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Abstract 

By utilizing information from multiple runs of an interchange heuristic we construct a new solution that is generally 
better than the best local optimum previously found. This new, two stage, approach to combinatorial optimization is 
demonstrated in the context of the p-median problem. Two layers of optimization are superimposed. The first layer is a 
conventional heuristic the second is a heuristic or exact procedure which draws on the concentrated solution set generated by 
the initial heuristic. The intention is to provide an altemative heuristic procedure which, when dealing with large problems, 
has a higher probability of producing optimal solutions than existing methods. The procedure is fairly general and appears to 
IX applicable to combinatorial problems in a number of contexts. 
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1. Introduction 

Many heuristics employ an interchange principle 
together witb steepest descent and produce, or can 
produce, myriad locally optimal solutions to a given 
problem. Specific instances of the metaheuristics 
Simulated Annealing, Tabu Search, Genetic Algo- 
rithms and Neural Networks al1 share tbis character- 
istic (Pirlot, 1992) as do simpler vertex substitution 
heuristics (Comuejols et al., 1977). Each run of any 
of these heuristics results in not just a functional 
value but the basis of the solution as given by the 
assignment characteristics of the nodes of tbe net- 
work or vertices of the graph. 

* Corresponding author. 

Multiple-random trials of interchange heuristics 
have been used for a generation now in the context 
of facility siting as wel1 as other problem areas. 
Solution methods choose the solution witb the mini- 
mum functional value from among al1 the local 
optima generated and report this as the “best found” 
solution. In facility siting problems, each solution 
from an interchange heuristic which differs in func- 
tional value from ethers must also have differences 
in the set of facilities composing the solution set. It 
is generally true that solutions whose functional val- 
ues differ little also are derived from largely identi- 
cal solution sets. 

The present study demonstrates how advantage 
can be taken of these characteristics to build, in a 
first stage, a Concentration Set (CS) which has a 
high probability of containing, within its limited 
membership, the facilities which comprise the stil1 
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smaller set of the optimal solution to the original 
problem. In a second stage the best solution of this 
subproblem, (that restricted to the CS) is found. The 
selection of the members of the CS is at the heart of 
the heuristic proposed here; and since the selection is 
done heuristically, we cal1 the methodology Heuristic 
Concentration (HC). 

The contribution of this work is nor a faster 
algorithm for the p-median or, for that matter, for 
any combinatorial problem. Like the metaheuristics 
of simulated annealing, tabu search and genetic algo- 
rithms, the methodology presented here is designed 
to escape the traps of local optima which tend to be 
found by some base heuristic technique. NO claim is 
made for an increased eficiency, which we take to 
mean speed of convergente. A claim is made, how- 
ever, for increased efSecfiveness; by this we mean 
that decidedly improved solutions are the norm. 

Section 2 defines the location-allocation model, 
the p-median, used in this empirical demonstration 
of HC. Section 3 introduces the specific interchange 
heuristic used here for the concentration step, the 
method of Teitz and Bart (1968), an example of a 
Vertex Substitution Heuristic (VSH). Section 4 dis- 
cusses the 90 network problems, created by varying 
parameters, for computational experience. In Section 
5 some summary and descriptive statistics are pre- 
sented which illustrate characteristics of the CS and 
why certain parameters obtain the settings we assign. 
Section 6 presents two altemative mathematica1 pro- 
grammes which are used to operate on the CS as 
wel1 as a final heuristic step. Finally, Section 7 
indicates the leve1 of success, some provisos, and 
suggests directions which further research can fol- 
low. We now turn our attention specifically to loca- 
tion studies on a network to demonstrate and clarify 
this introduction. 

2. The pmedian problem 

The p-median problem is probably tbe most com- 
mon and most studied problem in location decision 
analysis. For this reason we choose it to demonstrate 
HC. The p-median problem is to find some number 
(p) medians in a graph or network which, as a set, 
minimize the weighted distance from al1 the nodes 

(n) of the network or vertices of the graph when 
each node or vertex is assigned (exclusively) to its 
closest median. For convenience we utilize the loca- 
tion-allocation terminology and cal1 the p medians 
“facilities” and the n nodes or vertices “demand 
nodes”. 

Hakimi (1964,1965) has proven that there exists 
an optimal solution for any network or graph in 
which the locations of the facilities coincide with the 
locations of p selected demand nodes. Balinski 
(1965) described the plant location problem, a close 
relative of the p-median, and stated a crucial con- 
straint ((31, below). It was however ReVelle and 
Swain (1970) who introduced the integer linear pro- 
gramming (ILP) formulation for the p-median prob- 
lem into the literature. The problem may be stated 
as: 

Minimize 

Z = e c ai dij Xij 
i= 1 je, 

Subject to: 

(1) 

2 Xij = 1, for al1 i (2) 
j=* 

Xjj-Xij>O, for al1 i,j, i#j 

5 xjj = p 
j= 1 

(3) 

(4) 

Xij=Oor 1, foralli,j 

Where: 
dij = the distance i to j; 

(5) 

ai = the weight associated with demand node i; 
i = the index of demand nodes; 
j = the index of potential facility sites; 
Xij = 1 if tbe ith demand node assigns to the jth 

facility and 0 otherwise. 
In order to solve this as a linear programme 

constraint (5) must be relaxed to 

Xij 2 0, for al1 i, j. (6) 

This is an example of an integer-friendly pro- 
gramme (ReVelle, 1993); experience has shown that 
in over 95 percent of problems the relaxed version 
terminates fully integer (Morris, 1978). If, however, 
a particular instance yields a fractional solution the 
fractions can be resolved quickly by branch and 
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bound; branching on the fractional Xjj’s (Rosing et 
al., 1979~). 

This programme can be solved optimally but the 
size of its matrix increases as a function of n*. As a 
result, large problems outstrip the potential of opti- 
mal methods and generally require heuristics. While 
a number of different heuristic methods have been 
applied (see Densham and Rushton, 1992b) the most 
commonly used heuristic is stil1 that of Teitz and 
Bart (1968). 

3. Interchange in location-allocation 

The Teitz and Bart (1968) heuristic for the p- 
median problem is the prototype VSH. As such it is 
widely available and much studied. For this reason, 
and in the absente of evidente that any other consis- 
tently returns better solutions (sec Densham and 
Rushton, 1992b, Table 2, p. 326) we choose it for 
this demonstration. Altemative heuristics are faster, 
such as that of Densham and Rushton (1992b) but 
we choose for generality of result over batch com- 
puter time. 

Like any classica1 interchange heuristic the Teitz 
and Bart heuristic is started by supplying either a set 
deliberately chosen or a set of random nodes (a 
“current solution”). Each potential facility site (node 
where a facility could be sited) not in the current 
solution is substituted for the one facility in the 
current solution which is under consideration. If a 
substitution makes an improvement, the current solu- 
tion is updated and testing that same facility contin- 
ues. When one member of the current solution has 
been tested against al1 potential sites (and perhaps 
substituted one or more times) that one facility is in 
the best possible position given the positions of al1 
others at the time of its testing. Once al1 potential 
facility sites have been tested to become a replace- 
ment for each and every facility in the current solu- 
tion, one iteration is finished. The current solution 
then has each facility in the best place it could be 
given the positions of the other facilities at the time 
it was being tested. Additional iterations may further 
improve tbe solution. 

When one full iteration is completed without any 
substitutions, the algorithm terminates with the best 
solution that can be reached by one-at-a-time ex- 

changes from the initial set of facilities supplied. 
This condition is termed a stable partitioning pattem 
@PP). Attainment of such a pattem satisfies the 
stopping tule of any one-at-a-time VSH. The term 
SPP is preferred here to local or suboptimal solution 
since termination of the algorithm is dependent upon 
the stopping tule of the heuristic and totally unre- 
lated to the gradient of the objective function. We 
do, however, differentiate between globally optimal 
SPPs and nonoptimal SPPs because for the former an 
additional characteristic obtains; that is, that no 
change of strategy or stopping tule could improve it 
- there is no better. 

Leaving aside papers which deal with applica- 
tions, studies of the Teitz and Bart heuristic have 
concentrated upon speeding up the heuristic 
(Densham and Rushton, 1992a,b) on extending it to 
other problems (Church and ReVelle, 1976; Hills- 
man, 1984; Hodgson et al., forthcoming) or improv- 
ing the search strategy (Goodchild and Noronha, 
1983; Densham and Rushton, 1992b). Other studies 
have dealt with the number of trials necessary to 
reach a reliable solution (Rosing and Van Dijk, 
1993) and judging the robustness of the heuristic 
(Rosing et al., 1979a,b; Rosing, forthcoming). These 
studies concentrate on the algorithm, on tbe search 
strategy, or on functional value(s) but al1 ignore the 
actual nodes selected to be facilities in the SPPs 
found. The present study differs by concentrating on 
the lists of facilities associated with these different 
SPPS. 

4. The example problems 

For each problem in this study 200 different 
random starts were used and the objective value and 
the solution set (the list of selected facilities at 
termination) corresponding to each start recorded. A 
series of ninety problems were solved optimally and 
heuristically. The optimal solutions were used as 
reference points for judgement of the 18 000 heuris- 
tic solutions. 

Al1 combinations of n = 100, 125, 150 t .-.> 300 
(the number of demand nodes) and p = 5, 10, 15, 
. . . , 50 (the number of facilities) define the instances 
solved, creating a sort of “crosstable” (sec Table 1 
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as an example of the organization) of parameter 
variation. Three hundred random coordinate pairs 
were generated and the Euclidian intemode distances 
calculated. Equal weights (a, = 1) were applied. Fur- 
ther details can be found in Rosing (forthcoming). 
The work presented in that study showed that the 
solution quality of the VSH described above de- 
grades as either n or p or both increase, at least in 
random networks with no spatial structure. It was 
this finding that directed attention to attempting to 
find an improved (in the sense of more likely to be 
optimal) heuristic method, particularly for larger 
problems. The generality of that empirical study and 
of this one in the presence of a clear spatial structure 
is, at this time, unknown; though we hypothesis that 
the behaviour wil1 be similar. 

5. Stage one: finding the CS 

In each problem each SPP differs from each other 
SPP in having at least two nodes chosen as facilities 
which are not so chosen in the other SPP. In addition 
each nonoptimal pattem differs from the globally 
optimal solution in having at least two nodes which 
are not in the optimal solution. If this condition were 
not truc, the inferior SPP would iterate to the supe- 
rior. It is also likely, due to the search strategy, that 
SPPs which are similar in functional value are also 
similar in much of the membership of their solution 
sets, i.e. that they have few differences in chosen 
facilities. Based upon similarity of nodes in nonopti- 
mal solutions we propose to find the CS by a direct 
comparison and tabulation of nodes occurring in a 
selection of these solutions. We have tried other, 
more complex, systems of analysis of the nonoptimal 
solutions, to a limited extent, but failed, in general, 
to obtain a better result. 

5.1. Stable partitioning patterns 

The total number of partitioning pattems is upper 
bounded by: 

( 1 ;= 

n. 1 

p!(n -p)! (7) 

which is the number of different ways of drawing p 
items from a population of size n; and thus the 

number of potential starting positions for the VSH. 
Some number of these wil1 also be sets of facilities 
corresponding to SPPs. Since our 200 different start- 
ing node lists, for each problem, are randomly drawn 
they are, in each case, a sample of the large number 
of partitioning pattems available. It follows that the 
SPPs actually found are also a sample of the SPPs 
available. It seems reasonable then to suppose that 
the number of available SPPs grows as a function of 
n and p (sec also: Rosing, forthcoming) just as the 
total number of partitioning pattems does (up to 
p = n/2). Cert ainly the computational experience 
acquired from this study shows that 1). the number 
of SPPs found increases and 2). the differente be- 
tween their fimctional values decreases as a function 
of n and p. The number of different SPPs found in 
the 90 cases correlate with the percent of runs of the 
heuristic terminating with the optimal solution at 
r = - 0.75 (r2 = 0.56) with an F statistic of 110.27, 
significant at 0.001. This provides a strong indication 
that the failure to find the optimal or a truly “good” 
solution in cases involving a large 12 and p are a 
function of the increase in the availability of SPPs 
from which to choose. 

Consider, for simplicity, a minimal, two-node, 
differente between the optimal SPP and the next best 
SPP. The two suboptimally located facilities consti- 
tuting the differente must be close together (in a 
relative sense) since they must distort the assignment 
of one another’s demand nodes causing this pattem 
to be different from that of the optimal solution’s 
pair (which must also be close together) assignments. 
If they are not close together other, optimally lo- 
cated, facilities and their respective partitions would 
be between them and they could not affect one 
another - which they must do to be suboptimally 
located. 

Each of these partially nonoptimal lists of facili- 
ties can be thought of as an information source, each 
providing information about the structure of a por- 
tion the network and the optimal solution. The hope 
is that they provide information about different por- 
tions of the network. The quality of this information 
is inspected in the following section. 

5.2. The differences between “good” facility lim 

To facilitate this work each list of 200 heuristic 
solutions was sorted into ascending order by func- 
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tional value. This places the optimal, and any equal 
optima at the top of the list of heuristic solutions. In 
addition equal nonoptimal SPPs are grouped together 
and the groups of individual SPPs are listed in 
increasing order of functional value; those closest, in 
functional value, to the optimal at the top of the list. 
The assumption is that the lists of chosen facilities in 
the nonoptimal SPPs with smallest functional values 
wil1 be those most similar to the optimal list ie. 
convey the most information about it. 

value nonoptimal SPP and the optimal solution are 
identical, the minimum necessary differente. The 
entry in the lower right, 92.5%, means that 37 of the 
members of the facility list of the second best nonop- 
timal SPP are identical to the facility list of the 
optimal. The 100.0% on the top line (labelled “% in 
opt.“) of the cel1 150/40 indicates that al1 the 
facilities in the global optimum are contained in the 
union of the lists of facilities of the two best SPPs. 

In Table 1 some statistics about the differences in 
facility lists, optimal and first- and second-best SPPs 
are summarized. On the lower line of each cell, 
labelled “%in sub”, is shown the percent of identi- 
cal nodes in the facility list of the two best, but not 
optimal, pattems. The best, as judged by functional 
value, nonoptimal SPP is shown on the left of each 
cel1 and the second best, which must differ from 
each the best and the optimal each by at least two 
nodes, on the right. For example, in the cel1 for 
n = 150, p = 40 the entry in the lower left, 95.0%, 
means that 38 facilities of the minimum functional 

En passant, it is interesting to note that the solu- 
tion set of the second best SPP, judged by functional 
value, can, and often does, match the solution set of 
the optimal better than does the solution set of the 
best nonoptimal. See for example the cel1 corre- 
sponding to n = 275, p = 40. Here 80.0% (32 nodes) 
of the nodes in the solution set of the best is identical 
to the optimal solution set while 87.5% (35 nodes) of 
the nodes in the solution set of the second best are 
identical. In the table as a whole the best nonoptimal 
is best match 37 times, the second best is best match 
21 times and the number of nodes of the best and 
second best matching an optimal is equal 32 times. 

Table 1 
Percent of identical nodes in optimal solution and best two nonoptimal SPPs 

P n 100 125 150 175 200 225 250 275 300 

50 %in opt 98.0 100.0 90.0 98.0 98.0 %.O I 100.0 94.0 96.0 
%in s;b %.O 96.0 96.0 86.0 80.0 84.0 

45 %iu opt 100.0 
%in sub 95.6 95.6 

40 %in opt 92.5 
%in sub 87.5 80.0 

35 %in opt 97.1 
%in sub 88.6 94.3 

30 %in opt 96.7 
%in sub 90.0 93.3 

100.0 97.8 
97.8 86.7 88.9 86.7 

92.5 100.0 92.5 
87.5 92.5 95.0 92.5 90.0 85.0 

25 %in opt 100.0 
%in sub 92.0 92.0 

20 %in opt 80.0 
%in sub 80.0 75.0 

15 Binopt 86.7 
%in sub 86.7 73.3 

10 %inopt 100.0 
%in sub 80.0 80.0 

5 %in opt 20.0 
%in sub 0.0 20.0 

96.0 %.O 

96.0 100.0 100.0 100.0 88.0 100.0 96.0 92.0 
88.0 88.0 88.0 88.0 92.0 88.0 92.0 92.0 80.0 88.0 92.0 92.0 88.0 88.0 80.0 92.0 

100.0 85.0 100.0 100.0 85.0 85.0 90.0 100.0 
85.0 85.0 80.0 80.0 90.0 85.0 90.0 90.0 80.0 80.0 65.0 85.0 90.0 85.0 90.0 90.0 

93.3 86.7 80.0 86.7 86.7 86.7 93.3 86.7 
80.0 73.3 86.7 80.0 80.0 53.3 86.7 60.0 86.7 60.0 66.7 53.3 86.7 80.0 80.0 80.0 

90.0 80.0 80.0 80.0 80.0 70.0 60.0 90.0 
70.0 60.0 70.0 80.0 80.0 50.0 80.0 70.0 80.0 60.0 70.0 40.0 60.0 40.0 60.0 70.0 

40.0 40.0 40.0 60.0 0.0 40.0 60.0 0.0 
20.0 20.0 20.0 20.0 40.0 40.0 20.0 60.0 0.0 0.0 40.0 40.0 60.0 20.0 0.0 0.0 

97.8 97.8 91.1 
95.6 86.7 93.3 93.3 84.4 84.4 

100.0 97.5 92.5 
92.5 90.0 82.5 90.0 95.0 80.0 80.0 87.5 85.0 87.5 

96.7 93.3 93.3 100.0 93.3 100.0 
93.3 93.3 93.3 83.3 76.7 90.0 93.3 93.3 90.0 76.7 86.7 93.3 

94.3 100.0 88.6 94.3 97.1 
82.9 88.6 91.4 91.4 88.6 82.9 94.3 82.9 80.0 91.4 
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This raises questions, which go beyond the scope of 
this paper (sec however Section 7, end), conceming 
judging similarity of solution sets by means of simi- 
larity of functional value. This en passant comment 
does not, however, invalidate the genera1 observation 
that a group of the best are more similar to the 
optimal than a group of inferior solutions when 
quality is judged by tùnctional value. 

Above and to the left of the dark line in Table 1, 
marking off 21 cells from the other 69, certain 
difficulties were encountered in tabulating. This was 
because the p/n ratio in this part of the table is so 
high that there are many equal optimal SPPs and 
equal nonoptimal SPPs as well. The rule followed is 
the percent refening to the optimal is for that one 
equal optimal that best matched the two nonoptimal 
SPPs selected. For each of the two best nonoptimal 
SPPs, al1 nodes in al1 equal nonoptima, were counted 
when matching. Below and to the right of the dark 
line no equal optimal solutions were encountered. 

Inspection of Table 1 reveals, however, that simi- 
larity in solutions deteriorates with decreasing values 
of p. Remembering that (Section 5.1) low p prob- 
lems are those most likely to reach optimality with 
the original heuristic mitigates this difficulty. Even 
though these low p cases are most probably already 
optimally solved, the relationship of the optimal SPP 
and good nonoptimal SPPs in these cases must be 
examined. 

In the p = 5 case the “best” nonoptimal must 
have at least 40% dissimilarity (two nodes) from the 
optimal; the same is true of the “second best”. With 
low values of p however a nonoptimal placement of 
two nodes is more likely to result in a largely or 
completely different set of facilities. With higher 
values of p the effect of nonoptimal placements is 
more local; there is more “inertia” in the pattem of 
the optimal solution. But with a smal1 p sudden, 
nearly complete, shifts in the full facility choice are 
the rule rather than the exception. 

One optimal solution in each of the 90 problems 
comes from the ILP. In addition other equal optima 
have been found, in some cases, by the VSH. Since 
our process of tinding solutions, eg. running the 
heuristic, is not exhaustive but rather a sample; it is 
possible that another, not found, optimal solution 
exists which is more similar than that referred to by 
the percent on the top line of each cell. These 
percents on the top line are then a lower bound on 
the similarity of the nonoptimal SPPs we found and 
the optimal. It is also quite possible that there are 
other nonoptimal SPPs whose solution sets are more 
similar to the optimal than those found. 

5.3. The number of nonoptimal solutions which must 
be inspected 

In this section we attempt to answer the question 
of how many nonoptimal SPPs must be inspected to 
ensure at least one optimal solution is contained in 
the CS and the amount of information (number of 
potential facility nodes) this results in. This is done 
by crosschecking al1 known optimal solutions with 
the nonoptimal SPPs until al1 nodes in at least one 
optimal solution set have been found and placed into 
the CS. Table 2 displays the results. 

From the evidente presented in Table 1 it should To construct this table the optimal solution from 
be apparent that the majority of the nodes selected to the ILP is read in and matched with the list of 
be facilities in “good” SPPs are common to the heuristic solutions (which is in ascending order by 
optimal solution; furthermore, as noted above, non- functional value). Any equal optima from the list of 
common facilities must, in each nonoptimal, affect a heuristic solutions are also recorded, each separately. 
relatively smal1 portion of the network. Conditions The nonoptimal SPPs are now considered one by one 
causing the operation of the heuristic’s stopping rule and a list of al1 nodes chosen as facilities in the 
are relatively rare, smal1 scale and restricted in spa- nonoptimal SPPs considered is made up. The exami- 
tial occurrence in any one instance. Since each sub- nation of heuristic solutions stops when al1 nodes 
optimal SPP must differ from each other optimal or chosen as facilities in at least one equal optimal 
nonoptimal SPP by at least two nodes various solution have been found in nonoptimal SPPs. The 
“good” solutions with differing functional values top line (labelled “#non-opts”) of each of the 90 
would appear, in most cases, to tend to “get stuck” cells of Table 2 shows the number of “good” (in 
in different portions of the network while attaining terms of functional value) nonoptimal SPPs which 
optimal positioning in most of the network. must be inspected before matching is complete. This 
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number, m, is the number of solutions to be in- approximately 30% more nodes are needed in the CS 
spected in that case to ensure that al1 nodes in the than the number of facilities required to be in the 
optimal solution are contained in the CS. solution set. 

A “ * ” in the cel1 indicates this is not possible; 
i.e. the optimal solution contains at least one node 
not appearing in any nonoptimal SPP found. The 
number on the top line of those cells is then the 
number of nonoptimal SPPs found which have dif- 
ferent fïmctional values. Stating this in another way; 
it is the size of the sample of nonoptimal SPPs found 
when al1 equal, in functional value, nonoptimal SPPs 
are considered to be the same. 

On the top line of each marginal cel1 the left 
number is the arithmetic mean of the number of 
nonoptimal solutions examined (“ * ” marked cells 
excluded) and the right number the median value. NO 
median and very few arithmetic means exceed five. 
This indicates that in the majority of cases examin- 
ing five nonoptimal solutions wil1 provide a CS 
containing an optimal set of facilities. 

The bottom line (labelled “#nodes”) of each of 
the 90 cells shows (on the left) the total number of 
nodes, selected to be facilities, in al1 m nonoptimal 
SPPs investigated. The number on the right on the 
bottom line is the number of nodes which appear in 
ur least ene but las rhan m solutions. The size of the 
CS, formed by the union of the m solutions sets, is 
the sum of these two numbers. 

6. Stage two: selection from the CS 

Considering the body of Table 2, the row for 
p = 5 indicates that, as was to lx expected, heuristic 
concentration does not work for smaller values of p. 
Every cel1 has a “ * ” and the top number is there- 
fore the total number of nonoptimal SPPs which 
were found in 200 trials. This effect extends itself to 
p = 10 (two cells with “ * “s) and p = 15 (one cel1 
with a “*“>. Th e 00 n ws is that this appears, as g d e 
one would suspect, to be a direct function of p 

irrespective of n. For moderate or large values of p 
the number of nonoptimal SPPs required is generally 
very small. 

The CS constitutes our restricted set of potential 
facility sites. We chose, in this example, to employ 
an optimal method to select the best solution set 
from the CS - an ILP. The mathematica1 pro- 
gramme to choose the optimal (in terms of this 
restricted problem) solution from the potential facili- 
ties in CS is then: 

Minimize 

Z= c c aidijXij 
i=l jECS 

Subject to: 

C X,,= 1, forall i 
jECS 

Xjj-XijrO, foralli,foralljECS,i#j ( 10) 
Table 2 also has a marginal column and row 

labelled in each case “centra1 tendency.” Since for 
p = 5, 10, and 15 the numbers in the cells with 
“ * “s represent something rather different from the 
rest, cells with “ * “s are excluded in calculations for 
tbe marginal cells. The bottom line of each marginal 
cel1 gives, on the left, the average size of the CS. 
Examination of the marginal TOW shows that the size 
of the CS is unrelated to n. The marginal column 
however shows, again as one would expect, a close 
relationship between p and the size of the CS. The 
marginal column also shows (bottom line, right) the 
average number of nodes per facility required. Al- 
though this number begins, for p = 10, at nearly 2.5 
it rapidly decreases and stabilizes at about 1.3. In 
other words for a moderate or large value of p 

C xjj=P (11) 
jECS 

Xjj=O,l, foralljECS (12) 

Where variables are as defined above and CS = the 
concentration set. 

The parameter m is the number of good solutions, 
with different functional values, taken in order from 
the top of the list (ranked in ascending order by 
functional value) to be inspected to defïne the CS. 
Since different solution sets may have identical func- 
tional values the number of solutions inspected in a 
particular problem may actually be greater. For this 
demonstration the value for m is chosen to be five. 
This should give the authors an ego-satisfying suc- 
cess rate and yet leave some failures which can be 



K.E. Rosing, C.S. ReVelle/ European Journal of Operational Research 97 (1997) 75-86 83 

usefully examined. Looking again at Table 2, any 
problem represented by a cel1 in which the number 
on the top line is a fïve or smaller we can expect to 
be solved optimally. Equally for any cel1 with a “ * ” 
we can expect failure. Interesting cells wil1 be those 
with values of m greater than five. Three sorts of 
results can be expected for instances which do not 
reach optimality (remember, in this demonstration 
the optimal is known). 1). The ILP described above, 
which uses the CS as its base, wil1 terminate with the 
best solution from the 200 trials of the heuristic with 
the same or different solution set. 2). The (known) 
optimal or an equal-optimal solution to the original 
unrestricted problem wil1 be found. 3). A local opti- 
mal wil1 be found which is better than any SPP 
found while running the heuristic. 

The size of the CS, in cases where the number on 
the top line of a cel1 of Table 2 is five, is the sum of 
the two numbers on the lower line of that cell. If the 
number on the top line is less than five the CS wil1 
contain the number of nodes indicated by this sum or 
slightly more; if it is more than five the CS contains 
the number of nodes denoted by the sum or slightly 
less. The ILP tableau wil1 have n X this sum (size of 
the CS) columns and (n - 1) X size of CS + n + 2 
rows. A comparatively smal1 programme. 

A second, even smaller, mathematica1 programme 
can be constructed. For this programme an additional 
assumption has to be made; to wit, that the nodes 
which appear in the solution set of al1 examined 
heuristic solutions to be facilities reulZy are facilities 
while other nodes which appear as members of the 
solution set in only some of the examined heuristics 
may be or muy nor be facilities. The former would 
represent those portions of the network which are 
relatively uncomplicated and where “traps” do not 
exist but rather the heuristic always iterates directly, 
in this portion of the network, to the optimal posi- 
tion. The latter would represent difficult portions of 
the network where nonoptimal pairs, triplets, what- 
ever, are more likely to be chosen. 

To implement this, the set CS must be partitioned 
into two new sets, namely CS,, CS open, for those 
members of the set CS which appear in al1 examined 
solutions (corresponding to the lower left hand num- 
ber of each cell, Table 2) and CS,, C.Sfree, for those 
members of CS which appear in at least one but not 
al1 solutions (corresponding to the lower right hand 

number of each cell, Table 2). Since each demand 
node not in the set CS must assign to the closest 
chosen facility site constraints and variables are 
needed only for that one member of CS,, which is 
closest to the particular demand node and only for 
those members of the set CS, which are closer than 
that one member of CS,. This second programme is 
then: 

Minimize 
n 

Z= c c ai dij Xij 
i=l jER, 

Subject to: 

C Xjj= 1, foralli#jECS, 
jeR, 

Xjj = 1, for al1 j E CS, 

Xjj-Xij20, foralli,foralljER,,i#j 

C xjj= P 
jECS 

Xjj=O,l, foralljECS, 

Where variables are as defined above and 

ri= {jlmin(dij,j,c,O)}. foralli#jECS, 

Ri = { j E ri} U {j E CSfIdij < di,,}, 

foralli#jECS, 

(13) 

(14) 

(15) 
(16) 
(17) 

(18) 

(19) 

(20) 
As Fq. (19) states for each i the set ri contains the 
one member of the set CS, which is closest to it. The 
meaning of Eq. (20) is then that for each i the set Ri 
contains that one member of ri and any members of 
the set CS, which are closer than ri. One of these 
potential facilities must serve i in the best solution. 
Members of the set CS, are not allowed to assign 
away but must be facilities (constraint (15)). Mem- 
bers of the set CS, may assign away or may be 
facilities Eqs. (contraints (14) and (16)). Nodes not 
in either of these sets must assign to one member of 
either CS, or CS, (constraint (14)). The formulations 
are both very integer friendly (ReVelle, 1993). Eleven 
of the 90 problems terminated fractionally; but only 
one required more than seven nodes to resolve (it 
required ten). 

The particular size of the tableau of this second 
programme wil1 depend upon the number of mem- 
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Table 3 
Tableau size, problem n = 300, p = 50 

Model Rows Columns Iterations CPU 
seconds 

Fully specifkl 90002 9oooo 9991 2726.8 
p-median 

CS(m=5) 19139 18900 907 42.2 
CS, and CS, 798 560 263 0.7 

(m=5) 

bers of CS,, CS, and the geometrie arrangement of 
them and of the demand nodes. Table 3 gives the 
actual sizes of the tableau and solution statistics for: 
the fully specified p-median, the programme involv- 
ing set CS, and the programme with CS,, and CS, 
for one instance: n = 300, p = 50. The smal1 size of 
the latter programme (CS,, CS,) makes it extremely 
attractive - if it is successful. The CPU times and 
the number of iterations are for CPLEX, 1989-1994, 
3.0 running on a Sun Sparcserver 20 with 96 
megabytes of CPU under SunOS 4.1.2_Ul. These 
statistics are indicative of the possibility of solving 
much much larger problems than can be attempted 
with the standard p-median ILP formulation (l)-(5). 

While the emphasise of this work is effectiveness 

not efficiency the CPU time is indicated in Table 3. 
The appropriate question is however not the LP time 
but “At what total tost are better solutions found?” 
The answer is that the tost is in the noise. If a (large) 
number of runs of the base heuristic were to be made 
in any case and the best of these runs reported as the 
solution, the tost of applying the HC metaheuristic is 
the tost of assembling the CS and solving the rela- 
tively smal1 (sec Table 3) integer linear programme 
as a relaxed linear programme. The times for assem- 
bly of the CS and solution by LP of the reduced 
problem are minor compared to the time spent run- 
ning the base heuristic. 

In cases where the solution of this programme 
(8)-(12) or (13)-(18) is better than the best nonopti- 
mal SPP from the heuristic but less than the global 
optimal of the original ILP the solution set (chosen 
from the CS) may not be stable in the sense of a 
VSH. Re-applying an interchange heuristic to this 
solution may result in further improvement. This is 
done by submitting the fixed solution set chosen 
from the CS to the interchange heuristic and allow- 
ing it full freedom to move facilities. In al1 cases 
where one facility from the CS is nonoptimal opti- 
mality wil1 always be reached by this step. In cases 
where two or more are nonoptimal it may be reached. 

Table 4 
The results of HC for the ninety problems 

P\n 100 125 150 175 200 225 250 275 300 

!O 888 Dm8 WAm ?????? ?????? ?????? ??????

45 ?????? ?????? ?????? ?????? ?????? S ??*m 
40 ??*m ?????? ?????? ?????? ??*m ?????? ??*m 
35 ?????? ?????? ?????? ?????? ??*m ?????? ??*m 
30 ?????? S WAD ?????? ??8m ?????? ??*m 
25 ?????? 8rnrn ?????? ?????? ??Cm ?????? ??*8 
20 ?????? ?????? ?????? ?????? ?????? ?????? ??????

15 * ?????? ?????? ?????? S ?????? ??????

10 ?????? ?????? ?????? * ?????? S ??TW 
5 * * * * * * * 

??????

??*m 
??*m 
??????

??????

??????

??????

S 
* 
* 

??????

??????

B 
??*m 
??????

??????

??*m 
??????

S 
* 

??* ??CS,, CS, Optimal. no optimals found in 200 runs of heuristic. 
??W ??CS,, CS, Optimal. 
??Am CS,, CS, Altemate optimal found. 
??C ??CS Optimal, CS,, CS, best SPP. 
??TW CS,, CS, and CS 66.7% better, Teitz and Bart to optimal. 
B CS,, CS, and CS 1.6% better, Teitz and Bart no improvement. 
S CS,, CS, and CS no improvement, best SPP found. 
* Expecmd failures. 
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7. Results and conclusions 

See Table 4 for the results. Al1 90 instances were 
solved using the CS,, CS, formulation in order to 
see if the additional assumption affected the solution. 
In cases where this formulation terminated with a 
functional value less than global optimum the in- 
stance was then solved again using the first ILP (CS 
model). As was to be expected no problem which 
earned a “ * ” in its cel1 on Table 2 solved optimally 
with either formulation. 

In al1 cases corresponding to cells marked with a 
black bar, combined or not with another symbol, HC 
found the optimal solution - 78.9% of al1 90 cases. 
As earlier noted HC should not be used for smal1 
values of p. If we exclude p = 5 the success rate 
raises to 87.7% of the remaining 81 cases. In two of 
these cases (marked by a bar and an “A”) an 
altemate optimal was found. In one case (marked by 
a bar and a “C”> the CS,, CS, model made no 
improvement while the CS model found the optimal 
solution. This is because one node, not in the optimal 
solution was included in the set CS,, and was there- 
fore fixed “open”. Once it was a choice facility (CS 
model) that facility was substituted and optimality 
was achieved. 

In two cases HC (both models) found a nonopti- 
mal solution better than the best nonoptimal SPP. In 
one case (marked by a bar and a “T”) the functional 
value of the solution was 66.7% better (measured as 
percent of the range, best, lowest functional value, 
SPP to optimal solution) than the functional value of 
the best nonoptimal SPP. Application of the Teitz 
and Bart algorithm from that solution as a fixed 
starting point resulted in the optimal solution. In the 
other case (marked by a letter “B”) the solution was 
1.6% better (measured in the same way) and re-ap- 
plication of the heuristic made no further improve- 
ment. The HC solution was itself another, until that 
time unidentified, SPP better than the best achieved 
by the random runs. In six cells (marked by a letter 
“S”) HC made no improvement, terminating with 
the best SPP used in constructing the CS. 

It is wel1 known that particular combinations of n 
and p and particular geometries make some prob- 
lems “hard” and others “less hard” for an inter- 
change heuristic. Once a starting set is determined 
the mechanistic nature of the heuristic leads to a 

fixed outcome. Determining a starting set determines 
the solution set - even though it is not know until 
execution of the algorithm. From any particular start- 
ing point to the corresponding solution set there is a 
fixed “path” or pattem of interchanges. These paths, 
from different starting sets, can merge but never 
diverge. Consider a case where paths merge and 
move to various suboptimal SPPs. The optimal solu- 
tion can be thought of as “defended” by suboptimal 
bulwarks. An interchange heuristic has then a very 
low probability of penetrating these “defenses” and 
reaching optimality. 

Something like this occurs in 13 of our 90 cases. 
Two hundred runs of the Teitz and Bar heuristic, in 
each case, were insufficient to find any optimal 
solution at al1 (in 2600 total runs). A failure rate for 
the Teitz and Bart of 14.4%. Of these 13 one (marked 
by an “S”, cel1 225/45) was also a failure for HC. 
In the other 12 cases however the cells are marked 
by a bar combined with a “*“. In these cases HC 
(both models) found the optimal solution. A success 
rate of 92.3% for the 13 cases where Teitz and Bart 
fails. It is this success in cases of interchange failure 
which we believe makes HC attractive. HC can 
never do worse than the best SPP found and it can, 
and regularly does find the optimal solution. 

To summarize: 
1. In general, heuristic concentration works well, at 

least in this problem and probably has potential 
for others as well, for moderate and large values 
of p. For smal1 values of p it appears to be 
inappropriate. A large proportion of the runs of 
the interchange heuristic are already optimal for 
these values of p in any case. 

2. In our experiment m = 5 is tco restrictive and a 
higher value of m would have provided better 
results. We knew this but wished to have failures 
to analyze. 

3. Considering the minor improvement in results 
from programme CS the CS,, CS, programme is, 
generally, to be preferred particularly since a 
larger m value wil1 also push any “extra” nodes 
from CS, into CS, and considering the size of 
problem whose solution it allows. 

4. Heuristic Concentration can provide solutions to 
problems with better objective functions than an 
interchange heuristic alone. 
Given the extremely compact form of the tableau 
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