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a b s t r a c t

This paper provides a survey of heuristics that make use of mathematical programming models and
methods. The first class of methods covered break down a problem into a sequence of subproblems
where each subproblem is modeled as a mathematical program and solved optimally. The second class
of methods are improvement algorithms that solve a mathematical program to generate an improved
solution from a known feasible solution. This class of techniques is also referred to as large-scale
neighborhood search. The third class of methods considered employ a mathematical programming
algorithm, most notably branch-and-bound, to generate an approximate solution to the problem of
interest. Finally, we consider methods that solve a relaxation to the original problem of interest as a first
step in generating a good feasible solution.
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1. Introduction

Mathematical programming involves the study of techniques
that can generate provably optimal solutions to optimization
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problems. From a practical standpoint, the field of heuristics has
a very similar goal, i.e. to generate ‘‘solutions’’ to optimization
problems. The difference is that the solutions should be ‘‘good’’ but
not necessarily provably optimal. In many practical applications
the distinction can be aminor one. Broadly speaking the goal of this
paper is to explore the relationship between these two approaches
to problem solving. Our emphasis will be on how mathematical
programming (MP) can be used for practical, approximate problem
solving, rather than on a theoretical study of the approximate use
of mathematical programming techniques.

The first heuristics were based on the iterative application
of very simple techniques that either sequentially constructed a
solution or sequentially improved a feasible solution. The use of
very simple component steps resulted in very fast algorithms.
As the field of mathematical programming grew, fast (optimal)
algorithms were developed for certain classes of problems. A
natural extension of the original heuristic design philosophy
was to consider embedding optimization algorithms as sub-
procedures within a more complex algorithm. In effect the
heuristic designer’s ‘‘bag of tricks’’ was expanded to include not
only simple techniques, e.g. a two-for-two arc exchange, but also
more complex heuristic methods, e.g. a shortest path algorithm.

Two general classes of heuristics are construction heuristics
and improvement heuristics. Construction heuristics start from
‘‘scratch’’ and proceed through a set of steps, each of which adds
a component to the solution until a complete (feasible) solution is
generated. Section 2 covers construction heuristics, where one or
more of the steps involves the solution of amathematical program-
ming problem. We also label such methods decomposition ap-
proaches since they effectively decompose a larger problem into a
series of sequentially executed subproblems. Improvement heuris-
tics start with a feasible solution and iteratively execute solution
improving steps until some termination condition ismet. Section 3
covers improvement heuristics where the solution improving step
involves the solution of a mathematical programming problem.

An exact optimization algorithm terminates with an optimal
solution and a proof of optimality. In many cases, a significant
portion of the total solution time is spent proving that a solution
found (quickly) is optimal. Another common scenario is that a
large amount of computing time is spent going from a ‘‘near-
optimal’’ solution to an optimal one.With this motivation, inmany
practical settings, exact mathematical programming algorithms
are modified to generate a very good, but not necessarily optimal,
solutions. This class of heuristic approaches in covered in Section 4.

It is very often the case that while a problem may be very
difficult, a certain relaxation to that problem may be efficiently
solvable. The solution to a relaxation generates a bound on the
value of a problem’s optimal solution. As such relaxations are
often employed in exact mathematical programming approaches.
Additionally, they can often serve as a basis for effective heuristics.
Two general approaches are used. In one, the solution to a
relaxation is modified to generate a feasible solution to the
problem of interest. Probably the prototypical approach of this
type involves rounding of the solution to a linear programming
relaxation of an integer program. The second class of relaxation
based approaches makes use of the dual information provided by
the solution to the relaxation in a subsequently executing heuristic.
Section 5 covers relaxation based approaches.

A large body of literature, e.g. [1,2], has been devoted to so-
called primal–dual heuristics and their associated performance
guarantees. One could possibly classify these approaches as
MP-based heuristics, however, we will not review that literature
here. Similarly, there is a broad class of MP-based heuristics that
employ stochastic dynamic programming. We will not cover these
methods here as they are covered in other recent books and
surveys, e.g. [3]. As noted earlier, out emphasis is on practical
problem solving and so we will not review the extensive literature
on worst case performance guarantees, although occasionally we
touch on such results to help us compare heuristics.
2. Decomposition approaches

In a certain sense, whenever a mathematical programming
algorithm is applied within an application context, it becomes
a heuristic since an exact algorithm exactly solves an abstract
problem with a specific set of assumptions. Such assumptions will
never be totally satisfied in practice. In particular, it is very often
the case that inputs to an optimization model are the outputs
of another decision process and the outputs of the optimization
model are the inputs to yet another decision process.When viewed
in a narrow context an optimal solution is found and used, but
when viewed in the context of the broader decision environment
the mathematical programming algorithm used to find the
intermediate (optimal) solution is a component of a ‘‘larger’’
heuristic. For example, in the context of airline crew and fleet
planning, the crew pairings problem might be solved optimally
using integer programming. Yet, the input to the crew pairings
problem depends on the aircraft fleet plan as well as the passenger
schedule. The pairings themselves are just a component of the
crew’smonthly schedule. Thus, when viewed from the perspective
of crew pairings problem the use integer programming represents
an application of mathematical programming. However, in the
context of fleet and crew planning integer programming is a
component in an overall heuristic solution. This is an example
of a mathematical programming based heuristic that employs a
particular heuristic problem decomposition.

There are generally two sets of considerations in designing
decomposition approaches. The first is, of course, what the
structure of the decomposition should be. That is, what sequence
of problem should be solved to finally arrive at a complete solution.
In the case of the fleet and crew planning, the decomposition
described above is a very natural one that fits in well with
manual planning processes, data flows and databases, etc. Such a
decomposition has certain practical advantages but might not lead
to the ‘‘best’’ overall solutions. In other contexts, there may not
be a natural decomposition so the heuristic designer is a liberty
to choose one based purely on algorithm design considerations.

The second set of considerations has to do with specializing
each optimization model so that the solution output in an
‘‘upstream’’ step leads to a high quality solution in ‘‘downstream’’
steps. Alternatively, or in addition, the process could also contain
types of feedback loops where certain steps are re-executed based
on an evaluation of solution quality.

2.1. Decomposition heuristics for the TSP and VRP

We start with a presentation of decomposition approaches for
certain routing problems including the traveling salesmanproblem
(TSP). The TSP is defined on a set of nodes, 1, 2, . . . , n, with a cost,
cij, defined for each (unordered) pair of nodes, {i, j}. The problem
is to find a tour that visits each node exactly once and has mini-
mum total cost. In the context of vehicle routing, we can view this
as the problem faced by a delivery vehicle that must visit a set of n
customers. The problem is to sequence the customers so as tomin-
imize overall cost, which could represent distance, time or some
more complex routing function. For themore general vehicle rout-
ing problem (VRP) [4], there are m vehicles, each vehicle has a ca-
pacity b and each stop, i has a demand level di. One additional node,
identified as node 0, is designated as the depot. The problem is to
allocate customer nodes to each vehicle so that the total demand
allocated to each vehicle is no more than b and to find a tour for
each vehicle that covers the customer nodes allocated to it and that
starts and ends at the deport. The objective function as before is to
minimize the total costs of all vehicle routes. Clearly both of these
problems can be viewed in terms of a undirected network where
each node pair is connected by an undirected arc of length cij.
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There is an obvious close relationship between the TSP and
the VRP since the TSP can be viewed as a one-vehicle VRP and
the vehicle tours in any optimal VRP solution should individually
be optimal TSP tours. We start our discussion of decomposition
heuristics for the VRP with the TSP and show how certain
decomposition approaches for the TSP strongly motivate related
decomposition approaches for the VRP.

The TSP optimization based decomposition heuristics make use
the strategy of approaching a ‘‘difficult’’ optimization problem by
solving a related ‘‘easy’’ optimization problem. The TSP can be
viewedas theproblemof connecting thenodes in anetworkusing a
minimumcost set of arcs that forms a tour. Theproblemof finding a
minimum cost set of arcs that connects the nodes in a network but
has no other properties is known as the minimum spanning tree
(MST) problem. Intuitively onewould expect the solutions to these
problems to be related. In fact, there is a very strong relationship
for the case where arc costs represent Euclidean distances or more
generally satisfy the triangle inequality.

Consider Fig. 1, which illustrates the following heuristic [5]:
Tree heuristic

1. find an MST;
2. duplicate each arc in the MST;
3. repeat until all nodes have degree 2:

find a node with degree greater than 2; reduce the node degree
by 2 by replacing a two-arc path with a single arc path with the
same end-nodes.

It is easy to see that a tour/TSP solution is obtained. If z∗

MST is the
cost of an optimal MST solution, z∗

TSP is the cost of an optimal TSP
solution and zH(T ) is the cost the solution obtained by the tree
heuristic just defined then it can easily be shown that, if costs
satisfy the triangle inequality then,

zH(T ) ≤ 2z∗

MST ≤ 2z∗

TSP .

That is, the tree heuristic has a worst case bound of 2. In fact, we
can further improve this bound by taking an optimization based
approach to the second step of the above procedure. It is easy to
see that the process of replacing paths of length 2 with arcs can
be applied to any spanning Eulerian tour, i.e. a spanning connected
subgraph in which all nodes have even degree. The Matching-Tree
Heuristic due to Christofides [6], replaces step 2 in the tree heuristic
with a step that finds a minimum cost set of arcs, which when
added to a tree, forms a spanning Eulerian tour. This problem can
be formulated as amatching problem. TheMatching-TreeHeuristic
is obtained from the Tree Heuristic by replacing step 2 with:

2′ solve a minimum cost matching problem over the network
induced by the nodes of odd degree in the MST; add the arcs
in the matching solution to the MST;

If we define zH(MT ) as the cost of the solution obtained by the
Matching-Tree Heuristic then it can be shown that:

zH(MT ) ≤ 3/2z∗

TSP .

These TSP heuristics and the related analysis motivated a
class of MP-based heuristics for the VRP. Consider the following
representation of the VRP:

Min:
∑
j
ĉTSP(Sj) (1)

s.t.
∑
j
xij = 1 for all customers i (2)

s.t.
∑
i
xij ≤ b for all vehicles j (3)

Sj = {i : xij = 1} for all vehicles j (4)

xij ∈ {0, 1} for all i and j. (5)
Fig. 1. Tree Heuristic: replacing a two-arc path with a single arc path.

Here ĉTSP(S) is the cost of a (optimal) TSP tour over node set
S ∪ {0}. From this formulation we can see that constraints (2), (3)
and (5) define the so-called generalized assignment problem (GAP).
Thus, it is appealing to solve an instance of the GAP and then to
solve several TSPs to ‘‘evaluate’’ the objective function. This general
heuristic strategy predates the development of mathematical
programming based heuristics and is known as the ‘‘cluster-first,
route-second’’ strategy (see for example, [7]). The challenge of such
an approach is that there is no obvious objective function to use for
the GAP. The ‘‘trick’’ is to find a surrogate cost function that gives a
good approximation for the TSP costs. The preceding TSP analysis
provides insights into approximation approaches.

Fisher and Jaikumar [8] were the first to introduce anMP-based
approach of this type. They executed an initial step in which a
‘‘seed node’’ sj was chosen for each route j. The cost of assigning
a customer i to route j, dij, was defined as cisj . The overall approach
can be defined as:
GA heuristic

1. Choose seed nodes, sj for j = 1, . . . ,m;
2. Solve the GA: Min {

∑
ij dijxij: (2), (3), (5)}

3. Solve a TSP over each cluster Sj ∪ {0} defined in step 2.

If one duplicates each arc in the tree associatedwith a seed node
and the customers assigned to it, then the same ‘‘shortcutting’’
strategy used in steps (2) of the Tree Heuristic or step (2′) of
the Matching-Tree Heuristic could be used to convert each seed
node tree into a tour for the corresponding vehicle. Using a similar
argument, the cost of the tour would be no more 2 times or
resp. 3/2 times the cost of the seed node tree. This provides
evidence that the cost function used for the GA in Step 2 is a
good approximation. Of course, a deficiency of this approach is
the potentially heavy dependence on the seed selection step. This
weakness was alleviated in the method proposed by Bramel and
Simchi-Levi [9,10]. They proposed combining steps (1) and (2) so
that seed nodes are chosen and clustering carried out as part of the
same optimization problem. The underlying optimization problem
is known as the concentrator location problem so this approach is
call the Location Heuristic.
Location Heuristic

1. Choose a set of candidate seed nodes;
2. Solve a concentrator location problem to determine a seed

node, sj and a cluster, Sj for each vehicle j.
3. Solve a TSP over each cluster Sj ∪ {0} defined in step 2.

Bramel and Simchi-Levi analyze a variant of the problem in
which the number of vehicles used is a variable, which naturally
grows as the number of customers grows. They show that the
Location Heuristic is asymptotically optimal for this problem. This
analysis depends on the property that the surrogate cost function
used in the Location Heuristic to evaluate a cluster is bounded by
a constant times the associated optimal tour length.

One could argue that certainly the Tree Heuristic and the
Matching-Tree Heuristic have substantial appeal since they
decompose an NP-hard optimization problem (the TSP) into a
sequence of polynomially solvable optimization problems. On the
other hand the GA Heuristic and the Location Heuristic decompose
an NP-hard optimization problem (the VRP) into a sequence of
(different) NP-hard optimization problems. Is this progress? In fact



24 M.O. Ball / Surveys in Operations Research and Management Science 16 (2011) 21–38
1

2

3 4

5 6

7

89

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3 4

5 6

7

89

10

11

12

0

Fig. 2. Route-First, Cluster-Second Heuristic.

from a practical standpoint these heuristics have performed well.
It is well known that not all NP-hard problems are equally hard in
practice. In fact large instances of the GA, the concentrator location
problem and the TSP have been solved to optimality whereas this
is not the case for the VRP.

One might ask whether other decomposition approaches to the
VRP could be equally successful. Some early VRP heuristics took
an approach complimentary to cluster-first, route-second, namely,
route-first, cluster-second, as defined below (see Christofides [7]):
Route-First, Cluster-Second Heuristic

1. Find a TSP tour through the entire set of customer nodes;
2. Let the TSP customer sequence be defined by {i1, i2, . . . , in}.

Choose a set of m ‘‘cut points’’: k1 < k2 < · · · < km. Let
the VRP vehicle clusters be defined by: S1 = {ik1 , . . . , ik2−1},
. . . , Sm−1 = {ikm−1 , . . . , ikm−1}, Sm = {ikm , . . . , in, i1, . . . , ik1−1}.
Form the vehicle sequences by inserting the depot at the begin-
ning of each cluster.

As is illustrated in Fig. 2, Step 2 of the Route-First, Cluster-
Second Heuristic can be solved optimally using a shortest path
model. Suppose that the nodes are labelled 1 through n in the order
in which they appear in the TSP tour, where the start node 1 is
chosen arbitrarily. Then, a shortest path network is constructed on
node set 0 through n where are an arc from node i to node j, with
i < j, represents the VRP route starting at the depot, proceeding
to node i + 1 then following the TSP node order to node j and
returning to the depot. The cost placed on each arc is the cost of
the corresponding VRP route. The shortest path from node 0 to
node n gives the minimum cost VRP solution that is (1) consistent
with the TSP ordering and (2) has a route starting with node 1. By
varying the start node the best partition over all start nodes can be
obtained.Wenote that this tour partitioningproblem is an instance
of a set partitioning problem with consecutive ones with wrap-
around — see [11,12].

While this decomposition approach would seem to provide
an appealing alternative to the previous heuristics, in fact, it has
generally not performed as well from a computational perspective
and has only been used in practice in specialized settings. We offer
some insight into why this might be the case. First from the point
of view of computational efficiency, the TSP solved in step 1 of the
Route-First, Cluster-Second Heuristic involves the entire customer
set and as such it can be quite large and difficult to solve. This is to
be contrasted with the much smaller TSP solved in the case of the
Cluster-First, Route-SecondHeuristics. Second,While solving a TSP
in the first step captures routing costs in a certain sense, the costs
of traveling to and from the depot are notwell captured. In fact, this
property has led to an interesting asymptotic result (see [13] and
the related Ref. [14]), which states that there is no asymptotically
optimal Route-First, Cluster-Second Heuristic for the VRP.

2.2. Examples and strategies

Transit crew and vehicle scheduling and airline fleet and crew
planning represent two application areas for which there has been
substantial fundamental research into exact and approximate solu-
tion strategies as well as substantial implementation success. See
references [15–17] for further discussion of aviation applications
and references [18–21] for further discussion of transit applica-
tions. Furthermore, these problem areas are quite similar but at the
same time have subtle differences that make their study and com-
parison enlightening. Both have three basic schedules that must
be produced, namely, a passenger schedule, a vehicle schedule and
a crew schedule. In addition, the standard practice used in both
cases is a corresponding problem decomposition, namely: (1) cre-
ate passenger schedule; (2) create vehicle schedule; (3) create crew
schedule. Algorithmand systemdesigners have employed a variety
of approaches within this general structure, which vary in terms of
the techniques used to solve each step and also in the manner in
which the solutions to each step are coordinated. It is also instruc-
tive to note that even though we are focusing on the combined
solution of three very complex problems, even these cannot be
considered in isolation in that the passenger schedule depends,
in the airline case, on the choice of cities to which the airline
provides service, the locations of maintenance facilities, access to
airport time slots and gates, etc. In the transit case, there is a prob-
lem of line layout that precedes scheduling. In both cases, there
are related problems involving investment in equipment, hiring of
crews, etc.
Passenger schedule creation

The passenger schedule defines the service provided to
customers. It is typically represented in terms of a timetable
indicating when service is provided between service locations. In
the airline case the key consideration is the capture of revenues
and in the transit case, the key consideration is the provision of
a certain level of service. Of the three problem areas, this one
has proved to be the least amenable to attack by formal solution
methods. The reasons for this include problem size and complexity
and difficulties in collecting data and quantifying the quality of
solutions. A typical transit schedule consists of basic line service
in which trips are periodically made from one end of the line to
the other. There usually is a high degree of structure, e.g. a trip
is made every 15 min. Simple decision support tools as well as
graphical aids are usually provided to aid the design process. The
problem becomes more complex when additional ‘‘express’’ trips
are added during peak demand periods. Also, complexity arises
when increasing or decreasing service frequency over the course
of a day. Although timetable creation is ostensibly a separate
step, independent of vehicle scheduling, vehicle considerations
are clearly taken into account. For example, the basic service
creation process would typically start a trip from the end of a line
shortly after a trip terminating at that end point was completed.
Thus, there is an implicit vehicle schedule created and, in fact,
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decision support tools typically report on the number of vehicles
required for various proposed timetables. On the other hand,
the direct connection between passenger schedule creation and
vehicle scheduling breaks down as express trips are added and
service frequency is changed. Although in the airline case, there
is less structure to the service provided, the level of formal model
support as well as the implicit connection to vehicle scheduling is
similar (see [15]).
Vehicle scheduling

Vehicle scheduling for transit and aviation possess the same
basic inputs. That is, for transit, the trips and, for aviation, the flight
legs are demand entities that can be represented by start and end
locations and start and end times. These can be interconnected
within a flow network where an arc from one such entity to
another indicates that the same vehicle can service both. The
simplest version of this problem, which was originally defined
and analyzed in an early paper of Dantzig and Fulkerson [22] (see
also [11,23]), is a minimum cost flow problem. In the aviation
case, e.g. [16], it becomes a multi-commodity flow problem, due
the presence of multiple aircraft types and, in the transit case,
it also become more complex due to the presence of multiple
vehicle garages. In the aviation case, vehicle scheduling requires a
second step, the so-called aircraft maintenance routing problem,
which determines multi-day schedules that include required
visits to a maintenance base. Some efforts to incorporate crew
considerations within vehicle scheduling include the inclusion of
long layovers in transit vehicle schedules to accommodate certain
types of crew rest periods. In a somewhat similar vein, aircraft
schedule creation has been adjusted to encourage desired crew
‘‘short connects’’ that can be used by assigning the corresponding
flight legs to the same aircraft [15]. It is interesting to note that
both in the transit and aviation cases [24], vehicle scheduling
models have been formulated that allow certain adjustments to the
timetables. Specifically, inter-trip/flight leg arcs can bedefined that
correspond to adjusting the start time of a trip. For example, if a trip
with a 4:00 PM start time could not be preceded by an arc whose
associated aircraft was not available until 4:07. The inclusion of
such an arc and its subsequent selectionwould imply that the start
time of the trip had to be moved until 4:07. This technique can
only be used with relative small time perturbations; otherwise the
underlying network structure will break down.
Crew scheduling

In both the transit and aviation contexts, crew scheduling is
broken down into a two-step process. In transit, the first step
produces daily schedules, while in aviation, the first step produces
pairings, which are crew work periods that start and end at
a crew base. In both cases, the second step creates rosters or
bidlines, which specify a work plan over a longer period, usually
one month in length. Set partitioning and covering approaches
are used extensively in both contexts. We note that earlier
approaches [25,26] to the daily transit scheduling problem, used
a decomposition, which involved a first step that breaks vehicle
schedules into 1/2 day pieces, approximately 4 h in length, and
a second step, which paired pieces into a full day schedules. The
first step involved the decomposition of a long sequence of tasks
(the vehicle schedule) into smaller tasks (the pieces). As such it
possesses the sequential decomposition structure described in the
previous section so it could be solved as a shortest path problem
(see Fig. 3).

The second step could very naturally be formulated as a
matching problem; however, the presence of certain special
union constraints sometimes required the inclusion of side
constraints [27]. Although shortest paths provide an efficient
solution approach to the first step there is no natural objective
function for this problem. The objective of the first step is simply
to produce pieces that lead to a good solution to the second
Vehicle block with relief points marked:

Solution to shortest path problem:

Corresponding 3-piece partition:

Fig. 3. Partitioning vehicle blocks using shortest paths.

step. The approach described in [28,29], which is now part of
the broadly implemented Hastus System, involves solving an
approximate LP relaxation to the daily crew scheduling problem
and then iteratively solving a sequence of shortest path problems
that minimize the deviation between the values of the LP piece
variables and the pieces generated. In [27], a feedback loop is
used, where Lagrange penalties are generated and input into the
shortest path problems, based on the structure of the complete
crew schedules generated in the previous iteration.
Integrated approaches

Although the ‘‘vehicles first, crews second’’ is the most natural
problem decomposition, research has been directed at the alter-
nate decomposition of ‘‘crews first, vehicles second’’. Such mod-
els, e.g. [30–33] for aviation, first solve a crew scheduling step that
specifies connections between certain trips or flight legs based on a
crew-cost objective function and then in a second step generates a
complete vehicle schedule. We note that such approaches are par-
ticularly appealing in the transit case, where crew costs dominate
vehicle costs [12]. Freling et al. [30] compare three approaches to
transit crew and vehicle scheduling: (1) the standard sequential
decomposition described above; (2) a sequential approach that de-
termines crew schedules first and vehicle schedules second; and
(3) an approach that simultaneously determines crew and vehicle
schedules. All approaches employ a Lagrangian relaxation based
set partitioning model. Two cases are analyzed. For the less con-
strained ‘‘changeover’’ case, models (2) and (3) provide little ad-
vantage overmodel (1). However, for the ‘‘no changeover’’ case the
improvement is more dramatic. This seems to validate the folklore
that the traditional sequential approach is an effective heuristic de-
composition, except in situations where severe or unusual crew
scheduling constraints are imposed.Most recently there have been
efforts to combine and coordinate various steps. Other research has
focused on integrating or partially integrating various of the other
steps mentioned, e.g. [34–37].

2.3. Perspectives on decomposition strategies

The research outlined above as well as other work provides
certain general concepts that can applied in a variety of settings.
Choice of decomposition and subproblems to solve

Efficiency: The fundamental reason for decomposing a problem
is that the larger problem is too difficult to solve directly. Thus,
it is essential that the individual problems in the decomposition
each be efficiently solvable. This should either mean that there
exists a polynomial solution algorithm but it can alsomean that
the underlying (NP-hard) problem is small or amenable to rapid
solution for some other reason.
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Effective approximation: The sequence of problems solved
should in the end yield a high quality overall solution. For this
to occur the ‘‘upstream’’ problems should either explicitly or
implicitly capture the major downstream costs. For example,
the Generalized Assignment heuristic includes a surrogate
objective function that approximates second stage routing
costs. In the case of transit scheduling, one reason that the
‘‘vehicles first, crews second’’ strategy has continued to be used
extensively is that the objective of minimizing vehicle time
implicitly also minimizes the time crews are required to be on
duty.
Consistency with operational processes: While the algorithm
designer should, in theory, create the decomposition that
leads to the ‘‘best’’ solutions, it can be the case that the
underlying operational processes impose constraints and/or
provide advantages to using ‘‘natural’’ decompositions. For
example, it is certainly the case that the passenger schedule
– vehicle schedule – crew schedule decomposition for both
transit and aviation is ingrained in the underlying business
operations. For example, within an airline, it is typically the
case that passenger schedule generation is the purview of the
marketing department since this directly relates to revenues
while the other problems reside in operations departments.
While such natural decompositions can lead to significant
business inefficiencies and in such cases, alternatives should be
proposed, if operational processes allow manual adjustments
to the results of one process step then the automatic processes
should be able to respond to such adjustments. Furthermore,
it can be the case, that, at least in the short term, such
decompositions are imposed as hard organizational constraints.

Model integration
We now list some general strategies for coordinating the

interdependent decisions addressed by a sequence of models.

Surrogate objectives and constraints: We have seen that a
variety of techniques are used to capture the downstream
impact within an upstream procedure. This usually takes the
form of formulating surrogate cost functions that represent
desirable downstream problem effects. Alternatively, it is
sometimes possible to impose constraints in an upstream
model that eliminate the occurrence of undesirable or infeasible
downstream solution characteristics. Much of the recent
research aimed at creating integrated models still results in
problem decomposition with formal decomposition schemes
such as Benders decomposition and Lagrangian relaxation
providing coordination mechanisms (e.g. see [36]).
Incorporating upstream decision variables in downstream model:
When solving a problem that takes as input the output of an
upstreammodel, it is sometimes possible to include variables in
the model that represent slight perturbations of the upstream
solution. A classic example of this approach is the inclusion of
trip or flight leg windows within vehicle scheduling models.
Feedback: Certain steps in a basic decomposition can some-
times be re-executed in a feedback loop to generate improved
solutions. Feedback information can be provided using La-
grange penalties or dual information, e.g. [27]. Another sim-
ple approach alternatively solves an upstream and downstream
model where each is constrained by the solution to the other.
To illustrate this process, suppose amodel has variable set (x, y)
with x set by an upstreammodel,M1 and y set by a downstream
model, M2. Then, M1 would initially assign x = x0, M2 would
then generate a solution (x0, y0) where x = x0 is taken as a
constraint. The process then iterates between M1 and M2, gen-
erating a sequence of solutions: (x1, y0), (x1, y1), (x2, y1), etc.
See [38] for examples of this approach.
1 2 3 4 5 6 7 8 9 10 11 120

2 1 3 6 5 4 7 9 8 10 11 120

Solution to longest path model:

New TSP node sequence:

A1 A1 A1 A2

Fig. 4. Longest path model to find the best set of node exchanges.

3. Improvement heuristics

There is a vast literature on improvement heuristics. Improve-
ment heuristics are particularly appealing since they can be com-
bined with any other method that finds a feasible solution.

3.1. Large-scale neighborhood search

Neighborhood search represents a very effective and widely
studied heuristic paradigm. The typical neighborhood search
algorithm executes a relatively simple procedure associated with
a relatively small neighborhood. On the other hand, optimization
can be applied in this setting to search over much larger
neighborhoods. Ahuja et al., [39] give an survey of these
techniques. We describe two classes: in the first the neighborhood
search uses shortest paths or dynamic programming and in the
second the neighborhood search requires the identification of
a negative cycle, which, depending on the application, is found
using a variety of techniques including network flows and integer
programming.We should note that it is perhaps possible to classify
any improvement algorithm as neighborhood search. We have not
done this and should note the some of the classes of techniques
described by Ahuja et al. are described in other (non-neighborhood
search) sections of this paper.

The solution to many problems can be characterized by a
sequence items. In such cases, it is often possible to independently
modify portions of an existing sequence. In such cases, a dynamic
programming or shortest/longest path problem can be set up
to choose a set of independent subsequences, where each
subsequence is modified. The solution produced is the result
of the set of modifications that provides the greatest solution
improvement. We illustrate these ideas on the TSP. Suppose that
the current TSP tour visits the set of nodes in numerical order:
1, 2, . . . , n, 1.We can viewmodifications to this tour as exchanges
in this sequence. For example, exchanging nodes 2 and 5 would
lead to the solution: 1, 5, 3, 4, 2, 6, . . . , n, 1. The cost savings
associated with this exchange would be: c12 + c23 + c45 + c56 −

c15 − c53 − c42 − c26. Of course, it is clear that the portion of the
tour involving nodes 6 through n is unaffected by this exchange
and, in fact, an exchange among nodes in this portion could be
evaluated and carried out independently the exchange between
nodes 2 and 5.

As illustrated in Fig. 4, we can define a longest path problem on
an acyclic network to find the best set of such exchanges as follows.
The node set is V = {0, 1, . . . , n}. There are two types of arcs. An
arc (i, j) ∈ A1 represents an exchange between nodes i+1 and j−1.
An arc (i, j) ∈ A2 represents that no exchanges are made along the
sequence between i and j. Thus, A1 = {(i, j) : 0 ≤ i ≤ j − 3
with j ≤ n} and A2 = {(i, j) : 0 ≤ i < j ≤ i + 2,with j ≤ n}. The
weight of an arc (i, j) ∈ A1 is given by:

dij = ci,i+1 + ci+1,i+2 + cj−2,j−1 + cj−1,j − ci,j−1 − cj−1,i+2

− cj−2,i+1 − ci+1,j
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Clusters with negative 
cost cycle:

New clusters:

Fig. 5. Negative cycle exchange among clusters.

where c0k is defined to be cnk for all nodes k and, for the case
of i = j − 3, cj−2,i+1 and cj−1,i+2 are replaced by cj−1,i+1. The
weight of an arc (i, j) ∈ A2 is zero. A maximum weight path
from node 0 to node n in the graph, (V , A1 ∪ A2) gives a set
of independent exchanges that maximizes the total cost savings
achievable over all such exchange sequences. Note that in general
there will be many pairs of parallel arcs — themember of each pair
of lower weight can be deleted. Also, negative weight arcs can be
deleted. Although this is a longest pathproblem,which in general is
NP-hard, it can be efficiently solved since the underlying network
is acyclic. The approach outlined is a slight modification of the
approach described in [39]. It was originally proposed by Potts and
van de Velde [40], who have also applied it to machine scheduling
problems. Other examples of the use of shortest paths, integer
programming and dynamic programming to search neighborhoods
can be found in [41,42].

A second general class of optimization based large-scale
neighborhood improvement methods involves the identification
of an improving cycle of exchanges. These are best illustrated on
set partitioning/clustering problems. Fig. 5 illustrates an ‘‘exchange
cycle’’, which represents a sequence of exchanges among multiple
clusters. Whereas a typical simple exchange would transfer a node
i fromclusterA to clusterB in exchange for the transfer of a node j to
cluster B, a 3-cycle exchange would transfer an i ∈ A to B, a j ∈ B to
C and a k ∈ C to A. Depending on the application, the evaluation of
an exchange or sequence of exchangesmight require consideration
of both cost and constraints. For example in the VRP an exchange
should improve the overall solution cost, but also, should not
violate any vehicle capacity constraints. The simplest variant of
the exchange sequence identification problem requires finding a
‘‘subset-disjoint’’ negative cycle. This problem has been shown to
be NP-hard (see [43]). Nonetheless, this general approach has been
applied inmany contextswhere the underlying cycle identification
problem has special structure, is solved heuristically or is small
enough to be solved using general purpose integer programming
techniques (for examples see: [44–49]). Glover and his co-authors
were early developers of heuristics based on this idea, which they
call the ejection chain approach (see for example, [50,51]).

3.2. Finding the best solution over a restricted feasible region

For nearly all classes of optimization problems there is a steady
stream of research on exact methods that continuously pushes the
boundary on the size of problems that can be solved optimally.
It would be very appealing if any such enhancements could be
immediately put to use in heuristics that could be used to attack
problems of arbitrary size.Wenowoutline two general approaches
that provide this capability. Using a mathematical programming
point of view, we call the first Row Partitioning and the second
Restricted Column Set.
Row partitioning
Input: feasible solution

1. cut out a portion of the solution of manageable size, i.e. a row
subset;

2. apply an exact method over the portion cut out in (1);
3. paste the solution obtained in (2) back into the original solution;
4. if new, improved, feasible solution is created then repeat.

Restricted Column Set
Input: feasible solution

1. create a column/variable set by augmenting the columns/
variables represented by the feasible solution with an addi-
tional set so that a efficiently solvable problem instance results;

2. apply an exact method over the column set created in (1);
3. if an improved solution is created then repeat.

These descriptions are, of course, just outlines of approaches.
Their effectiveness will depend on the specifics of the problem
addressed and the details of the implementation. We now discuss
their application to specific problem settings.

3.2.1. Row partitioning
Themost natural setting for applying Row Partitioning involves

set partitioning problems or problems that can be conceptualized
as a set partitioning problem (SP):

SP: Min cx (6)
s.t. Ax = b (7)

x ∈ {0, 1}. (8)

Here, c is an arbitrary cost vector, A is an n xm0/1 matrix and b
is anm-vector of 1’s. Let I = {1, 2, . . . ,m} and (I1, I2) be a partition
of I so that I1∪ I2 = I and I1∩ I2 = φ. Let b[1] and b[2] be the vector
b restricted to I1 and I2 respectively. Let Ji for k = 1, 2 be defined
as Jk = {j : aij = 0 for i ∈ Ik′ where k′

= 2 if k = 1 and k′
= 1

if k = 2}, i.e. J1 are those columns that are zero for i ∈ I2 and J2
is defined analogously. Let A[1] and A[2] be A restricted to J1 and
J2 respectively and x[1], x[2], c[1] and c[2] be defined similarly.
Then we may obtain a feasible solution to SP by solving SP[k] for
k = 1, 2:

SP[k] : Min c[k]x[k] (9)
s.t. A[k]x[k] = b (10)

x[k] ∈ {0, 1}. (11)

Of course, the question that immediately comes to mind is how
to find such a partition. Probably the most common approach is
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Fig. 6. Optimizing a ‘‘Bad Route’’ subset.

to base such a partition on an existing feasible solution in which
case an improvement heuristic results. Starting with a feasible
solution x̂, one partitions the non-zero columns of x̂ into two
sets and defines Ik as those rows covered by each of the two
members of the partitions. Each of SP[1] and SP[2] can be defined
and the appropriate restricted math programs can be solved. This
approach insures a feasible solution will result as the partition
of the original solution provides a feasible solution to each of
the subproblems. A further commonly used refinement of this
approach is to partition the original feasible solution into a good
portion and bad portion. Suppose that the bad portion leads to
SP[2]. Then SP[2] is solved to provide a replacement for the bad
portion. SP[1] is never solved as the good portion of the original
solution is judged to be ‘‘good enough’’. Inmany cases, the partition
is carried out with computational efficiency in mind. For example,
the partition is defined so that the subproblem that is solved,
SP[2] is small enough to be solved within a reasonable amount of
computing time (It could easily be the case that SP[1] is too large
to be efficiently solved).

We can thus define an improvement heuristic as follows:
R_ IMPROVE

1. For the current feasible solution x̂, let Ĵ be the corresponding set
of chosen columns.

2. Choose a subset J ′ of Ĵ .
3. Solve SP[2], where I2 are the rows covered by J ′; let J∗ by the

chosen set of columns.
4. Replace J ′ with J∗ to obtain a new x̂; if stopping criterion met,

then exit; otherwise go to 1.

This approach was used very early on to solve general set
partitioning problems (see [52]). Over the years it has been applied
in a number of specific contexts. The general area of vehicle
routinghas provided several domains for the successful application
of this approach. Shaw [53] was one of the first to apply this
general technique to VRP’s. In [54], this approach is applied to an
arc routing problem, which is a vehicle routing problem where
demand is associated with network arcs rather than network
nodes. The application addressed in [54] is to sanitation vehicle
routing and scheduling. The problem and solution approach have
several complicating factors including:

• seed nodes are used in a manner similar to the Generalized
Assignment Heuristic described earlier;

• there aremultiple vehicle types where each type has a different
size/capacity;

• the vehicles are domiciled at a common depot but during the
course of the day the vehicle must make multiple trips to a
landfill to dump the refuse that has been collected.
As illustrated in Fig. 6, once an initial feasible solution is
obtained, the basic strategy employed is to select a set of routes
and then to resolve the problem over the demand set of that
set of routes optimally using an MP approach. The MP-model
can be called with various decision space options. In particular,
the seed-node-to-route assignment can be fixed or variable, the
fleet mix can be fixed or variable and the number of trips to the
landfill can be fixed or variable (fixing this variable effectively
fixes the daily vehicle load). When more variables are fixed, larger
problems can be solved but a smaller set of routes can be included.
In [54], the subsets of routes chosen was always geographically
contiguous. In some cases a metric, which measured solution
quality, was employed; the subset chosen had a low value of
the metric. In addition, the tool was embedded within a decision
support system and the user was allowed to choose the subset
of routes to be optimized. This approach was shown to be very
effective at generating substantial improvements over a well-
accepted heuristic.

In [55], this approach was applied to a multi-commodity flow
model that addressed the routing of aircraft for an on-demand
air service. The authors compared several strategies for choosing
the column set that defined the set of rows to optimize over.
They investigated the tradeoff between choosing a smaller set of
columns, which led to a smaller number of rows and faster solution
times for SP[2] vs a larger set of columns which led to longer
solution times for SP[2] but higher quality solutions. For smaller
column sets there was less improvement per iteration but each
iteration took less time. When column sets were chosen randomly
the strategy of having small column sets was superior but when
metrics were designed to choose column sets strategically it was
better to choose larger column sets. The metrics had objectives
similar to those described for the prior application, i.e. one sought
to find ‘‘low quality’’ routes and also a set of routes thatwere ‘‘close
together’’.

One can consider a wide range of strategies for defining the
column set J ′. In analyzing the split delivering vehicle routing
problem Archetti et al. [56], employ tabu search to find a region of
the solution space that is likely to generate high quality solutions.
Specifically, the identify pairs and nodes (and more generally sets)
that are likely to be on the same routes. These are then used as
the basis for defining the subset of rows to optimize over. In fact,
in this cases the search procedure is only loosely aligned with a
specific feasible solution. Bent and Van Hentenryck [57] also apply
this general approach to a VRP. To define the column set to remove
they start by randomly choosing one customer (column) and then
augment this customer based on a ‘‘relatedness criterion’’. They
use a custom branch-and-bound algorithm to solve the resultant
subproblem created.

3.2.2. Restricted Column Set
The Restricted Column Set approach is distinguished by its con-

ceptual simplicity and generality. For literally any mathematical
program one could take the columns corresponding to a feasible
solution, augment that set by some additional columns, then solve
a mathematical program restricted to that column set. The key
to successfully applying this idea is the manner in which the ad-
ditional columns are chosen, which goes hand-in-hand with the
exact method used to solve the problem instance created. One ap-
proach is simply to generate relatively small and/or tightly con-
strained problem instances so that general purpose solvers can find
a solution rapidly. This is the philosophy employed in the parallel
set partitioning algorithm given in Linderoth et al. [58], who, in the
course of a more complex procedure, create many compact prob-
lems instances that are solved by a general purpose set partitioning
algorithm.We note that, using parallelization, the authors are able
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to apply this approach many times and choose the best overall so-
lution generated. Of course, the Restricted Column Set approach, as
outlined is exactly the basis for column generation approaches to
mathematical programs,which can be used iteratively to find exact
solutions. In the next section, we discuss how column generation
methods are also used in a restricted way to generate approximate
solutions. Below, we discuss some more specialized approaches.
General use of solvable special case

Consider a general combinatorial optimization problemdefined
on a set of elements N = {1, . . . , n} where cj is the cost of j ∈ N .
Let Ω = {S ∈ N : S is a feasible solution}, i.e. the optimization
problem of interest is: P = {Min

∑
j∈S cj : S ∈ Ω}. Now suppose

that a solvable special case of P is know and characterized by Γ , a
family of subsets of N . That is, the optimization problem P̂(N ′) =

{Min
∑

j∈S cj : S ∈ Ω and j ∈ N ′
} can be solved in polynomial

time for any N ′
∈ Γ . Given any such solvable special case, an

improvement heuristic is in concept possible. A key ingredient is
the ability to augment any feasible solution to obtain an N ′

∈ Γ .
That is, we require the procedure:
Augment(S)
Input: a feasible solution S ∈ Ω

Output: an N ′
∈ Γ with j ⊂ N ′.

We can then define the following improvement heuristic:
S-Case-Imp(S)

Set N ′
= Augment(S).

Find S ′
= argmin{

∑
j∈S cj : S ∈ Ω and S ∈ N ′

}

Output: S ′.
Ahuja et al., [39] illustrate this approach using the TSP andHalin

graphs. A Halin graph is an undirected graph obtained by embed-
ding a tree with no nodes of degree 2 in the plane and then con-
necting all leaf nodes in a cycle so that the graph remains planer.
Cornuejols et al. [59] give an O(n) algorithm to solve the TSP on
Halin graphs. To apply the procedure given above to this case, Aug-
ment would take as input a TSP tour, S, and output a Halin Graph
N ′ that contained S. The new TSP tour output, S ′ would in gen-
eral contain arcs from S but also arcs from N that were not con-
tained in S. To our knowledge, this approach has not been tested
empirically. It does not appear that this general approach has been
broadly explored, however, therewould certainly seem to bemany
possibilities as many problems, particularly network problems are
known to be polynomially solvable over restricted problemclasses.
Examples, include problems restricted to series–parallel networks,
acyclic networks or bipartite networks.
The best solution in the union of two solutions

In certain solution approaches many different feasible (and in-
feasible) solutions are generated. An appealing concept is to look
at pairs of such solutions and to find the best solution ‘‘within’’
the pair. This is, in fact reminiscent of genetic algorithms, which
employ a ‘‘crossover’’ operation on pairs of ‘‘parent’’ solutions
(see [60]). In the classic genetic algorithm crossover operation,
characteristics are randomly chosen from the two parent solutions.
Alternatively, those characteristics could be chosen optimally [61]
(this is perhaps a less controversial form of genetic engineering!!).
This technique was applied very effectively in [62]. The problem
addressed was to find a minimum cost perfect matching problem
in an undirected graph subject to a single generalized upper bound
side constraint. The side constraint could be characterized by color-
ing a special set of edges red. A feasible solution is a perfect match-
ing with no more than b red arcs. The authors dualized the side
constraint and iteratively solved the associated Lagrangian relax-
ation with varying multiplier values. Each time the Lagrangian re-
laxation was solved a new perfect matching was generated: some
of the matchings were feasible (number red arcs ≤ b) and some
were infeasible (number of red arcs > b). At the end of the dual
ascent phase, the best feasible matching was found in the union of
each pair of matchings previously generated.
x1

x2

x3

Matching M1:

Matching M2:

Fig. 7. Union of two perfect matchings with cycle variables.

The union of a pair of perfect matchings (see Fig. 7) is a set
of isolated arcs and a set of even length cycles. Each even length
cycle contains exactly two matchings that touch all nodes in the
cycle. To find a perfect matching for the entire network, one can
define an optimization model by associating 0/1 variables with
each cycle. For each cycle c we denote by M1(c) and M2(c) the
two matchings it decomposes into. Let R(M) be the number of red
edges in a matching M and C(M) be the cost of a matching M .
Supposewithout loss of generality that R(M1(c)) ≥ R(M2(c)); now
let rc = R(M1(c)) − R(M2(c)), ec = C(M1(c)) − C(M2(c)) and
b′

= b −
∑

c R(M2(c)). Then, if we define the decision variable xc
to be 1 if M1(c) is chosen and 0 if M2(c) is chosen, we have the
following knapsack problem:

Min:
−
c

ecxc

s.t.
−
c

rcxc ≤ b′

xc ∈ {0, 1} for all c.

The xc variables choose one matching for each cycle so that
the union of all matchings yields the best (constrained) perfect
matching within the restricted network. This is a knapsack
problem that can be efficiently solved since the right hand side (b′)
is bounded by the number of nodes in the original graph.

Aggarwal et al. [63] also investigate optimizing over a decision
space defined by the union of two solutions. The core problem
investigated is the independent set problem and the problem of
optimizing over the union of two solutions can be modeled as a
bipartite matching problem. The interesting general question is to
determine when a particular NP-hard problem can be efficiently
solved when the feasible set is restricted to the union of two
solutions.

3.3. Parallel savings heuristics

One of the earliest heuristics formally described and analyzed is
the so-called savings heuristic for the vehicle routing problem due
to Clarke andWright [64]. The heuristic starts by defining an initial
feasible solution to the VRP as a set of single node routes and then
iteratively combining pairs of routes that produce a savings in the
sense that the cost of the combined route is less than the sumof the
costs of the individual routes. This certainly cannot be interpreted
as aMP-based approach, however, it is possible to define ‘‘parallel’’
versions of this approach that find a set of such combinations that
can be executed simultaneously by solving a matching problem. In
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Fig. 8. Parallel savings construction heuristic.

Fig. 9. Parallel savings improvement heuristic.

a more general context, we can apply such methods to problems
that have an underlying clustering structure. That is, a route can
be viewed as a cluster of nodes, while other examples, include
customers associated with particular warehouses, trips performed
by a single crew or vehicle, etc. For the generic problem we start
with an input set T and define a cost function c(S) for and subset
S ⊂ T . The problem is to partition T into subsets, S1, S2, . . . , Sk
such that the sum c(S1) + c(S2) + · · · + c(Sk) is minimized. It
should be easy to see how the basic Clarke and Wright procedure
could be applied in this setting by starting with all cardinality
one subsets and then iteratively combining subsets that had a
positive savings in a greedy fashion. Alternatively, parallel versions
of such approaches can be defined based on the iterative solution
of matching problems. Given any feasible solution, S1, S2, . . . , Sk,
the savings associated with any pair {Si, Sj} can be defined by:
c(Si) + c(Sj) − c(Si ∪ Sj).

As is illustrated in Fig. 8, a matching network can be defined
where a node is defined for each set Si and the weight of the
undirected arc between two nodes is the corresponding savings.
A maximum weight matching yields a set of pairs of sets that can
be simultaneously combined in a way the produces the maximum
overall savings. This process can be iterated until no further savings
is possible, i.e. the solution to the maximum weight matching
problem is the empty set. This process is probably most accurately
classified as a construction heuristic since it starts with a trivial
solution and iteratively builds up a complex solution.

As illustrated in Fig. 9, this basic approach can be modified
to generate an approach that can be naturally viewed as an
improvement algorithm. Again for any feasible solution we
consider an operation on a pair of subsets, Si and Sj, where the
subsets are combined and the best (or a better) partition of
their union {S∗

i , S
∗

j }, is found. Note that finding such an S∗ is an
example the problem analyzed in the previous section. The savings
produced by this operation is: c(Si) + c(Sj) − c(S∗

i ) − c(S∗

j ) Using
this definition of savings we could apply the same matching based
approach defined earlier.
This general approach has been applied both to the vehicle
routing problem [65] and to transit crew scheduling [31], which
defined and made use of both the construction and improvement
versions. A particularly popular variant is the so-called ‘‘sequential
matching’’ or ‘‘sequential assignment’’ approach (see Fig. 10),
which iteratively builds up a sequence of tasks, where each task
has start and end times and (usually) also start and end locations.
The unconstrained version of this problem can be solved using
network flows (see [22] or [11]) but heuristics approaches have
been applied when the sequences are subject to constraints [66–
68]. We note that it is usually not the case that the general parallel
savings approach can be applied in ‘‘direct’’ fashion; rather a
certain amount of cost structuring is required to insure that certain
anomalies do not result.

3.4. Math programming based tabu search

Tabu search and, more generally meta-heuristics, has evolved
into a very vibrant research area that offers effective solution
strategies for a wide range of problems. It is only natural to expect
that there should be opportunities for meta-heuristics to make
use of mathematical programming. Specific examples of this have
been described at other locations in his paper. Here we highlight
an approach due to Crainic et al. [69], which is distinctive in the
close integration of linear programming basis exchangewith a tabu
search strategy. The problem considered is the network design
problem, which can be described in terms of a set of 0/1 arc
variables {ya} and a set of continuous path flow variables {hp}.
The problem is to choose a set of arcs to open as indicated by
the y variables so as to support demand for flow between certain
origin–destination node pairs. The flow paths used are designated
by the h variables. The approach involves iteratively generating
path flows, h̃, that satisfy the demand requirements and then
mapping each of these to a y variable solution by:

y(h̃)a = 1 if
−
p:a∈p

hp > 0

0 otherwise.

The authors note that, if an optimal solution exists, there is
always an extreme point solution to the path variable LP that
will map to an optimal (y, h) solution. Thus, they propose the
general strategy of enumerating extreme point solutions to the
path LP, mapping these to solutions (y, h) and choosing the best
such solution. Of course, a total enumeration of this type would be
too time consuming. However, they define a procedure for using
tabu search [70], for iterating from one path solution to another.
Such an iteration involves a standard LP basis exchange operation.
In this case, the tabu control structure determines the entering
non-basic variable. Additional complexity is involved related to the
possibility of column generation and also certain moves involving
multiple pivots.

There are potentially many other ways in which MP can be
combined with tabu search. For example, Easwaran and Üster [71]
use tabu search to improve Benders primal bounds and Pedersen
et al. [72] and Gendreau et al. [73] initialize tabu search by
rounding a related LP. Glover and Laguna [70] provide an overview
of general strategies for combining mathematical programming
and tabu search.

4. Using mathematical programming algorithms to generate
approximate solutions

It is typically the case that a complete mathematical pro-
gramming solution package has a large amount of associated
‘‘machinery’’. This is particularly true for mixed integer program-
ming solvers, which employ one or more core linear programming
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Fig. 10. Sequential matching heuristic.
solvers, together with a branch-and-bound enumeration frame-
work, a suite of preprocessing tools and possibly row and column
generation functionality. The complete package represents a pow-
erful set of problem solving capabilities that are engineered to cre-
ate the final solver. The philosophy underlying the techniques in
this section is that one should not be too ‘‘pure’’ is using these ca-
pabilities. That is, rather than only using such solvers in a mode
that leads to provably optimal solutions, why not use the mathe-
matical programming tools in a, perhaps ad hoc,way to create good
solutions?We note that one class of heuristics that falls within this
definition are heuristics that modify the output of the solution to a
relaxation. We view such heuristics as a special category and treat
them in the next section.

4.1. Use of branch-and-bound tolerance

The heart of any branch-and-bound algorithm is the ability
to prune an enumeration tree based on a bound on the optimal
solution. Assuming a mathematical programming problem with a
minimization objective function, at some (or all) nodes, nd, in the
tree a relaxation, R(nd), is solvedwhich produces a lower bound on
the value of the optimal solution, vR(nd). This lower bound applies
to all feasible solutions within the subtree rooted at the node
in question. Also maintained throughout the algorithm is a best
feasible solution, F̂ , with value vF̂ . The basic test made at the nodes
in the tree is:

if vF̂ ≤ vR(nd) then prune tree rooted at nd.

Since all solutions contained in the tree rooted at nd have
objective function values greater than or equal to vR(nd), no
solutions ‘‘better than’’ F̂ are eliminated by this test. This test can
be loosened to allow for earlier pruning and thus faster problem
solution. Given an absolute tolerance ∆ or a relative tolerance ρ
the pruning test could be modified to:

if vF̂ ≤ vR(nd) + ∆ then prune tree rooted at nd,
or

if vF̂ ≤ vR(nd) ∗ (1 + ρ) then prune tree rooted at nd.

In thisway approximate solutionswithin an absolute or relative
percentage of the optimal can be obtained. Virtually all branch-
and-bound solvers have such capabilities.

4.2. Diving heuristics

Probably the simplest heuristic use of a branch-and-bound
solver is to stop the progress of the algorithm when the first
feasible solution is encountered. If this is coupled with a depth
first tree exploration then the solver’s machinery is essentially
geared toward finding a feasible solution as quickly as possible.
Assuming, as is usually the case, that a relaxation is solved at the
root node, this strategy will result in a feasible solution with a
bound on its deviation from optimality, but the deviation between
the solution’s value and the bound could, in general, be quite large.
This basic depth first strategy has been modified and enhanced
in a variety of ways, leading to so-called ‘‘diving’’ or ‘‘plunging’’
heuristics (see [20,74–76] for examples). Here are some of the
techniques that have been proposed:

Heuristic variable fixing: whenever an LP relaxation is solved,
if the LP assigns a variable an integer value then that variable
is fixed at the integer value during any further exploration
within the subtree. Note that it is possible that variables that
are integer in the LP could become fractional in a subsequent LP
without such a restriction.
Rounding: at any node in the tree one or more fractional
variables could be set to integer values. The most natural
approach to carrying this out would be to round variables
that are close to integer values. For example, in [76], within a
branch-and-bound tree, whenever an LP relaxation is solved,
any 0/1 variable whose LP value is≥ .9 is set to 1 and any basic
0/1 variable whose LP value is ≤ .05 is set to 0.
Iterative column generation: for IP’s addressed using column
generation, the branch-and-bound process can start by solving
the initial LP using a partial (heuristic) column generation;
subsequently, additional columns are generated based on
heuristic criteria. For example, the technique used by Grötschel
et al. [20], which was originally described by Marsten [77],
who named it BANG – Branch-ANd-Generate –, defines a ‘‘trust
region’’ around the value of the initial LP. Whenever the value
of an LP relaxation solved falls outside of the trust region, then
additional columns are generated. If this does not sufficiently
improve the LP value then a new trust region is defined.

4.3. Beam search

While diving heuristics are based on a depth first search,
beam search can be viewed as a controlled, heuristic breadth first
search. Beam search keeps the size of the branch-and-bound tree
manageable by simply pruning nodes based on heuristic criteria. It
defines a set of elite nodes and explores these while discarding the
others. The beamwidth is the number nodes explored at each level.
A variety of heuristic criteria can be considered to define the elite
nodes. This approach was introduced in the context of scheduling
in [78]. See [79] for a more recent application.

4.4. Variable fixing

Two effective tools used in mixed integer programming (MIP)
solvers are variable probing and reduced cost fixing. Both are
(exact) techniques for fixing 0/1 variables to a value of 0 or 1
(versions exist for more general IPs as well). Probing temporarily
fixes a variable to one of its bounds and then determines the
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implication of this on problem feasibility. If setting the variable to 1
implies that the problem becomes infeasible then it can be inferred
that the variable can be fixed at 0. The equivalent implication holds
relative to setting the variable to 0. For example, suppose that
4 0/1 variables, {xi}4i=1 appear in the following two constraints
(possibly, in addition to many others):

5x1 + 3x2 + 8x3 + 6x4 ≥ 10
x1 + x3 + x4 ≤ 1.

Consider a probe that temporarily sets x1 = 1. Based on the
second constraint we see that x3 = x4 = 0. The first constraint
then becomes 3x2 ≥ 5. This constraint clearly cannot be satisfied
so an infeasible problem results. Thus, we can infer that x1 must be
set to 0. Of course, general probing can be quite complex and time
consuming, but also very effective in simplifying LP relaxations.
More detailed enumerates of probing can be found in [80,75,81].

Reduced cost fixing sets variables in a similarway, however, the
criterion used is based on objective function properties. For exam-
ple, consider an LP relaxation with a minimization objective func-
tion. Suppose a non-basic 0/1 variable, xj had reduced cost c̄j and
the value of the corresponding LP relaxation was z∗ and suppose
that a feasible solutionwith value ẑwere known, then if z∗

+cj > ẑ,
we can conclude that xj can be permanently fixed to 0. In this case,
the reason is that any solution with xj = 1 would have a value
worse than a known feasible solution. Heuristic solution strategies
have been devised based both on (1) embedding variable fixing of
this typewithin iterative schemes that involve non-optimality pre-
serving steps and (2) approximate versions of the above conditions.

We now describe an approach (the ANS Heuristic) due to
Atamturk et al. [82] for solving the set partitioning problem that
employs variable fixing within a more complex solution process
(see also [58] for a parallel version). The solution process employs
two other set partitioning problem reduction techniques, which
we now describe:

Duplicate column elimination: whenever two identical columns
exist, the one with the higher cost can be eliminated;
Row domination: if T (i) is the set of columns that contain a 1
in row i, then whenever T (i) strictly contains T (k), we say k
dominates i and row i can be deleted and all variable appearing
in T (i) − T (k) can be set to 0. For example, consider the set
partitioning constraints: x1 + x2 = 1 and x1 + x2 + x3 + x4 = 1.
Since the first constraint implies x1 or x2 must be 1, the second
then implies x3 = x4 = 0 and furthermore, the second is
redundant in light of the first.

ANS heuristic
1. Remove duplicate columns.
2. Apply row dominance and variable probing.
3. Solve LP relaxation. If LP is integral then exit with optimal

solution.
4. Apply primal heuristic to find feasible (integer) solution.
5. Apply reduced cost variable fixing; if anynewvariables are fixed

then go to step (1).
6. Generate valid inequalities; if new valid inequalities found then

go to step (3).
7. Terminate and report best feasible solution.

This procedure actually employs nearly a complete arsenal of
branch-and-bound technology and, in fact, resembles a branch-
and-bound algorithm. However, there never is any variable
branching. Rather, iterations occur based on additional variable
fixing (step (5)) or based on the identification of new valid
inequalities (step (6)). We note that as more variables are fixed,
it becomes more likely the row dominance will be successful and
as the LP relaxation becomes stronger and the heuristic solution
better, it becomes more likely that variables can be fixed. The
variable fixing carried out is exact in the sense that any variables
fixed to 0 or 1 have that value in an optimal solution. In the next
section we present a Lagrangian relaxation based heuristic that
iteratively fixes variables using heuristic criteria.

4.5. Partial column generation

It is very often (possibly almost always) the case that column
generators do not truly consider all feasible columns. That is
parameters are set so that only ‘‘reasonable’’ columns can be
generated. In addition, to reduce the computational burden,
column generation can be stopped based on a variety of heuristic
criterion. A further step in the direction of heuristic column
generation is to purposely only generate ‘‘good’’ columns. For
example, Kelly and Xu [83] describe an approach in which simple
heuristics for theVRP are executedmultiple times. The endproduct
of this step is not taken to be a single solution but rather the union
of all the solutions generated. The set of routes in this union is then
used as the input column set for a set partitioning step to generate
the final solution. It should be noted that this author has heard
practitioners remark that, sometimes, the trick to finding a great
solution is to find one or two ‘‘really bad looking’’ columns that
make the overall solution work. Thus, strategies that focus only
on a subset of ‘‘good’’ columns can potentially lead to poor results.
Note that other heuristic partial column generation schemes were
discussed in Section 4.2 in the context of partial columngeneration.

5. Relaxation based approaches

5.1. Rounding the solution to an LP

The simplest and, perhaps most tempting approach, to an
optimization based heuristic is to round the solution to a
linear programming relaxation. Certainly this approach is used
extensively in practice. In fact, it is probably the case that most
linear programming applications are in reality mixed integer
programming applications, where from a practical standpoint,
rounding an LP solution is a natural, reasonable approach that
introduces little error. For example, there is little need for analysis
to make a decision to round a solution to produce 1123.3 widgets
to a solution to produce 1123. On the other hand, rounding a
fractional solution to 0/1 problemhas the potential for introducing
more error and, in fact, finding a feasible integer solution from
a corresponding fractional solution can be quite challenging.
Nonetheless, there are caseswhere solutions to the LP relaxation of
0/1 problems can provide a very effective start to creating a good
feasible 0/1 solution. We start with a discussion of the Minimum
Weight Node Cover Problem (MWNC), which serves to illustrate
both potential good and bad scenarios that can occur. Given an
undirected network, G = (N, A), a node cover is a subset of nodes
that touches each arc at least once. If we define node weights ci for
all i ∈ N , then the minimum weight node cover problem can be
formulated as:

MWNC: Min:
−

i

cixi

s.t. xi + xj ≥ 1 for all (i, j) ∈ A
0 ≤ xi ≤ 1 and integer for all i ∈ N.

MWNC would seem to be particularly amenable to a rounding
approach due to the structure of its constraints. For any arc (i, j)
either xi or xj must be one. Moreover it is clear that if we let {x∗

i }

be a solution to the LP relaxation of MWNC, then for any arc (i, j)
either x∗

i ≥ .5 or x∗

j ≥ .5. This implies that if we round up any x∗

i
that has a value of at least.5 and set the other variables to 0, then
a feasible solution will result. It is also the case that this rounding
operation cannot increase the value of the objective function by
more than a factor of 2. Thus, if z∗

MWNC is the value of the LP
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relaxation and ẑMWNC is the value of the feasible solution obtained
by rounding then ẑMWNC ≤ 2z∗

MWNC (see [84] and also [85] pages
66–67). This in turn implies that the solution obtained by rounding
is within a factor of 2 of the optimal solution. Furthermore, MWNC
has the property that any variable xi that is 1 in a solution to the
LP relaxation is also 1 in an optimal IP solution [86]. All of these
properties seem to point to the very effective use of rounding. On
the other hand, it is also the case, thatMWNChas the so-called half-
integer property, which states that, in any extreme point solution
to the LP relaxation, all variables take on values of 0, 1 or 1/2.
While the rounding analysis given above might have seemed very
attractive in caseswhere therewas amix of relatively high and low
fractional values, it become less appealing in cases where many
variable have a value of 1/2. In fact, Pulleyblank [87] shows that,
for the cardinality node cover problem, where ci = 1 for all i,
the optimal solution to the LP relaxation has xi = 1/2 for all i if
and only if the underlying graph has a property called nontrivial
2-bicritical. He then shows that asymptotically the probability that
all graphs possess this property approaches 1, i.e. for almost all
graphs the LP relaxation has xi = 1/2 for all i. Of course, this does
notmean that there are not important cases, e.g. sparse graphs and
certain instances of the weighted (not all ci = 1) problem, where
solutions with many 0/1 values are not more common. In fact,
these properties have served as the basis for effective heuristics
in certain specific contexts (see for example, [88,89]). This ‘‘case
study’’ suggests several questions related to the use of rounding:

What thresholds should be used for rounding?
What is the maximum (or average) error introduced by rounding?
What is the likelihood that a large number variables will be 1 in a
‘‘typical’’ LP solution?
What is the likelihood that a large number of variable values will
be ‘‘close to’’ 0 or 1 in a ‘‘typical’’ solution?

There is not a general theory that addresses these questions.
Rather, specific individual problems must be considered on a case
by case basis, in a way that takes these issues into account.

We now describe a general approach to rounding that can be
applied to certain classes of MIPs. It is often the case in MIPs
that 0/1 variables are associated with the opening of resources
used to accomplish some objective. For example, in the network
design problem, 0/1 variables are associated with the purchase
or installation of link capacity, the fixed resource, to be used to
route traffic, which determines the operational costs. Thus, one
needs to trade off investments in fixed resourceswith the resultant
operational costs. In such cases, once the 0/1 variables are set,
determining the fixed resources, then an LP can be solved to
determine feasibility and the associated operational costs. This
suggests an iterative threshold approach to rounding, such as the
one applied successfully in [90]. The approach starts by solving
an LP relaxation; it then searches for an appropriate threshold to
determinewhich of the fractional 0/1 variables should be rounded
to 1. We can interpret the threshold as measure of the fixed
resource investment level. Thus, the role of the solution to the
LP relaxation is to map the fixed resource investment level into a
specific set of resources (links) to be used.

To define the details of this approach, we represent a generic
MIP as:

PR: Min: cx + dy
s.t. A(x, y) = b

x ≥ 0, y ∈ {0, 1}n.

Let y∗ be a y-vector resulting from solving the LP relaxation to
PR and z∗

PR(y
′) be the value of the LP the results when y is set equal

to y′. Further, let {t̂1, t̂2, . . . , t̂r} be a set of threshold values with
0 < t̂k < 1 for all k. We can now define the following rounding
heuristic:
Iterative threshold heuristic:

1. Solve the LP relaxation of PR generating y∗.
2. For k = 1, r:

For all i, set y′

i = 1 if y′

i ≥ t̂k, set yi = 0, otherwise.
Fix y = y′ and solve the LP, i.e. find ẑk = z∗(y′)

3. Choose Minkẑk and output corresponding solution to PR.

We note that it could easily be the case that some of the LPs
solved in step (2) could be infeasible, in which case ẑk would be set
to a large constant. In concept this approach could be applied to
any MIP, but the appropriateness of doing so will depend on the
problem specifics. It is interesting to contrast this approach with
the tabu search method described in Section 3.4. Both methods
address network design problems. The tabu search approach finds
multiple continuous variable (routing) solutions and maps each of
these to a 0/1 solution, whereas this approach, which is perhaps
more typical, finds multiple 0/1 variable solutions andmaps these
to continuous variable solutions. Many applications of rounding,
e.g. especially when carried out in the context of branch-and-
bound, round multiple LP solutions and choose amongst the
feasible integer solutions generated.

It is natural to consider employing randomization in this
process. Glover and Laguna ([70], Chapter 6) describe the concept
of directional rounding. It has the attractive property that it can
be iteratively applied within tabu search or other randomization
schemes to generate sequence of possible solutions. Starting with
x∗, the fractional solution to the LP relaxation of a 0/1 problem, and
any other 0 ≤ x ≤ 1, which may or may not be integer, define the
0/1 vector δ(x∗) by:

δ(x∗)i = 1 if x∗

i < xi
δ(x∗)i = 0 if x∗

i > xi
δ(x∗)i = 0 or 1 if x∗

i = xi.

The authors propose approaches where x is modified based on
alternate schemes that employ randomization. For each value of x,
δ(x∗) is recomputed creating a sequence of heuristic solutions. Of
course, an organized search or randomization strategy could also
be applied to generate alternate values for x.

5.2. Searching around an LP optimum

Simple rounding can be viewed as a process that maps an LP
optimum into a single (perhaps arbitrary) near-by integer solution.
Alternatively, it is probably natural to consider heuristic strategies
for finding good feasible solutions to IPs by enumerating around
the LP optimum. Yet, there is surprisingly little formal work in this
area. An exception is the appealing work of Balas et al., [91]. They
propose the OCTANE (OCTAhedral Neighborhood Enumeration)
heuristic which enumerates 0–1 solutions in the vicinity of the
optimal solution to the LP relaxation of a 0–1 IP. To understand
this heuristic we first consider the following polyhedron defined
around the origin: PH = {xi : δixi ≤ n/2 for all δ ∈ {±1}n}. Note
that there are 2n constraints, one for each ±1 vector in ℜ

n. The
heuristic starts by translating an LP solution, x, by subtracting 1/2
from each component. This translation will always place x in the
interior of PH. Then, a direction away from x is chosen and facets
(equivalently constraints) of PH are enumerated in the order in
which they are encountered. Each facet enumerated ismapped to a
unique 0/1 solution. All such solutions are tested for feasibility; the
heuristic outputs the best such feasible solution. The solution x̃(δ)
associated with each facet of PH with associated constraint vector
δ is defined by:

x̃(δ) = 1 if δi = 1
0 if δi = −1.

A formal statement of the heuristic is given below.
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OCTANE:
1. Let x be the fractional solution to the LP relaxation of a 0–1 IP.

Transform x to x̂ by x̂i = xi − 1/2.
2. Choose a vector a ∈ ℜ

n and consider the half line r = {x̂ + λa :

λ ≥ 0}.
3. Find {δ1, δ2, . . . , δk

}, the first k facets of PH intersected by r and
determine the corresponding 0–1 solutions: {x̃(δ1), x̃(δ2), . . . ,
x̃(δk)}.

4. The points in {x̃(δ1), x̃(δ2), . . . , x̃(δk)} that are feasible serve as
heuristic solutions.

A key aspect of this approach is that the enumeration in step 3 can
be carried out efficiently. An important parameter is the choice of
the direction a, which can be difficult to set effectively. The authors
experimented with several variants. They also embedded this ap-
proach within a branch and cut framework, which effectively al-
lowed for the starting point (x) to be varied. Probably the biggest
potential shortcoming of this approach is difficulty in identifying
feasible solutions. Glover and Laguna (see [70], Chapter 6) describe
a framework called cut search for similar approaches. The tech-
nique extends the edges of the LP cone to identify a hyper-rectangle
to be searched for integer solutions. In addition to enumerating
solutions in a particular order, they suggest optimizing over the
hyper-rectangle, which usually is not too difficult because it is rel-
atively small in size.

5.3. Other primal approaches

Another class of heuristics creates a feasible integer solution to
an integer program based on information gained from the primal
solution to an LP relaxation. However, these approaches are not
based on rounding but rather on prioritization schemes based on
information contained in the primal solution. Such approaches
are most extensively analyzed in the field of machine scheduling
(see for example [92]). The problem of scheduling a singlemachine
to minimize total weighted completion time is one of the most
basic problems in scheduling theory. The problem is defined
by specifying a set of n jobs where each job j has a positive
weight wj and a non-negative processing time pj. For any feasible
schedule we can define for each job a completion time Cj. A
solution to the problem is a schedule which minimizes

∑
j Cj or

equivalently,
∑

j Cj/n. The unconstrained version of this problem
can be solved in polynomial time; however, most interesting
constrained versions are NP-hard. Of particular note is the case
where each job j has a release time rj beforewhich the job cannot be
scheduled and the case, where precedence constraints, of the form
j ≺ k, are specified whenever job j is constrained to be completed
before job k. We now define two classes of LPs for these problems.
The time indexed formulations are based on variables, xjt , which
are defined to be 1 if job j is completed in time period t . Here time
is assumed to be discretized into time intervals, t = 1, 2, . . . , T at
which all activities start or end. The completion time formulations
directly employ completion time variables Cj as defined above.
Both of these are defined for the problem with release times,
however, variants exist for the precedence constrained problem as
well. To enforce the release time constraints, xjt is defined only for
t = rj − pj + 1, . . . , T
Time indexed formulation

Min:
∑
jt

cjtxjt

s.t.
T∑

t=rj+pj
xjt = 1 for all j

n∑
j=1

pj+1∑
s=1

xst ≤ 1 for all t

xjt ∈ {0, 1} for all j and t.
Here, cjt = wjt .
The completion time formulations use valid inequalities

developed by Queyranne [93] and Wolsey [94]. We define the set
of jobs as N = {1, 2, . . . , n} and any S ⊆ N:

p(S) =

−
j∈S

pj

p2(S) =

−
j∈S

p2j

rmin(S) = min
j∈S

rj.

With these definitions we can now define for any S ⊆ N ,

ρ(S) = rmin(S)p(S)1/2(p2(S) + p(S)2)

and state the formulation:
Completion time formulation

Min:
∑
j

wjCj

s.t.
∑
j∈S

pjCj ≥ ρ(S) for all S ⊆ N

Cj ≥ 0 for all j.

In general this formulation does not produce feasible comple-
tion times. Rather its value is a lower bound on the value of the
corresponding scheduling problem and there is not immediate
corresponding integer program that gives a feasible schedule.
The time indexed formulations and the associated algorithms are
pseudo-polynomial in problem size and, in general, not polyno-
mial since the number of variables grows as a function of total pro-
cessing time. The completion time formulations produce weaker
bounds than the LP relaxation of the time indexed formulations but
they can be solved in O(n log n) time by specialized algorithms in
spite of the exponential size of the constraint set (see [95]). For the
time indexed formulation the completion time is given by Ĉj = txjt .
Of course, when the LP relaxation of the time indexed formula-
tion is solved, like the completion time formulation, this expres-
sion does not give a set of completion times that is necessarily
feasible. Once completion time ‘‘estimates’’ are produced by either
relaxation, the following heuristic could be applied.
Schedule by Cj

Order jobs according to increasing value of Cj.
for j = 1, . . . , n: schedule job j at earliest possible time.
This heuristic applied to either formulation is known to have a

solution quality within a factor of 3 of the optimal. Furthermore,
Savelsbergh et al. [96] provide computational evidence that
approaches of this type can perform quite well in practice. Thus,
we can view this general approach as using an LP solution to
provide job priorities that are used as a basis for scheduling. Such
approaches have been used successfully to attack a variety of
scheduling problems.

While approaches of this type are most well studied in
the scheduling literature, examples of similar techniques can
be found elsewhere. For example, in Raidl [97], the relative
(fractional) values of variables in an LP relaxation are used as
priorities in several places within a genetic algorithms. The more
standard approach would choose a random variable order for such
operations. In [76], a greedy algorithm is used to assign component
types to machine ‘‘sections’’, where the greedy algorithm employs
a component type ordering based on variable values from an
LP relaxation. In [98] a type of ‘‘nearest neighbor’’ algorithm is
executed on a network, where the ‘‘closeness’’ of two nodes is
measured relative to the value of arc variable froman LP relaxation.
More generally the solutions to LP relaxations have been used to
guide subsequent heuristics. Rousseau and his co-authors [28,29]
solve an LP and then use it to provide guidance to subsequent
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heuristics for forming crew schedules. Fernández et al. [99] use
the rounded solution to an LP to define a connectivity structure
that guides subsequent heuristics that create a solution to the rural
postman problem. Generally, such LP’s also generate a bound on
the value of an optimal solution.

5.4. Lagrangian relaxation based heuristics

Lagrangian relaxations have been used extensively over the
years to construct practical solution approaches to a variety
of mathematical programming problems (see [100,101] for
background). For an integer program of the form,

z∗
= Min: cx (12)

s.t. A1x ≥ b1 (13)
A2x ≥ b2 (14)
x ≥ 0 and integer (15)

a Lagrangian relaxation can be effective, when one constraint
set say, (13), is ‘‘easy’’ to handle and another say, (14) is more
difficult to handle. In such cases, constraint set (14) can be dualized
creating, for a λ ≥ 0 matching the row dimension of A2, the
relaxation:

LR(λ) = Min: cx + λ(b2 − A2x)
s.t. A1x ≥ b1

x ≥ 0 and integer.

Dual ascent procedures are typically employed to find a value
of λ that approximately solves the problem: Maxλ≥0LR(λ). This
provides a lower bound on z∗ that could, for example, be used
within a branch-and-bound algorithm.

We wish to highlight here the manner in which heuristics to
find good (primal) feasible solutions can be structured in this
setting. For the case, where A2 consists of a single row, it is typically
the case that, in the course of a dual ascent procedure, which solves
the Lagrangian relaxation for several values of λ, several feasible
solutionswill be generated, e.g. if a feasible solution exists then, for
large enough value of the scalar λ, one will be generated by solving
the relaxation. This will also tend to be the case when A2 contains
a relatively small number of rows. In such cases, one or more
feasible solutions will be generated and, in addition to choosing
the best of these, improvement procedures can be executed to
find good feasible solutions (see [62] as well as Section 3.2.2).
More generally and, perhaps more typically, no feasible solutions
are generated during the dual ascent procedure. However, many
heuristics have been structured to create feasible solutions that
are ‘‘close’’ to the (infeasible) primal solutions generated. As an
example, we consider the network design problem discussed
earlier, which seeks a set of network arcs to ‘‘open’’ in order to
support traffic flows between a set of origins and destinations
with associated flow demands. Given a proposed set of arcs to
open a multi-commodity flow problem can be solved to find the
appropriate traffic flows. Hellstrand and Holmberg [102] describe
a Lagrangian relaxation based approach for the network design
problem. Each iteration of their dual ascent outputs a primal
solution that specifies a set of arcs to open. This set typically
is not feasible in that it does not admit a feasible flow. On the
other hand, the authors are able to find good feasible solutions
by (1) taking the union of the arcs open on two successive dual
ascent iterations, (2) finding a minimum cost feasible routing of
traffic (if one exists) and (3) closing any unused arcs. In general the
philosophy behind Lagrangian relaxation based heuristics is to find
a feasible primal solution that is ‘‘close’’ to the (usually infeasible)
primal solution generated by solving the relaxation. There are
many other examples of this type; see for example [103–107].
5.5. Primal heuristic based on dual information

Given a dual solution, e.g. obtained from solving an LP,
certain primal heuristics employ reduced costs. We illustrate such
approaches on the set covering problem, which is a modification
of the set partitioning problem, SP, obtained by replacing the ‘‘=’’
in (7) with a ‘‘≥’’. Defining a column objective function coefficient
by cj and the set of rows column j covers by Pj the Chvatal heuristic
[108] for set covering weights columns by |Pj|/cj and successively
chooses the column with highest value until all rows are covered.
This approach has been modified to use LP reduced costs rather
than actual costs.

A similar approach has been used where Lagrange multiplier
values replace linear programming dual values. For problems in
the integrality property, an optimal set of Lagrange multipliers
are also optimal linear programming dual variables so these
approaches would appear to be equivalent. The key difference is
that Lagrangian relaxations are rarely solved to optimality. Fast
dual ascent procedures are used to find ‘‘near-optimal’’ multipliers
muchmore quickly than the linear program could be solved. Fisher
and Kedia [109] were the first to propose the use of ‘‘reduced cost’’
based on Lagrange multipliers in greedy heuristics. For the set
covering problemonce the one nontrivial constraint set is dualized,
the Lagrangian relaxation can be trivially solved. Given a column
j and a Lagrangian multiplier vector u∗, a column weight γj is
defined by:

γj = cj −
−

i∈Pj∪M∗

u∗

i

where M∗ is the set of uncovered rows. The associated greedy
heuristic successively chooses the column with the smallest γj
value. After each column choiceM∗ is updated (but u∗ is not).

More recently this basic idea has been embellished and applied
in a variety of ways. We note in particular the highly effective
heuristic of Caprara et al. [110], which won a contest run by the
Italian Railway. Based on their experiments the authors defined a
new, more effective column weight, σj by

σj = γj/µj if γj > 0
σj = γjµj if γj < 0

whereµj is the number of uncovered columns covered by column j.
The authors’ computational experience showed that very

similar near-optimal multiplier sets, when used to guide a
heuristic, can produce very different primal solutions. Thus, they
applied the basic heuristic procedure to several differentmultiplier
sets. They also applied the procedure iteratively where, after each
iteration, a set of variableswas fixed to 1, then the entire procedure
re-applied to the reduced problem obtained by considering only
the free variables. The overall procedure is given by:
CFT heuristic
repeat until x∗ cannot be improved

subgradient phase: find a near-optimal Lagrange multiplier
vector u∗

heuristic phase: starting from u∗, generate a sequence of near-
optimal multiplier vectors and for each vector generate a
feasible solution to SCP (update the best incumbent x∗ if
appropriate)
variable fixing phase: select a subset of ‘‘good’’ columns and fix
to 1 the corresponding variables.

The distinctive aspects of this approach are that several sets
of Lagrange multipliers are found and each is used to generate
a primal solution. Secondly, the overall process iterates where
at each iteration a set of variables is fixed to one. This allows
for the sequential generation of new multiplier sets which are
‘‘customized’’ to the subproblem that remains after each iteration.
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6. Conclusions

It is clear that MP-models and methods have been applied
in a wide array of ways to generate approximate solutions to
problems. As was stated in Section 2, when an MP-model is
embedded in a real problem setting, whether it is called a
heuristic or exact method is a matter of interpretation. Thus, to
a degree, any research involving the application of mathematical
programming contributes to the study of MP-based heuristics.
This paper has emphasized practical aspects of the subject it
has covered, yet, it is noteworthy that variety of results form
worst case and asymptotic analysis of heuristics as well as
underlying mathematical programming theory, have provided
many useful insights. In this closing section, we provide a few
general conclusions and also suggest some research trends and
directions.
The ‘‘Bag of Tricks’’

A review of this section reveals the recurrent use of several
models and techniques. Clearly, it is vital that theheuristic designer
know these well as they constitute an essential ‘‘bag of tricks’’.
Some core well-solved problems arise in several application set-
tings and represent a fundamental component in many strategies.
These include: shortest paths and dynamic programming, assign-
ments, matchings and network flows. Although NP-hard, the set
partitioning and set covering models are used in many practical
settings and play an important role in solution strategies. Linear
programming and Lagrangian relaxation form the basis of many
exact and approximate solution strategies, based both on the pri-
mal and dual information they provide. Finally, the individual com-
ponents ofmixed integer programming branch-and-bound solvers
are frequently broken out and used in variety of ways to create
problem solving tools.
Relative performance of MP-based heuristics

One, of course, is tempted to ask: How do MP-based heuristics
compared to other heuristics? Which are more effective overall?
Which are used more extensively in practice? The designer of
an improvement heuristic very often faces a basic tradeoff: a
technique that executes many ‘‘quick’’ moves, each of which yields
a small improvement vs. a technique that executes fewer, more
time-consuming large-improvement moves. Of course, the very
significant recent trend is toward meta-heuristics, which (in most
cases) introduce a degree of randomization. If one considers the
volume of recent research output, it would seem that the non-MP-
based approaches are ‘‘winning’’. On the other hand, if one reviews
the major application areas, such as transit and airline crew
and vehicle scheduling, it seems clear the MP-based approaches
dominate. In the author’s opinion, this is the test that really counts.
MP-based meta-heuristics

Given the large level activity in the area of meta-heuristics,
it is only natural to feel that more attention should be given to
MP-based meta-heuristics. This survey includes some examples,
but it would seem that more activity in this area is warranted.
Meta-heuristics can produce solutions of very high quality for large
problems; however, in nearly all cases, they produce no quality
guarantee. A challenge at the interface of the two fields is to design
meta-heuristics that produce such guarantees, e.g. by searching
both the primal and dual spaces.
Iterative variable fixing heuristics

TheDiving, ASN and CFT heuristics all employ similar strategies.
A basic iteration results in a set of variables being assigned values
of 0 or 1. This variable assignment leads to a new mathematical
program, which is further analyzed producing new variable
assignments, etc. The similarities in these approaches suggest a
further analysis into the general structure of such approaches
including comparing exact and heuristic alternatives for fixing
variables and creating new dual solutions and bounds.
Formal analysis of decomposition strategies

Our presentation in Section 2 of decomposition strategies
references results from worst case and asymptotic analysis of
heuristics but did not make use of formal decomposition analysis.
Of course, Benders and Lagrangian decomposition principles (see
e.g. [100]) can be used to provide a framework for certain
decomposition heuristics; however, they have played a relatively
minor role in much of the research in this area. It would seem
that an in-depth analysis of the techniques employed in various
MP-based decompositions could yield new general results and
frameworks.
Heuristics based on solvable special cases of combinatorial optimiza-
tion problems

Section 3.2.2 identified a class of improvement heuristics
that make direct use of solvable special cases of combinatorial
optimization problems. These methods have shown promise but
seem to have received relatively little research attention.
Flexible branch-and-bound solvers

Branch-and-bound solvers have achieved high level of effec-
tiveness aswell as flexibility. Itwould appear that this trend should
be pushed even further to allow users to create, using parame-
ter settings, broad classes of heuristics of the type described in
Section 4.2.
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