layer back-propagation neural network

43
Adapted from © Kris Hauser

The back-propagation training algorithm (1/6)

Step 1: Initialisation
Set all the weights and threshold levels of the
network to random numbers uniformly distributed
inside a small range:

where Fi is the total number of inputs of neuron i in the
network. The weight initialisation is done on a neuron-
by-neuron basis.

Fi
2.4

,

Fi

2.4

Adapted from © Kris Hauser

30/10/2018

23

The back-propagation training algorithm (2/6)

Step 2: Activation

Activate the back-propagation neural network by

applying inputs x1(p), x2(p),…, xn(p) and desired

outputs yd,1(p), yd,2(p),…, yd,n(p).

(a) Calculate the actual outputs of the neurons in the
hidden layer:

where n is the number of inputs of neuron j in the hidden
layer, and sigmoid is the sigmoid activation function.

 xi (p) wij (p) j

 i1

 n
y j (p) sigmoid

Adapted from © Kris Hauser

The back-propagation training algorithm (3/6)

Step 2: Activation (continued)

(b) Calculate the actual outputs of the neurons in the
output layer:

where m is the number of inputs of neuron k in the output
layer.

yk (p) sigmoid x jk (p) w jk (p) k

 j1

 m

Adapted from © Kris Hauser

30/10/2018

24

The back-propagation training algorithm (4/6)

Step 3: Weight training

Update the weights in the back-propagation network
propagating backward the errors associated with output
neurons.
(a) Calculate the error gradient for the neurons in the
output layer:

k (p) yk (p) 1 yk (p)ek (p)
where

Calculate the weight corrections:

wjk (p) y j (p) k (p)
Update the weights at the output neurons:

wjk (p 1) wjk (p) wjk (p)

ek (p) yd ,k (p) yk (p)

Adapted from © Kris Hauser

The back-propagation training algorithm (5/6)

Step 3: Weight training (continued)

(b) Calculate the error gradient for the neurons in the
hidden layer:

l

 j (p) y j (p) [1 y j (p)] k (p) w jk (p)
k1

Calculate the weight corrections:

Update the weights at the hidden neurons:

wij (p) xi (p) j (p)

wij (p 1) wij (p) wij (p)

48
Adapted from © Kris Hauser

30/10/2018

25

The back-propagation training algorithm (6/6)

Step 4: Iteration
Increase iteration p by one, go back to Step 2 and
repeat the process until the selected error criterion is
satisfied.

As an example, we may consider the three-layer back-
propagation network. Suppose that the network is required
to perform logical operation Exclusive-OR. Recall that a
single-layer perceptron could not do this operation. Now
we will apply the three-layer net.

Adapted from © Kris Hauser

Overfitting

30/10/2018

26

Adapted from © Kris Hauser

Polynomial Curve Fitting

Adapted from © Kris Hauser

Sum of Square Error Function

30/10/2018

27

Adapted from © Kris Hauser

0th Order Polynomial

Adapted from © Kris Hauser

1st Order Polynomial

30/10/2018

28

Adapted from © Kris Hauser

3rd Order Polynomial

Adapted from © Kris Hauser

9th Order Polynomial

30/10/2018

29

Root‐Mean‐Square (RMS) Error:

Adapted from © Kris Hauser

Overfitting

KNN

30/10/2018

30

• Values of concept
f(x) given on
training set
D = {(xi,f(xi)) for i=1,…,N}

+

+

+

+

+
+

+

-

-

-

-
-

-

+

+

+

+

+

-

-

-

-

-

-
Training set
D

Example space X

Example: Table Lookup

+

+

+

+

+

-

-

-

-

-

-
Training set
D

X• Suppose we have a
distance metric
d(x,x’) between
examples

• A nearest‐neighbors
model classifies a
point x by:
1. Find the closest

point xi in the
training set

2. Return the label f(xi)

+

Nearest-Neighbors Models

30/10/2018

31

• NN extends the
classification value at
each example to its
Voronoi cell

• Idea: classification
boundary is spatially
coherent (we hope)

Voronoi diagram in a 2D
space
https://en.wikipedia.org/wiki/Voronoi_diag
ram

Nearest-Neighbors Models

• d(x,x’) measures how “far” two examples are from one
another, and must satisfy:
– d(x,x) = 0
– d(x,x’) ≥ 0
– d(x,x’) = d(x’,x)

• Common metrics
– Euclidean distance (if dimensions are in same units)
– Manhattan distance (different units)

• Axes should be weighted to account for spread
– d(x,x’) = αh|height‐height’| + αw|weight‐weight’|

• Some metrics also account for correlation between
axes (e.g., Mahalanobis distance)

Distances

30/10/2018

32

• Training time is nil

• Naïve k‐NN: O(N) time to make a prediction

• Special data structures can make this faster
– k‐d trees
– Locality sensitive hashing

• … but are ultimately worthwhile only when d is
small, N is very large, or we are willing to
approximate

See
R&N

Computational Properties of kNN

SVM

30/10/2018

33

• Binary classification can be viewed as the task of
separating classes in feature space:

wTx + b = 0

wTx + b < 0
wTx + b > 0

f(x) = sign(wTx + b)

Adapted from ©
Machine Learning Group
University of Texas at Austin

Perceptron Revisited: Linear Separator

• Which of the linear separators is optimal?

Adapted from ©
Machine Learning Group
University of Texas at Austin

Linear Separators

30/10/2018

34

• Distance from example xi to the separator is

• Examples closest to the hyperplane are support vectors.

• Margin ρ of the separator is the distance between support
vectors.

w

xw b
r i

T

r

ρ

Adapted from ©
Machine Learning Group
University of Texas at Austin

Classification Margin

• Maximizing the margin is good according to intuition and PAC
theory.

• Implies that only support vectors matter; other training
examples are ignorable.

Adapted from ©
Machine Learning Group
University of Texas at Austin

Maximum Margin Separation

30/10/2018

35

• What if the training set is not linearly separable?

• Slack variables ξi can be added to allow
misclassification of difficult or noisy examples,
resulting margin called soft.

ξi

ξi

Adapted from ©
Machine Learning Group
University of Texas at Austin

Soft Margins

• The classifier is a separating hyperplane.

• Most “important” training points are support
vectors; they define the hyperplane.

• Quadratic optimization algorithms can identify
which training points xi are support vectors with
non‐zero Lagrangian multipliers αi.

Adapted from ©
Machine Learning Group
University of Texas at Austin

Linear SVMs: Overview

30/10/2018

36

• Datasets that are linearly separable with some noise work
out great:

• But what are we going to do if the dataset is just too hard?

• How about… mapping data to a higher‐dimensional space:

0

0

0

x2

x

x

x

Adapted from ©
Machine Learning Group
University of Texas at Austin

Non-linear SVMs: Overview

• General idea: the original feature space can
always be mapped to some higher‐dimensional
feature space where the training set is separable:

Φ: x → φ(x)

Adapted from ©
Machine Learning Group
University of Texas at Austin

Non-linear SVMs: Feature Spaces

30/10/2018

37

• Linear: K(xi,xj)= xi
Txj

– Mapping Φ: x → φ(x), where φ(x) is x itself

• Polynomial of power p: K(xi,xj)= (1+ xi
Txj)

p

– Mapping Φ: x → φ(x), where φ(x) has dimensions

• Gaussian (radial‐basis function): K(xi,xj) =
– Mapping Φ: x→ φ(x), where φ(x) is infinite‐dimensional: every point

is mapped to a function (a Gaussian); combination of functions for
support vectors is the separator.

• Higher‐dimensional space still has intrinsic dimensionality d (the
mapping is not onto), but linear separators in it correspond to non‐
linear separators in original space.

2

2

2
ji

e
xx

p

pd

Adapted from ©
Machine Learning Group
University of Texas at Austin

Examples of Kernel Functions

Validation

30/10/2018

38

• Samples from X are typically unavailable

• Take out some of the training set

– Train on the remaining training set

– Test on the excluded instances

– Cross‐validation

Assessing Performance of a Learning Algorithm

• Split original set of examples, train

+

+

+

+

+
+

+

-

-

-

-
-

-

+

+

+

+

+

-

-

-

-

-

-
Hypothesis space H

Train

Examples D

Cross-validation (1/3)

30/10/2018

39

• Evaluate hypothesis on testing set

Hypothesis space H

Testing set

++

+
+

+

--

-

-

-

-

+
+

Test

Cross-validation (2/3)

• Compare true concept against prediction

+

+

+

+

+
+

+

-

-

-

-
-

-

Hypothesis space H

Testing set

++

+
+

+

--

-

-

-

-

+
+

9/13 correct

Cross-validation (3/3)

30/10/2018

40

• k‐fold cross‐validation

Train Test

Datas
et

Common Splitting Strategies (1/2)

• k‐fold cross‐validation

• Leave‐one‐out (n‐fold cross validation)

Train Test

Dataset

Common Splitting Strategies (2/2)

30/10/2018

41

• k‐fold cross validation requires

– k training steps on n(k‐1)/k datapoints

– k testing steps on n/k datapoints

– (There are efficient ways of computing L.O.O.
estimates for some nonparametric techniques,
e.g. Nearest Neighbors)

• Average results reported

Computational Complexity

• The method could learn information
discriminative of the identity

• The traditional k‐fold cross‐validation method
can be optimistic

• Leave N individuals out

Cross-validation in Biometrics

