
Available online at www.sciencedirect.com

Operations Research Letters 32 (2004) 68–72

Operations
Research
Letters

www.elsevier.com/locate/dsw

An enhanced dynasearch neighborhood for the single-machine
total weighted tardiness scheduling problem

A. Grossoa, F. Della Croceb;∗, R. Tadeib

aDipartimento di Informatica, Universit�a di Torino Corso Svizzera 185, 10149 Torino, Italy
bDipartimento di Automatica e Informatica, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Received 3 September 2002; accepted 16 April 2003

Abstract

Based on the work by Congram, Potts and Van de Velde, we develop for the single-machine total weighted tardiness
scheduling problem an enhanced dynasearch neighborhood obtained by the generalized pairwise interchange (GPI) operators.
Despite of the wider neighborhood considered, a fast search procedure using also elimination criteria is developed. The
computational results signi6cantly improve over those of Congram, Potts and Van de Velde.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Total weighted tardiness; Dynasearch; Generalized pairwise interchanges

1. Introduction

In the single-machine total weighted tardiness prob-
lem denoted 1| |∑wiTi a set of jobs N ={1; 2; : : : ; n}
is given, where each job i has integer processing time
pi, due date di and weight wi. The problem calls for
6nding a sequence S and related completion times Ci
minimizing T (S)=

∑n
i=1 wiTi, with Ti=(Ci−di)+=

max(Ci − di; 0).
The 1| |∑wiTi problem is NP-hard in the strong

sense [3] and the existing exact algorithms can solve to
optimality instances with moderate size only. On the
other hand, the problem has been successfully tackled

∗ Corresponding author. Tel.: +39-011-564-7059;
fax: +39-011-564-7099.

E-mail addresses: grosso@di.unito.it (A. Grosso),
federico.dellacroce@polito.it (F. Della Croce),
roberto.tadei@polito.it (R. Tadei).

by local search heuristic algorithms where the neigh-
borhood of a solution is usually computed by apply-
ing swap (a.k.a. pairwise interchange) operators to the
working sequence.
Dynasearch is a neighborhood search technique in-

troduced in [4] whose main feature is the ability of
searching exponential size neighborhoods in polyno-
mial time by exploiting problem structure. To the au-
thors’ knowledge, the so-called iterated dynasearch
algorithm for the 1| |∑wiTi problem proposed in [1]
has given the best-known results in terms of solution
quality and computation times.
Generalized pairwise interchanges (GPI) extend the

common swap neighborhood by allowing also job in-
sertion moves, and have been shown to provide an ef-
fective neighborhood for several scheduling problems
[2].
In this paper, we develop a GPI-based dynasearch

neighborhood which widens the swap-based one of
[1] (where such extension was mentioned but not

0167-6377/03/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0167-6377(03)00064-6

mailto:grosso@di.unito.it
mailto:federico.dellacroce@polito.it
mailto:roberto.tadei@polito.it

A. Grosso et al. / Operations Research Letters 32 (2004) 68–72 69

investigated). We utilize elimination rules to eG-
ciently search this wider neighborhood showing that
a signi6cantly better solution quality can be achieved,
in about the same CPU time.

2. The GPI dynasearch neighborhood

Consider any initial sequence S. Renumber the jobs
such that S = (1; 2; : : : ; n). Following [2], we de6ne
four GPI operators, namely API (adjacent pairwise in-
terchange), NAPI (nonadjacent pairwise interchange),
EBSR (extraction and backward-shifted reinsertion)
and EFSR (extraction and forward-shifted reinsertion)
which act on the sequence as follows. Given a pair of
indices i¡ j, such that S = �i�j!:

API(i; j): �ij!⇒ �ji! (requires �= ∅);
NAPI(i; j): �i�j!⇒ �j�i!;

EBSR(i; j): �i�j!⇒ �ji�!;

EFSR(i; j): �i�j!⇒ ��ji!:

API and NAPI operators are grouped together in the
so-called SWAP operator applied in [1]. Two GPIs
acting on position pairs i¡ j and k ¡ l are called
independent if j¡k or l¡ i.
A dynasearch procedure searches for the most

pro6table series of independent interchanges, thus
allowing several improving steps to be performed
simultaneously. Congram et al. [1] showed that for
the SWAP operator the 1| |∑wiTi problem struc-
ture allows the set of possible interchange series to
be searched in O(n3) time by means of a dynamic
programming recursion.

Fig. 1. Values for I �(i; j).

We develop a GPI-based dynasearch neighborhood
as follows. We start from the initial sequence S with
completion times Cj =

∑j
s=1 ps. At a generic stage

j of the recursion, we consider the sequence �j =
([1]; : : : ; [j]) de6ned as the sequence with minimum
total weighted tardiness f(j) among those reachable
from (1; : : : ; j) through a series of independent inter-
changes. When building the optimal sequence �j, one
can either just append job j to �j−1 or append j and
execute a GPI with some position i¡ j. Taking into
account these two alternatives, the dynasearch recur-
sion can be stated, for the GPI operators � = SWAP,
EBSR, EFSR and indices j = 0; 1; : : : ; n, as

f(0) = 0; (1)

f(1) = w1(p1 − d1)+; (2)

f(j) =min
{
f(j − 1) + wj(Cj − dj)+;

min
16i6j−1;�

{f(i − 1) + I �(i; j)}
}
;

j = 2; : : : ; n; (3)

where I �(i; j) is the total weighted tardiness of the par-
tial sequence (i; : : : ; j) under application of the con-
sidered GPI operator �. I �(i; j) is set as depicted in
Fig. 1. The best sequence of interchanges is found for
j=n. If only the operator �=SWAP is considered, the
recursion of Congram et al. [1] is obtained. Evaluat-
ing a single SWAP, EBSR or EFSR requires at most
O(n) time; no more than j job interchanges need to
be considered at each stage, and n stages have to be
solved, hence evaluating the GPI neighborhood pre-
serves the O(n3) time bound computed for the SWAP
neighborhood.

70 A. Grosso et al. / Operations Research Letters 32 (2004) 68–72

In order to speed up the search, the evaluation of
an interchange between job i and j can be abandoned
as soon as it proves to be nonoptimal. We use the
following rules.

Elimination rule 1. The SWAP operator between i
and j does not need to be applied if at least one of
the following conditions holds.

(a) pi ¡pj, wi ¿wj andmax(Ci−pi+pj; dj)¿di,
(b) wi¿wj, di6dj and dj + pj¿Cj,
(c) Cj6dj.

Proof. The validity of the rule is based on known
results about the 1| |∑wiTi problem. The SWAP
operator is proved to be nonoptimal if we can 6nd a
diIerent series of independent GPIs which leads to a
job sequence with lower tardiness. At stage j, consider
any sequence S=�i�j!. In [5] it is proven that: condi-
tion (a) implies T (�j�i!)¿T (�i�j!), conditions (b)
and (c)—separately—imply T (�j�i!)¿T (��ij!).
Then

• Condition (a) implies that the corresponding SWAP
is nonoptimal.

• Condition (b) implies that sequence ��ij!, ob-
tained by applying EFSR between i and j−1, is not
worse than �j�i!. Hence, the considered SWAP is
dominated.

• Similar arguments hold for condition (c).

Elimination rule 2. The EBSR operator between i
and j does not need to be applied if at least one of
the following conditions holds.

(a) T (�ji�!)¡T (�ij�!),
(b) Cj6dj.

Proof. Condition (a) implies that, with �i�j! as ini-
tial sequence, the EBSR between i and j is dominated
by the one between i + 1 and j; the proof for (b) is
trivial, since j is early.

All the above-listed conditions can be checked in
constant time. Note that only condition 1(a) can be
checked in the SWAP neighborhood of [1].
By using � = EBSR, EFSR only, the time bound

for the recursion reduces to O(n2) since the values
for I �(i; j) can then be computed in an incremental

way:

IEBSR(i − 1; j)
= IEBSR(i; j) + min{(Ci − pi + pj − di−1)+; pj}

−min{(Ci − pi + pj − dj)+; pi−1};
IEFSR(i; j + 1)

= IEFSR(i; j) + min{(Cj + pj+1 − di)+; pj+1}
−min{(Cj + pj+1 − dj+1)+; pi}:

The basic ingredients of the recursion can be
combined in various ways. For example, we can
consider eliminating the SWAP operator from the
neighborhood, but computational experiments showed
that this would signi6cantly reduce the quality of
the 6nal solution. Based on such experiments, we
chose the following implementation: IEFSR(i; j) is
precomputed incrementally before the recursion starts
(thus allowing an initial O(n2) overhead), whilst the
values of ISWAP(i; j) and IEBSR(i; j) are computed
directly inside the recursion since for such operators
the elimination rules are eGcient, keeping the O(n3)
procedure quite fast.
As a further speedup, consider the following. If an

upper bound � on f(j) is known, evaluation of a
SWAP or EBSR can be abandoned as soon as it proves
to lead to a partial sequence with total weighted tar-
diness W ¿�. Congram et al. [1] use simple lower
bounds on W for a priori checking of W ¿� in their
SWAP neighborhood. By precomputing IEFSR(i; j),
we obtain a better value of � which allows for further
GPIs elimination.

3. Computational results

In order to assess the behavior of the neighbor-
hood, we set it in the same iterated dynasearch ap-
proach developed in [1]—to which we refer for a
detailed description—except for the procedure for
transposing adjacent nonlate jobs during the so-called
“kick” (i.e., perturbation of the local minimum by
means of random SWAPs). Indeed, preliminary
experiments with the GPI neighborhood gave bet-
ter results without such a procedure. We use the
same test instances drawn from the OR-library (see
http://www.ms.ic.ac.uk/info.html) where 125

http://www.ms.ic.ac.uk/info.html

A. Grosso et al. / Operations Research Letters 32 (2004) 68–72 71

Table 1
Comparison between SWAP-based dynasearch and GPI-based dynasearch

ND NOPT Tavg

SWAP GPI SWAP GPI

n = 40 50 123.52 124.76 0.01 0.04
n = 40 100 124.80 125.00 0.02 0.09
n = 40 150 124.96 — 0.03 —
n = 40 200 124.96 — 0.04 —
n = 40 250 125.00 — 0.05 —

n = 50 100 122.00 124.10 0.03 0.14
n = 50 200 124.12 124.80 0.07 0.28
n = 50 300 124.32 124.96 0.10 0.42
n = 50 400 124.72 125.00 0.14 0.55
n = 50 800 124.80 — 0.27 —
n = 50 1200 124.92 — 0.41 —
n = 50 1600 124.96 — 0.54 —

n = 100a 100 108.32 122.68 0.14 0.58
n = 100a 200 114.76 124.32 0.28 1.16
n = 100a 300 118.00 124.88 0.42 1.74
n = 100a 400 120.44 124.96 0.56 2.23
n = 100a 500 121.56 125.00 0.70 2.90
n = 100a 1000 123.36 — 1.40 —
n = 100a 1500 123.48 — 2.11 —
n = 100a 2000 123.92 — 2.62 —
n = 100a 2500 124.00 — 3.63 —

ND = number of descents; NOPT = number of optima (out of 125); Tavg = average CPU time (s).
aOnly known best upper bounds are available for n = 100.

randomly generated instances are given for each size
n=40; 50, 100. The algorithm is implemented in C++
and runs under the Windows 2000 operating system
on a HP “Kayak” 800 MHz Personal Computer.
In Table 1 we compare the SWAP-based proce-

dure of [1] (kindly provided by the authors) and the
proposed GPI-based algorithm. The column ND re-
ports the number of descents (to a local optimum)
performed. All the values are averaged over 25 inde-
pendent runs. The average deviation from optimum is
not reported since it is always negligible (in no test it
became larger than 0.005%).
For each class of instances and for equal values of

ND, GPI strongly outperforms SWAP in terms of so-
lution quality because of its wider neighborhood. The
improvement is particularly relevant for the n = 100
instances. We note that, even if GPI requires on aver-
age a larger CPU time than SWAP (about four times
slower), for equivalent computation time the quality of

the solutions improves signi6cantly, making the GPI
neighborhood the best suited for large instances. For
equivalent CPU time, the GPI algorithm still domi-
nates SWAP on n=50, while it is only slightly dom-
inated on the small n = 40 instances, where however
it reaches all the optimal values within 0.09 seconds
on the average.
We tried to improve the best-known upper bounds

found by Congram et al. [1] for the n=100 instances
by running ten independent tests with ND = 10; 000,
but no better values were found.
Table 2 compares iterated GPI-based dynasearch

with the ant-colony optimization (ACO) algorithm
proposed in [6], where a GPI neighborhood structure
is applied in the ACO framework. Following [6], the
comparison is made on the time Topt needed to 6nd the
optimal value. Note that the CPU times of [6] should
be scaled by a factor 0:56 since those tests ran on a
slower processor. The iterated dynasearch algorithm

72 A. Grosso et al. / Operations Research Letters 32 (2004) 68–72

Table 2
Comparison between GPI-based dynasearch (GPI-DS) and ACO algorithm in terms of CPU time

Topt;min Topt;avg Topt;max

n = 40 GPI-DSa 0.001 0.003 0.125
n = 40 ACOb 0.004 0.088 1.720
n = 50 GPI-DSa 0.001 0.010 0.562
n = 50 ACOb 0.006 0.320 10.740
n = 100 GPI-DSa 0.001 0.107 3.907
n = 100 ACOb 0.018 6.990 86.260

Topt = time to 6nd the optimal value (s).
aOn a 800 MHz PC.
bOn a 450 MHz PC.

reaches the same ACO solution quality within signif-
icantly smaller CPU times, even taking into account
such scaling.

References

[1] R.K. Congram, C.N. Potts, S. Van de Velde, An iterated
dynasearch algorithm for the single-machine total weighted
tardiness scheduling problem, INFORMS J. Comput. 14 (2002)
52–67.

[2] F. Della Croce, Generalized pairwise interchanges and machine
scheduling, European J. Oper. Res. 83 (1995) 310–319.

[3] E.L. Lawler, A pseudopolynomial algorithm for sequencing
jobs to minimize total tardiness, Ann. Discrete Math. 1 (1977)
331–342.

[4] C.N. Potts, S. Van de Velde, Dynasearch—iterative local
improvement by dynamic programming: part I, the traveling
salesman problem, Technical Report, University of Twente,
The Netherlands, 1995.

[5] A.H.G. Rinnooy Kan, B.J. Lageweg, J.K. Lenstra, Minimizing
total costs in one-machine scheduling, Oper. Res. 23 (1975)
908–927.

[6] T. StRutzle, M. Den Besten, M. Dorigo, Ant Colony
Optimization for the total weighted tardiness problem,
Technical Report IRIDIA/99-16, UniversitSe Libre de Bruxelles,
Belgium, 1999.

	An enhanced dynasearch neighborhood for the single-machine total weighted tardiness scheduling problem
	Introduction
	The GPI dynasearch neighborhood
	Computational results
	References

