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Abstract

The availability of effective exact or heuristic solution methods for general
Mixed-Integer Programs (MIPs) is of paramount importance for practical ap-
plications. In the present paper we investigate the use of a generic MIP solver
as a black-box “tactical” tool to explore effectively suitable solution subspaces
defined and controlled at a “strategic” level by a simple external branching
framework. The procedure is in the spirit of well-known local search meta-
heuristics, but the neighborhoods are obtained through the introduction in
the MIP model of completely general linear inequalities called local branching
cuts.

The new solution strategy is exact in nature, though it is designed to
improve the heuristic behavior of the MIP solver at hand. It alternates high-
level strategic branchings to define the solution neighborhoods, and low-level
tactical branchings to explore them. The result is a completely general scheme
aimed at favoring early updatings of the incumbent solution, hence producing
high-quality solutions at early stages of the computation.

The method is analyzed computationally on a large class of very difficult
MIP problems by using the state-of-the-art commercial software ILOG-Cplex
7.0 as the black-box tactical MIP solver. For these instances, most of which
cannot be solved to proven optimality in a reasonable time, the new method
exhibits consistently an improved heuristic performance: in 23 out of 29 cases,
the MIP solver produced significantly better incumbent solutions when driven
by the local branching paradigm.

1 Introduction

Mixed-integer linear programming plays a central role in modeling difficult-to-solve
(NP-hard) combinatorial problems. However, the exact solution of the resulting
models often cannot be carried out for the problem sizes of interest in real-world
applications, hence one is interested in effective heuristic methods.

Although several heuristics have been proposed in the literature for specific
classes of problems, only a few papers deal with general-purpose MIP heuristics,
including [1], [2], [7], [8], [9], [11], [12], [15], [16], and [20] among others.

Exact MIP solvers are nowadays very sophisticated tools designed to hopefully
deliver, within acceptable computing time, a provable optimal solution of the input
MIP model, or at least a heuristic solution with a practically-acceptable error. In
fact, what matters in many practical cases is the possibility of finding reasonable
solutions as early as possible during the computation. In this respect, the “heuris-
tic behavior” of the MIP solver plays a very important role: an aggressive solution
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strategy that improves the incumbent solution at very early stages of the compu-
tation is strongly preferred to a strategy designed for finding good solutions only
at the late steps of the computation (that for difficult problems will unlikely be
reached within the time limit).

Many commercial MIP solvers allow the user to have a certain control on their
heuristic behavior through a set of parameters affecting the visit of the branching
tree, the frequency of application of the internal heuristics, the fact of emphasizing
the solution integrality rather than its optimality, etc. Unfortunately, in some hard
cases a general-purpose MIP solver may prove not adequate even after a clever
tuning, and one tends to quit the MIP framework and to design ad-hoc heuristics
for the specific problem at hand, thus loosing the advantage of working in a generic
framework.

In this paper we investigate the use of a general-purpose MIP solver as a black-
box “tactical” tool to explore effectively suitable solution subspaces defined and
controlled at a “strategic” level by a simple external branching framework. The
procedure is in the spirit of well-known local search metaheuristics, but the neigh-
borhoods are obtained through the introduction in the MIP model of (invalid) linear
inequalities called local branching cuts. This allows one to work within a perfectly
general MIP framework, and to take advantage of the impressive research and im-
plementation effort that nowadays is devoted to the design of MIP solvers.

The new solution strategy is exact in nature, though it is designed to improve
the heuristic behavior of the MIP solver at hand. It alternates high-level strategic
branchings to define solution neighborhoods, and low-level tactical branchings (per-
formed within the MIP solver) to explore them. The result can then be viewed as
a two-level branching strategy aimed at favoring early updatings of the incumbent
solution, hence producing improved solutions at early stages of the computation.

The paper is organized as follows. In Section 2 we outline a well-know heuris-
tic scheme based on variable fixing (diving), and propose a variant of the scheme
intended at overcoming its drawbacks. This leads naturally to the concept of “lo-
cal branching” cuts, which are formally defined in Section 3. The basic method
is then improved upon in Section 4, with the aim of enhancing its heuristic be-
havior through appropriate diversification mechanisms borrowed from local search
paradigms. The resulting scheme is then analyzed computationally, in Section 5,
on a large class of very difficult MIP problems1. We used the state-of-the-art com-
mercial software ILOG-Cplex 7.0 [6] as the black-box “tactical” MIP solver. For
these instances, most of which cannot be solved to proven optimality in a reasonable
time, the new method exhibits consistently an improved heuristic performance: in
23 out of 29 cases, the MIP solver produced significantly better incumbent solutions
when driven by the local branching paradigm. Some conclusions are finally drawn
in Section 6.

An early version of the present paper was presented by the authors at the Sixth
Workshop on Combinatorial Optimization held in Aussois, January 6-12, 2002.

2 Soft vs. hard variable fixing heuristics

A commonly used, and often effective, heuristic scheme fitting into the framework
described in the introduction is based on the so-called (hard) variable fixing or
diving idea, that can be described as follows. We assume to have an exact or
heuristic black-box solver for the problem at hand. The solver is first applied to
the input data, but its parameters are set so as to quickly abort execution and
return a (possibly infeasible) “target solution” x̄. This solution is defined, e.g., as
the solution of the root-node Linear Programming (LP) relaxation, possibly after

1Instances available at http://www.or.deis.unibo.it/research pages/ORinstances/MIPs.html
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a clever rounding of some of its fractional variables, or as any heuristic solution
of the problem. Solution x̄ is then analyzed, and some of its nonzero variables are
heuristically rounded-upito the nearest integer (if non-integer) and then fixed to this
value. The method is then iteratively re-applied on the restricted problem resulting
from fixing: the black-box solver is called again, a new target solution is found,
some of its variables are fixed, and so on. In this way the problem size reduces after
each fixing, hence the black-box solver can concentrate on smaller and smaller “core
problems” with increasing chances of solving them to proven optimality.

A critical issue in variable-fixing methods is of course related to the choice of
the variables to be fixed at each step. As a matter of fact, for difficult problems
high-quality solutions are only found after several rounds of fixing. On the other
hand, wrong choices at early fixing levels are typically very difficult to detect, even
when bounds on the optimal solution value are computed before each fixing: in the
hard cases, the bound typically remains almost unchanged for several fixings, and
increases suddenly after an apparently-innocent late fixing. Therefore one has to
embed in the scheme backtracking mechanisms to recover from bad fixings, a very
difficult task.

The question is then how to fix a relevant number of variables without losing the
possibility of finding good feasible solutions. To better illustrate this point, suppose
one is given a heuristic 0-1 solution x̄ of a pure 0-1 MIP model with n variables,
and wants to concentrate on a core subproblem resulting from fixing to 1 at least
90% (say) of its nonzero variables. How should one choose the actual variables to
be fixed? Put in these terms, the question lends itself to a simple answer: just add
to the MIP model a linear soft fixing constraint of the form

n∑

j=1

x̄j xj ≥ ⌈0.9

n∑

j=1

x̄j⌉ (1)

and apply the black-box solver to the resulting MIP model. In this way one avoids
a too-rigid fixing of the variables in favor of a more flexible condition defining a
suitable neighborhood of the current target solution, to be explored by the black-
box solver itself. In the example, the underlying hypothesis is the 10% of slack left
in the right-hand side of (1) drives the black-box solver as effectively as fixing a
large number of variables, but with a much larger degree of freedom–hence better
solutions can be found.

Soft fixing is used as a refining tool in the crew-scheduling software TURNI [14,
22]. Here, the basic black-box solver is a specialized crew-scheduling heuristic based
on a set partitioning model solved by Lagrangian relaxation and (hard) variable
fixing, in a vein similar to the one proposed in [5] for the solution of pure set
covering problems. The soft-fixing refining procedure is used on top of the basic
TURNI module, and considers constraint (1) with respect to the best incumbent
solution x̄. Different percentage values in the right-hand side of (1) are considered,
for each of which the basic heuristic is re-applied in the attempt of producing
improved solutions. The overall approach proved quite effective for the solution of
large-scale crew scheduling instances. For instance, we addressed the solution a real-
world crew scheduling instance involving the scheduling of 800+ drivers to cover
8000+ time-tabled trips, as provided to us by NS Reizigers−the Dutch railways
company. The experiment was run on a PC AMD Athlon 2100+ with 512 Mbyte of
RAM. The basic TURNI module found, after 41 CPU minutes, a solution involving
833 duties. Starting from this reference solution, the soft-fixing refining procedure
was applied, which produced a sequence of improvements converging to a solution
with 809 duties after 55 minutes from the refining start.
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3 The local branching framework

The soft fixing mechanism outlined in the previous section leads naturally to the
general framework described in the sequel. We consider a generic MIP with 0-1
variables of the form:

(P ) min cT x (2)

Ax ≥ b (3)

xj ∈ {0, 1} ∀j ∈ B 6= ∅ (4)

xj ≥ 0, integer ∀j ∈ G (5)

xj ≥ 0 ∀j ∈ C (6)

Here, the variable index set N := {1, · · · , n} is partitioned into (B,G, C), where
B 6= ∅ is the index set of the 0-1 variables, while the possibly empty sets G and C
index the general integer and the continuous variables, respectively.

Given a feasible reference solution x̄ of (P ), let S := {j ∈ B : x̄j = 1} denote the
binary support of x̄. For a given positive integer parameter k, we define the k-OPT
neighborhood N (x̄, k) of x̄ as the set of the feasible solutions of (P ) satisfying the
additional local branching constraint:

∆(x, x̄) :=
∑

j∈S

(1 − xj) +
∑

j∈B\S

xj ≤ k (7)

where the two terms in left-hand side count the number of binary variables flipping
their value (with respect to x̄) either from 1 to 0 or from 0 to 1, respectively.

In the relevant case in which the cardinality of the binary support of any feasible
solution of (P ) is a constant, this constraint can more conveniently be written in
its equivalent “asymmetric” form

∑

j∈S

(1 − xj) ≤ k′ (= k/2) (8)

The above definition is consistent, e.g., with the classical k′-OPT neighborhood for
the Traveling Salesman Problem (TSP), where constraint (8) allows one to replace
at most k′ edges of the reference tour x̄.

As its name suggests, the local branching constraint can be used as a branch-
ing criterion within an enumerative scheme for (P ). Indeed, given the incumbent
solution x̄, the solution space associated with the current branching node can be
partitioned by means of the disjunction

∆(x, x̄) ≤ k (left branch) or ∆(x, x̄) ≥ k + 1 (right branch) (9)

As to the neighborhood-size parameter k, it should be chosen as the largest value
producing a left-branch subproblem which is likely to be much easier to solve than
the one associated with its father. The idea is that the neighborhood N (x̄, k)
corresponding to the left branch must be “sufficiently small” to be optimized within
short computing time, but still “large enough” to likely contain better solutions than
x̄. According to our computational experience, the choice of k is seldom a problem
by itself, in that values of k in range [10, 20] proved effective in most cases. We
face here a situation similar to the one arising when using k′-OPT exchanges for
TSP problems: even though the value of k′ should in principle depend on the size
and structure of the TSP instance at hand, a fixed “sufficiently small” constant
value for k′ is successfully used in practice. (Of course, this is also due to the fact
that, the TSP neighborhood being searched by complete enumeration, a value of k′
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larger than 3 would be impractical in most cases.) Moreover, as explained in the
next section, the value of k can easily be increased/decreased automatically at run
time, in an adaptive way.

A first implementation of the local branching idea is illustrated in Figure 1, where
the triangles marked by the letter “T” (for Tactical) correspond to the branching
subtrees to be explored through a standard “tactical” branching criterion such as,
e.g., branching on fractional variables−i.e., they represent the application of the
black-box exact MIP solver.
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Figure 1: The basic local branching scheme.

In the figure, we assume to have a starting incumbent solution x̄1 at the root
node 1. The left-branch node 2 corresponds to the optimization within the k-OPT
neighborhood N (x̄1, k), which is performed through a tactical branching scheme
converging (hopefully in short computing time) to an optimal solution in the neigh-
borhood, say x̄2. This solution then becomes the new incumbent solution. The
scheme is then re-applied to the right-branch node 3, where the exploration of
N (x̄2, k) \ N (x̄1, k) at node 4 produces a new incumbent solution x̄3. Node 5 is
then addressed, which corresponds to the initial problem (P ) amended by the two
additional constraints ∆(x, x̄1) ≥ k + 1 and ∆(x, x̄2) ≥ k + 1. In the example, the
left-branch node 6 produces a subproblem that contains no improving solution. In
this situation the addition of the branching constraint ∆(x, x̄3) ≥ k + 1 leads to
the right-branch node 7, which is explored by tactical branching. Note that the
fractional LP solution of node 1 is not necessarily cut off in both son nodes 2 and
3, as is always the case when applying standard branching on variables. The same
holds for nodes 3 and 5. In fact, the local branching philosophy is quite different
from the standard one: we do not want to force the value of a fractional variable,
but we rather instruct the solution method to explore first some promising regions
of the solution space. The expected advantage of the local-branching scheme is an
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early (and more frequent) update of the incumbent solution. In other words, we
expect to find quickly better and better solutions until we reach a point where local
branching cannot be applied anymore (node 7, in the example), hence we have to
resort to tactical branching to conclude the enumeration.

This behavior is illustrated in Figure 2, where we solved MIP instance tr24-15

[23] by means of three codes: the commercial solver ILOG-Cplex 7.0 in the two
versions emphasizing the solution optimality or feasibility, respectively, and the lo-
cal branching scheme where ILOG-Cplex 7.0 (optimality version) is used to explore
the “T-triangle” subtrees, and the local branching constraints are of type (7) with
k = 18. Apart from the emphasizing setting, all the three codes were run with
the same parameters. As to the initial reference solution x̄1 needed in the local
branching framework, it was obtained as the first feasible solution found by ILOG-
Cplex 7.0 (optimality version)−the corresponding computing time is included in
the local-branching running time. The test was performed on Digital Alpha Ul-
timate Workstation 533 MHz. According to the figure, the performance of the
local branching scheme is quite satisfactory, in that it is able to improve the ini-
tial solution several times in the early part of the computation. As a matter of
fact, the local-branching incumbent solution is significantly better than that of the
two other codes during almost the entire run. As to optimality convergence, the
local branching method concludes its run after 1,878 CPU seconds, whereas ILOG-
Cplex 7.0 in its optimization version converges to optimality within 3,827 CPU
seconds (the feasibility version is unable to prove optimality within a time limit
of 6,000 CPU seconds). Note, however, that the enhanced convergence behavior
of the local branching scheme in proving optimality cannot be guaranteed in all
cases–investigating this issue would require a different computational study, and is
left to future research.
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Figure 2: Solving MIP instance tr24-15 (solution value vs. CPU seconds).

4 An enhanced heuristic solution scheme

We now elaborate the basic idea introduced in the previous section with the aim of
enhancing its heuristic performance.
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Imposing a time limit on the left-branch nodes

The first improvement is related to the fact that, in some cases, the exact solution
of the left-branch node can be very time consuming for the value of the parameter
k at hand. Hence, from the point of view of a heuristic, it is reasonable to impose
a time limit for the left-branch computation. In case the time limit is exceeded, we
have two cases.

(a) If the incumbent solution has been improved, we backtrack to the father
node and create a new left-branch node associated with the new incumbent solution,
without modifying the value of parameter k. This situation is illustrated in Figure
3, where node 3 actually has three sons: node 4, for which the time limit is reached
with an improved solution x̄3, and the regular left- and right-branch nodes 4′ and
5. Notice that, in the example, the neighborhood associated with node 4 was not
explored completely, hence it would be mathematically incorrect to impose the
associated right-branch condition ∆(x, x̄2) ≥ k + 1 on nodes 4′ and 5.

(b) If the time limit is reached with no improved solution, instead, we reduce
the size of the neighborhood in an attempt to speed-up its exploration. This is
obtained by reducing the right-hand side term by, e.g., ⌈k/2⌉. This situation is
illustrated in Figure 4, where again node 3 has three sons: node 4, for which the
time limit is reached with no improved solution, node 4′, for which the reduction
of the neighborhood size allowed for finding a provable optimal solution x̄3 in the
neighborhood, and node 5.
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Figure 3: Working with a node time limit: case (a).

Diversification

A further improvement of the heuristic performance of the method can be ob-
tained by exploiting well-known diversification mechanisms borrowed from local
search metaheuristics. In our scheme, diversification is worth applying whenever
the current left-node is proved to contain no improving solutions. This case arises
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Figure 4: Working with a node time limit: case (b).

at node 6 in Figure 1, where the standard scheme would have switched to the ex-
ploration of node 7 through tactical branching. In order to keep a strategic control
on the enumeration even in this situation, we use two different diversification mech-
anisms. We first apply a “soft” diversification consisting in enlarging the current
neighborhood by increasing its size by, e.g., ⌈k/2⌉. Diversification then produces
a left-branch node which is processed by tactical branching within a certain time
limit. In case no improved solution is found even in the enlarged neighborhood
(within the time limit), we apply a “strong” diversification step in the spirit of
Variable Neighborhood Search [19], where we look for a solution (typically worse
than the incumbent one) which is not “too far” from the current reference solution
x̄.

In our implementation, this is achieved by applying tactical branching to the
current problem amended by constraint ∆(x, x̄2) ≤ k + 2⌈k/2⌉, but without im-
posing any upper bound on the optimal solution value. The exploration is aborted
as soon as the first feasible solution is found. This solution (typically worse than
the current best one) is then used as the new reference solution, and the method
is re-applied in an attempt to iteratively improve it, and eventually the incumbent
one.

The overall enhanced scheme is illustrated by the pseudo-code in Figure 5.
Function LocBra receives on input the neighborhood size (k), the overall time
limit (total time limit), the time limit for each tactical branching exploration
(node time limit), and the maximum number of diversifications allowed (dv max).
It returns on output the best/optimal feasible solution found (x∗) along with the
final optimization status (opt). (In case no feasible solution has been found but there
is no guarantee of infeasibility, LocBra will return opt = false and x∗ = undefined.)

The method consists of a main repeat-until loop which is iterated until either
the total time limit or the maximum number of diversifications is exceeded. At each
iteration, a MIP problem is solved through the tactical black-box solver MIP SOLVE
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function LocBra(k, total time limit, node time limit, dv max, x∗);
rhs := bestUB := UB := TL := +∞; x∗ := undefined;
opt := first := true; dv := 0; diversify := false;
repeat

if (rhs < ∞) then add the local branching constraint ∆(x, x̄) ≤ rhs endif;

TL := min{TL, total time limit − elapsed time};

stat := MIP SOLVE(TL, UB, first, x̃);
TL := node time limit;

1. if (stat = “opt sol found”) then

if (cT x̃ < bestUB) then bestUB := cT x̃; x∗ := x̃ endif;

if (rhs ≥ +∞) return(opt);

reverse the last local br. constraint into ∆(x, x̄) ≥ rhs +1;

diversify := first := false; x̄ := x̃; UB := cT x̃; rhs := k
endif;

2. if (stat = “proven infeasible”) then

if (rhs ≥ +∞) return(opt);

reverse the last local br. constraint into ∆(x, x̄) ≥ rhs +1;

if (diversify) then UB := TL := +∞; dv := dv + 1; first := true endif;

rhs := rhs +⌈k/2⌉; diversify := true

endif;
3. if (stat = “feasible sol found”) then

if (rhs < ∞) then

if (first) then

delete the last local br. constraint ∆(x, x̄) ≤ rhs
else

replace the last local br. constraint ∆(x, x̄) ≤ rhs by ∆(x, x̄) ≥ 1
endif

endif;
REFINE(x̃);

if (cT x̃ < bestUB) then bestUB := cT x̃; x∗ := x̃ endif;

first := diversify := false; x̄ := x̃; UB := cT x̃; rhs := k
endif;

4. if (stat = “no feasible sol found”) then

if (diversify) then

replace the last local br. constraint ∆(x, x̄) ≤ rhs by ∆(x, x̄) ≥ 1;

UB := TL := +∞; dv := dv + 1; rhs := rhs +⌈k/2⌉; first := true

else
delete the last local br. constraint ∆(x, x̄) ≤ rhs;

rhs := rhs −⌈k/2⌉
endif;
diversify := true

endif;
until (elapsed time > total time limit) or (dv > dv max);
TL := total time limit − elapsed time; first := false;
stat := MIP SOLVE(TL, bestUB, first, x∗);

opt := (stat = “opt sol found”) or (stat = “proven infeasible”);

return(opt)
end.

Figure 5: The overall local branching function LocBra.
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that receives on input three parameters: the local time limit TL, the upper bound
UB used to interrupt the optimization as soon the best lower bound becomes greater
or equal to UB, and the flag first to be set to true for aborting the computation
as soon as the first feasible solution is found. MIP SOLVE returns on output the
optimal/best solution x̃ along the final optimization status stat.

LocBra uses an internal flag diversify indicating whether the next required di-
versification will be of type “soft” (diversify = false) or “strong” (diversify =
true). As a rule, a strong diversification is performed only if a soft one was per-
formed in the previous iteration, i.e., any iteration that does not require diversifi-
cation resets diversify to false.

Four different cases may arise after each call to MIP SOLVE:

1. opt sol found: the current MIP has been solved to proven optimality, hence
the last local branching constraint is reversed, the reference solution x̄ of
value UB (and possibly the incumbent one x∗ of value bestUB) is updated,
and the process is iterated. Of course, an immediate return is performed in
case this situation arises at the root node, where no local branching constraint
is imposed (rhs ≥ +∞).

2. proven infeasible: the current MIP is proven to have no feasible solution
of cost strictly less than the input upper bound UB, hence the last local
branching constraint is reversed, a soft or strong diversification is performed
depending on the current value of flag diversify, and the process is iterated.
Of course, an immediate return is performed in case this situation arises at
the root node (rhs ≥ +∞), where no local branching constraint nor local time
limit is imposed.

3. feasible sol found: a solution of cost strictly less than the upper bound UB
(i.e., improving the reference solution) has been found, but the MIP solver
was not capable of proving its optimality for the current problem (due to the
imposed time limit or to the requirement of aborting the execution after the
first feasible solution is found). As already mentioned, in this case we are not
allowed to reverse the last local branching constraint. In order to still cut off
the current reference solution x̄, we replace the last local branching constraint
∆(x, x̄) ≤ rhs by the “tabu” constraint ∆(x, x̄) ≥ 1 (unless this constraint
has been already introduced at step 4, in which case the last local branching
constraint is simply deleted). In this way, however, one could cut off also the
optimal solution of the overall problem, as in principle we have no guarantee
that x̄ is actually optimal under the condition ∆(x, x̄) ≤ 0, i.e., when fixing
xj = x̄j , ∀j ∈ B. Such a guarantee always exists if, e.g., all the problem
variables are binary (G = C = ∅). In the general case, the correctness of the
method requires the use a “refining” procedure REFINE(x̃) that replaces the
input solution x̃ by the optimal one (computed through the MIP solver) in the
neighborhood ∆(x, x̃) ≤ 0, thus producing a certificate of “optimality when
fixing all binary variables” for x̃. Notice that REFINE is implicitly applied to
every solution x̃ provided by MIP SOLVE, though it is only invoked at step 3 (as
this is clearly useless at step 1). Also worth noting is that procedure REFINE

may turn out to be excessively time-consuming in the cases where fixing the
binary variables does not lead to an easy-to-solve subproblem–e.g., due to the
presence of a large number of general-integer variables. In this situation, one
is allowed to deactivate the REFINE call, but the last local branching constraint
∆(x, x̄) ≤ rhs cannot be replaced by ∆(x, x̄) ≥ 1 since this may affect the
optimality of the method.

4. no feasible sol found: no feasible solution of cost strictly less than UB has
been found within the node time limit, but there is no guarantee that such a
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solution does not exist. In this case, either the last local branching constraint
is deleted or it is replaced by the “tabu” constraint ∆(x, x̄) ≥ 1 depending on
the type of diversification to be performed, i.e., on the value of flag diversify.
In case of soft diversification, a new local branching neighborhood is addressed
(and the previous local branching constraint deleted), whereas in a strong
diversification the “tabu” constraint ∆(x, x̄) ≥ 1 is introduced in order to
escape from the current solution, and the upper bound UB is reset to +∞.

On exit from the repeat-until loop, the remaining computing time (if any) is used in
the attempt of solving the current MIP to proven optimality−this corresponds to the
processing of node 7 in Figure 1. As a consequence, the local branching scheme acts
as an exact method when (total time limit = +∞ and) dv max < +∞, whereas
for dv max = +∞ the overall scheme can be viewed as a local search heuristic.
This latter execution mode is illustrated in Figure 6, where the hard MIP instance
B1C1S1 [23] is heuristically solved by LocBRa with the input parameters described
in the next section.
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Figure 6: LocBra acting as a heuristic for instance B1C1S1 (solution value vs. CPU
seconds).

5 Computational results

The local branching procedure LocBra has been computationally tested on a large
set of MIP instances containing 7 difficult instances from the MIPLIB 3.0 library
[4], plus 22 very hard instances collected from several authors and originating in
different optimization contexts. To be more specific, our test bed includes the
following instances2:

• 7 MIPLIB-3.0 instances, mkc, swath, danoint, markshare1, markshare2,
arki001 and seymour;

• 1 network design instance, net12, provided by Belotti [3];

2Instances available at http://www.or.deis.unibo.it/research pages/ORinstances/MIPs.html
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• 2 crew scheduling instances, biella1 and NSR8K, provided by Double-Click
sas [22];

• 5 railway crew scheduling instances, rail507, rail2536c, rail2586c, rail4284c
and rail4872c, discussed e.g. in Caprara, Fischetti and Toth [5]; in the in-
stance name, the final letter “c” refers to the fact that the MIP model actually
corresponds to a suitable “core problem” defined as in [5];

• 1 nesting instance, glass4, provided by Luzzi [17];

• 2 telecommunication network design instances, namely: instance UMTS pro-
vided by Polo [21], and instance van provided by Mannino and Parrello [18];

• 5 lot-sizing instances, A1C1S1, A2C1S1, B1C1S1, B2C1S1 and tr12-30, dis-
cussed in Van Vyve and Pochet [23];

• 2 rolling stock and line planning instances, roll3000 and nsrand ipx, pro-
vided by Kroon [13];

• 4 railway line planning instances, sp97ar, sp97ic, sp98ar and sp98ic, pro-
posed by Goossens, van Hoesel and Kroon [10].

For each instance we report in Table 1 the name (Name), a letter indicating the
set (set), the size in terms of number of constraints (m), of total variables (n), and
of binary variables (|B|), the best available solution value (bestVal, to be discussed
later), and the source of the instance in terms of context of application (context)
and reference (ref.).

We compared the performance of three codes: the commercial solver ILOG-
Cplex 7.0 in the two versions emphasizing the solution optimality (cpx-O) and
feasibility (cpx-F), respectively, and the local branching procedure LocBra where
ILOG-Cplex 7.0 (optimality version) is used at the tactical level.

None of the instances in our test bed can be solved to proven optimality by any
of the three codes within a time limit of 5 CPU hours on a Digital Alpha Ultimate
workstation 533 MHz, SPECint 16.1, SPECfp95 30.5. (A time limit of 10 hours has
been given to instance NSR8K due to its very large size.) Thus, the solution values
reported in the “BestVal” column of Table 1 refer to the best heuristic solution
computed by the three codes within the time limit above.

Within LocBra, the local branching constraints are of type (7) with k = 20, and
dv max := +∞. As to the node time-limit, node time limit, it was set according to
the instance size, as reported, in seconds, in column node tl of Table 3. Moreover,
for instance arki001 we disabled the REFINE procedure invoked at Step 3 of
LocBra as it turned out to be very time consuming due to the presence in the MIP
model of a significant set of general-integer variables.

Table 2 compares the heuristic performance of the three methods (cpx-O, cpx-F,
and LocBra) after 1, 3, and 5 hours of computation (more detailed information
is reported in Tables 6-11 in the appendix). Column “Gap” reports either the
percentage gap (%Gap, computed as 100 ∗ (heuristic value− bestV al)/bestV al) or
the absolute gap (Abs. Gap, computed as heuristic value − bestV al) with respect
to the best solution found by the three codes–as reported in column bestV al of
Table 1).

According to the table, the final LocBra heuristic solution ranked first in 23 out
of the 29 instances in the test bed, whereas the two ILOG-Cplex versions cpx-O

and cpx-F ranked first in 2 and 4 cases, respectively. Moreover, for many instances
the LocBra incumbent solution is significantly better than that produced by the
two other codes during the entire run. On the whole, the results clearly indicate
the effectiveness of LocBra as a general-purpose heuristic for hard MIPs.
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Name set m n |B| bestVal context ref.
mkc A 3411 5325 5323 -559.51 MIPLIB 3.0 [4]
swath A 884 6805 6724 471.03 MIPLIB 3.0 [4]
danoint A 664 521 56 65.67 MIPLIB 3.0 [4]
markshare1 A 7 74 60 7.00 MIPLIB 3.0 [4]
markshare2 A 6 62 50 14.00 MIPLIB 3.0 [4]
arki001 A 1048 1388 415 7,581,034.85 MIPLIB 3.0 [4]
seymour A 4944 1372 1372 424.00 MIPLIB 3.0 [4]
net12 B 14021 14115 1603 255.00 network design [3]
biella1 C 1203 7328 6110 3,070,810.15 crew scheduling [22]
NSR8K C 6284 38356 32040 21,520,487.01 crew scheduling [22]
rail507 D 509 63019 63009 175.00 railway crew scheduling [5]
rail2536c D 2539 15293 15284 691.00 railway crew scheduling [5]
rail2586c D 2589 13226 13215 957.00 railway crew scheduling [5]
rail4284c D 4287 21714 21705 1078.00 railway crew scheduling [5]
rail4872c D 4875 24656 24645 1556.00 railway crew scheduling [5]
glass4 E 396 322 302 1,587,515,737.50 nesting [17]
UMTS F 4465 2947 2802 30,160,547.00 telecomm. network [21]
van F 27331 12481 192 5.09 telecomm. network [18]
roll3000 G 2295 1166 246 13,065.00 railway rolling stock [13]
nsrand ipx G 735 6621 6620 51,520.00 railway line planning [13]
A1C1S1 H 3312 3648 192 11,834.02 lot-sizing [23]
A2C1S1 H 3312 3648 192 11,251.10 lot-sizing [23]
B1C1S1 H 3904 3872 288 25,869.15 lot-sizing [23]
B2C1S1 H 3904 3872 288 26,297.63 lot-sizing [23]
tr12-30 H 750 1080 360 130,596.00 lot-sizing [23]
sp97ar I 1761 14101 14101 667,735,390.40 railway line planning [10]
sp97ic I 1033 12497 12497 436,984,606.56 railway line planning [10]
sp98ar I 1435 15085 15085 531,942,554.88 railway line planning [10]
sp98ic I 825 10894 10894 449,915,159.36 railway line planning [10]

Table 1: The hard MIP instances in the test bed.

Additional statistics on the LocBra execution are reported in Table 3, where for
each 5-hour run3 we report the number of occurrences of cases 1. (stat = “opt sol -

found”), 2. (stat = “proven infeasible”), 3. (stat = “feasible sol found”),
and 4. (stat = “no feasible sol found”) of Figure 5. Moreover, the table gives
the total number of diversifications (dv), the value of the diversification counter
when the best solution was found (dvbest), and the node time-limit (in seconds) we
provided on input to LocBra (node tl).

In the previous experiments we deliberately avoided any fine tuning of the
LocBra parameters. However, the knowledge of the structure of the set of instances
to be solved can obviously improve the results significantly. This is the case, in par-
ticular, when set covering/partitioning instances (possibly with side constraints) are
addressed. Indeed, according to our experience the use of the “asymmetric” version
(8) of the local branching constraint (7) results into improved results for this kind
of instances. To illustrate this behavior, in Table 4 we report the results obtained
for the set-covering instances seymour and rail when LocBra is driven by the local
branching constraint (8) with k′ = 10−corresponding roughly to k = 20 in (7); the
improvements with respect to best value reported in Table 1 are marked by ∗.

Moreover, changing some main ILOG-Cplex parameter at the tactical level of
LocBra may produce improved results in some cases. As an example, in Table 5

3For instance NSR8K the results in Table 2 refer to a 10-hour run.

13



1 hour 3 hours 5 hours
Name Gap cpx-O cpx-F LocBra cpx-O cpx-F LocBra cpx-O cpx-F LocBra
mkc % 3.765 2.399 2.281 3.765 1.294 0.404 3.765 1.294 0
swath % 94.504 2.507 1.599 26.374 1.153 0 26.374 1.153 0
danoint % 0 0 0 0 0 0 0 0 0
markshare1 Abs. 1 5 10 1 0 2 1 0 2
markshare2 Abs. 9 1 34 9 0 11 9 0 11
arki001 % 0.024 0.028 0 0.017 0.016 0 0.013 0.013 0
seymour Abs. 11 5 2 11 3 0 11 3 0
net12 Abs. – – – 41 – 41 41 0 41
biella1 % 0.256 31.313 0.241 0.256 18.272 0.172 0.256 11.475 0
NSR8K∗ % – – – 1843.8 1526.4 109.3 1426.8 1526.4 0
rail507 Abs. 2 6 1 2 5 0 1 5 0
rail2536c Abs. 5 3 0 1 3 0 0 3 0
rail2586c Abs. 54 34 7 14 34 2 14 34 0
rail4284c Abs. 51 40 10 42 40 2 38 40 0
rail4872c Abs. 73 69 27 70 49 9 45 49 0
glass4 % 22.835 7.087 19.685 14.226 7.087 10.236 13.386 7.087 0
UMTS % 6.403 0 2.413 6.403 0 1.216 6.403 0 0.126
van % – – – 30.845 0 0 5.108 0 0
roll3000 % 2.763 3.804 3.131 2.763 3.804 0 2.763 3.375 0
nsrand ipx % 0.932 0.932 0.621 0.932 0.932 0 0.932 0.932 0
A1C1S1 % 7.297 5.438 4.464 5.569 5.438 2.361 5.429 3.423 0
A2C1S1 % 7.615 7.261 0.995 6.379 5.123 0 5.846 5.079 0
B1C1S1 % 11.672 13.689 4.495 11.672 7.749 0.863 11.672 7.132 0
B2C1S1 % 18.196 0.268 11.642 18.196 0 5.037 14.734 0 5.037
tr12-30 % 0.036 0.573 0.622 0.007 0.410 0.332 0 0.389 0.332
sp97ar % 2.494 0.842 1.171 2.494 0.428 0 2.376 0.124 0
sp97ic % 5.453 0.622 3.675 3.834 0.622 0.761 3.834 0.622 0
sp98ar % 1.724 2.715 0.602 1.724 1.409 0 1.724 0.282 0
sp98ic % 1.350 0.872 0.247 1.350 0.872 0 1.350 0.872 0

∗Gaps for NSR8K refer to 1 hour, 5 hours, and 10 hours of CPU time, respectively.

Table 2: Heuristic performance comparison after 1, 3, and 5 hours.

we report the results obtained by LocBra when emphasizing feasibility (instead of
optimality) on the six instances for which it was not able to find the best solution.
Table 5 reports the gaps obtained with respect to the best solution values in Table
1. The improvements with respect to original LocBra runs are marked by ∗. In four
out of the six cases, the final solution turned out to be as good as in the previous
LocBra run; the solution improved in three cases, in two of which it was either equal
or strictly better than the best known solution.

6 Conclusions and Extensions

We have proposed a new solution framework for general MIPs, based on a clever
exploration of solution neighborhoods defined through (invalid) linear cuts called
local branching constraints. The neighborhoods are searched by means of a black-
box general purpose MIP solver, thus exploiting the level of sophistication reached
nowadays by the MIP solvers. Though very simple, this idea proved quite effective
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cases of Figure 5 diversifications
Name 1. 2. 3. 4. dvbest dv node tl

mkc 4 - 36 29 7 8 300
swath 17 2 19 29 0 5 300
danoint - - 42 35 0 16 300
markshare1 - 1 7 3 1 2 2,400
markshare2 - - 8 2 0 1 2,400
arki001 8 - 12 16 0 5 600
seymour 6 2 4 4 1 2 2400
net12 - - 6 13 0 7 600
biella1 1 1 14 5 1 2 900
NSR8K 1 - 7 3 1 1 2,400
rail507 3 - 23 40 3 19 300
rail2536c 4 2 21 36 0 18 300
rail2586c 9 - 13 14 3 6 600
rail4284c 10 - 5 9 3 4 900
rail4872c 7 - 9 6 2 3 900
glass4 - - 39 27 4 5 300
UMTS 3 - 13 17 4 5 600
van - - 3 4 0 1 2,400
roll3000 - - 30 39 5 15 300
nsrand ipx 7 - 32 30 4 8 300
A1C1S1 - - 37 29 4 7 300
A2C1S1 - - 40 26 2 5 300
B1C1S1 - - 28 33 5 10 300
B2C1S1 - - 28 35 6 12 300
tr12-30 - - 26 10 0 5 600
sp97ar - - 9 11 0 3 600
sp97ic - - 38 29 7 8 300
sp98ar 2 - 32 32 3 7 300
sp98ic 3 1 33 28 4 7 300

Table 3: LocBra statistics.

elapsed LocBra with local branching constraint
∑

j∈S
(1 − xj) ≤ k′ = 10

Time seymour rail507 rail2536c rail2586c rail4284c rail4872c

1:00 ∗ 423 ∗ 174 691 964 1081 1588
3:00 ∗ 423 ∗ 174 690 ∗ 954 ∗ 1076 1561
5:00 ∗ 423 ∗ 174 ∗ 690 ∗ 954 ∗ 1071 ∗ 1552

Table 4: Improved solution values for set covering instances.

LocBra emphasizing feasibility at the tactical level
elapsed Abs. Gap Abs. Gap Abs. Gap % Gap % Gap % Gap

Time markshare1 markshare2 net12 UMTS◦ B2C1S1 tr12-30

1:00 4 ∗ 5 – ∗ -0.048 8.317 2.597
3:00 3 ∗ 5 – ∗ -0.066 8.317 2.129
5:00 2 ∗ 3 ∗ 0 ∗ -0.069 7.299 2.018

◦The negative gaps for instance UMTS indicate an improvement of the best known
solution of Table 1. The new best value is 30,139,634.

Table 5: Alternative LocBra runs.
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when solving hard MIPs.
We conclude the paper with an outline of possible modifications of the basic

local branching idea that can extend its range of application. The validation of
these ideas through computational testing is beyond the scope of the present paper,
hence it is left to future research projects.

Tighter integration within the MIP solver
There are two ways of exploiting local branching constraints. The first uses the

local branching constraints as a “strategic” branching rule within an exact solution
method, to be alternated with a more standard “tactical” branching rule. This
approach has been discussed in Sections 3 and 4, where we used the MIP solver
as a black-box for performing the tactical branchings. This is remarkably simple
to implement, but has the disadvantage of wasting part of the computational ef-
fort devoted, e.g., to the exploration the nodes where no improved solution could
be found within the node time limit. Therefore, a more integrated (and flexible)
framework where the two branching rules work in tight cooperation is expected to
produce an enhanced performance.

Local search by branch-and-cut
A second way of using the local branching constraints is within a genuine heuris-

tic framework akin to Tabu Search (TS) or Variable Neighborhood Search (VNS).
As a matter of fact, all the main ingredients of these metaheuristics (defining the
current solution neighborhood, dealing with tabu solutions or moves, imposing a
proper diversification, etc.) can easily be modeled in terms of linear cuts to be
dynamically inserted and removed from the model. This will lead naturally to a
completely general (and hopefully powerful) TS or VNS framework for MIPs. Some
very promising preliminary results in this direction are reported in [21].

Working with infeasible reference solutions
As stated, the local branching framework requires a starting (feasible) reference

solution x̄1, that we assume is provided by the MIP black-box solver. However, for
difficult MIPs (such as, e.g., hard set partitioning models) even the definition of this
solution may require an excessive computing time. In this case, one should consider
the possibility of working with infeasible reference solutions. It is then advisable to
adopt the widely-used mechanism in metaheuristic frameworks consisting in modi-
fying the MIP model by adding slack variables to (some of) the constraints, while
penalizing them in the objective function.

Dealing with general-integer variables
Local branching is based on the assumption that the MIP model contains a

relevant set of 0-1 variables to be used in the definition of the “distance function”
∆(x, x̄). According to our computational experience, this definition is effective
even in case of MIPs involving general integer variables, in that the 0-1 variables
(which are often associated with big-M terms) are likely to be largely responsible
for the difficulty of the model. However, it may be the case that the MIP model
at hand does not involve any 0-1 variable, or that the 0-1 variables do not play a
relevant role in the model−hence the introduction of the local branching constraint
does not help the MIP solver. In this situation, one is interested in modified local
branching constraints including the general-integer variables in the definition of the
distance function ∆(x, x̄). To this end, suppose MIP model (P ) involves the bounds
lj ≤ xj ≤ uj for the integer variables xj (j ∈ I := B ∪ G). Then a suitable local
branching constraint can be defined as follows:
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∆1(x, x̄) :=
∑

j∈I:x̄j=lj

µj(xj−lj)+
∑

j∈I:x̄j=uj

µj(uj−xj)+
∑

j∈I:lj<x̄j<uj

µj(x
+

j +x−
j ) ≤ k

where weights µj are defined, e.g., as µj = 1/(uj − lj) for all j ∈ I, while the
variation terms x+

j and x−
j require the introduction into the MIP model of additional

constraints of the form:

xj = x̄j + x+

j − x−
j , x+

j ≥ 0, x−
j ≥ 0, ∀j ∈ I : lj < x̄j < uj

Alternatively, one could avoid the use of the additional variables x+

j and x−
j (and

of the associated constraints) through one of the following relaxed definitions:

∆2(x, x̄) :=
∑

j∈I:x̄j=lj

µj(xj − lj) +
∑

j∈I:x̄j=uj

µj(uj − xj) ≤ k′

or
∆3(x, x̄) :=

∑

j∈I:x̄j=lj

µj(xj − lj) ≤ k′′
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Padova, 2002 (in Italian).

[22] TURNI. User’s Manual, Double-Click sas, 2001 (http://www.turni.it)

[23] M. Van Vyve and Y. Pochet. A General Heuristic for Production Planning
Problems. CORE Discussion Paper 56, 2001.

7 Appendix: Detailed Results

We next report more detailed results on the performance of the three heuristics we
compared in Section 5.
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elapsed mkc - %Gap swath - %Gap danoint - %Gap markshare1 - Abs. Gap markshare2 - Abs. Gap
Time cpx-O cpx-F LocBra cpx-O cpx-F LocBra cpx-O cpx-F LocBra cpx-O cpx-F LocBra cpx-O cpx-F LocBra
0:06 13.114 7.656 11.112 – 11.035 – 0 0 0 17 13 34 30 11 62
0:12 13.114 6.897 10.205 94.504 9.789 94.504 0 0 0 17 13 26 30 1 43
0:18 13.114 6.094 10.205 94.504 9.789 22.693 0 0 0 8 10 17 30 1 43
0:24 13.114 3.775 5.701 94.504 9.681 14.971 0 0 0 8 10 16 30 1 43
0:30 13.114 2.637 3.538 94.504 9.681 10.558 0 0 0 1 10 16 30 1 43
0:36 13.114 2.637 2.925 94.504 7.876 6.728 0 0 0 1 7 16 30 1 34
0:42 13.114 2.453 2.925 94.504 5.138 3.745 0 0 0 1 7 10 9 1 34
0:48 13.114 2.435 2.674 94.504 3.843 1.694 0 0 0 1 7 10 9 1 34
0:54 13.114 2.435 2.674 94.504 2.870 1.694 0 0 0 1 7 10 9 1 34
1:00 3.765 2.399 2.281 94.504 2.507 1.599 0 0 0 1 5 10 9 1 34
1:12 3.765 2.399 1.959 94.504 2.437 1.059 0 0 0 1 4 10 9 1 27
1:24 3.765 2.399 1.208 94.504 1.766 0 0 0 0 1 4 10 9 1 27
1:36 3.765 2.363 1.191 94.504 1.766 0 0 0 0 1 4 10 9 1 26
1:48 3.765 2.238 1.191 94.504 1.766 0 0 0 0 1 4 10 9 1 26
2:00 3.765 2.238 1.191 26.374 1.153 0 0 0 0 1 0 10 9 0 26
2:12 3.765 2.088 1.083 26.374 1.153 0 0 0 0 1 0 2 9 0 23
2:24 3.765 1.294 0.583 26.374 1.153 0 0 0 0 1 0 2 9 0 23
2:36 3.765 1.294 0.404 26.374 1.153 0 0 0 0 1 0 2 9 0 23
2:48 3.765 1.294 0.404 26.374 1.153 0 0 0 0 1 0 2 9 0 17
3:00 3.765 1.294 0.404 26.374 1.153 0 0 0 0 1 0 2 9 0 11
3:20 3.765 1.294 0.404 26.374 1.153 0 0 0 0 1 0 2 9 0 11
3:40 3.765 1.294 0.404 26.374 1.153 0 0 0 0 1 0 2 9 0 11
4:00 3.765 1.294 0.404 26.374 1.153 0 0 0 0 1 0 2 9 0 11
4:30 3.765 1.294 0.404 26.374 1.153 0 0 0 0 1 0 2 9 0 11
5:00 3.765 1.294 0 26.374 1.153 0 0 0 0 1 0 2 9 0 11

Table 6: Detailed results for some instances A in Table 1.
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elapsed arki001 - %Gap seymour - Abs. Gap net12 - Abs. Gap biella1 - %Gap elapsed NSR8K - %Gap
Time cpx-O cpx-F LocBra cpx-O cpx-F LocBra cpx-O cpx-F LocBra cpx-O cpx-F LocBra Time cpx-O cpx-F LocBra
0:06 0.055 0.043 0.026 11 29 11 – – – — — — 1:00 — — —
0:12 0.055 0.039 0.005 11 8 5 – – – — — — 2.00 — — —
0:18 0.055 0.029 0.004 11 8 4 – – – 0.256 — 0.256 2.30 — — —
0:24 0.055 0.029 0.004 11 8 3 – – – 0.256 43.628 0.242 3.00 — — —
0:30 0.055 0.029 0.004 11 8 3 – – – 0.256 43.628 0.242 3.30 — — —
0:36 0.041 0.029 0.004 11 8 3 – – – 0.256 31.313 0.242 3.45 1843.8 1843.8 1843.8
0:42 0.038 0.028 0.003 11 7 3 – – – 0.256 31.313 0.242 4:00 1843.8 1843.8 475.2
0:48 0.024 0.028 0.003 11 6 3 – – – 0.256 31.313 0.242 4:15 1843.8 1843.8 111.4
0:54 0.024 0.028 0.003 11 5 3 – – – 0.256 31.313 0.241 4:30 1843.8 1843.8 111.4
1:00 0.024 0.028 0 11 5 2 – – – 0.256 31.313 0.241 4:45 1843.8 1843.8 109.3
1:12 0.024 0.028 0 11 5 2 – – – 0.256 31.313 0.239 5:00 1843.8 1526.4 109.3
1:24 0.023 0.025 0 11 4 2 41 – 41 0.256 26.336 0.239 5:15 1843.8 1526.4 34.3
1:36 0.023 0.022 0 11 4 2 41 – 41 0.256 26.336 0.176 5:30 1843.8 1526.4 34.3
1:48 0.023 0.022 0 11 4 1 41 – 41 0.256 18.272 0.173 5:45 1843.8 1526.4 10.6
2:00 0.021 0.021 0 11 4 1 41 – 41 0.256 18.272 0.172 6:00 1843.8 1526.4 10.6
2:12 0.017 0.016 0 11 3 1 41 – 41 0.256 18.272 0.172 6:15 1843.8 1526.4 10.6
2:24 0.017 0.016 0 11 3 1 41 – 41 0.256 18.272 0.172 6:30 1843.8 1526.4 10.6
2:36 0.017 0.016 0 11 3 1 41 – 41 0.256 18.272 0.172 6:45 1843.8 1526.4 10.6
2:48 0.017 0.016 0 11 3 1 41 – 41 0.256 18.272 0.172 7:00 1843.8 1526.4 6.9
3:00 0.017 0.016 0 11 3 0 41 – 41 0.256 18.272 0.172 7:30 1843.8 1526.4 6.9
3:20 0.017 0.014 0 11 3 0 41 – 41 0.256 18.272 0.172 8:00 1426.8 1526.4 6.9
3:40 0.017 0.014 0 11 3 0 41 0 41 0.256 18.272 0.084 8:30 1426.8 1526.4 6.9
4:00 0.017 0.014 0 11 3 0 41 0 41 0.256 16.036 0.005 9:00 1426.8 1526.4 6.9
4:30 0.015 0.014 0 11 3 0 41 0 41 0.256 11.475 0 9:30 1426.8 1526.4 6.9
5:00 0.013 0.013 0 11 3 0 41 0 41 0.256 11.475 0 10:00 1426.8 1526.4 0

Table 7: Detailed results for instances A, B, C in Table 1.
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elapsed rail507 - Abs. Gap rail2536c - Abs. Gap rail2586c - Abs. Gap rail4284c - Abs. Gap rail4872c - Abs. Gap
Time cpx-O cpx-F LocBra cpx-O cpx-F LocBra cpx-O cpx-F LocBra cpx-O cpx-F LocBra cpx-O cpx-F LocBra
0:06 15 9 4 8 8 1 – – – – – – – – –
0:12 9 9 2 8 3 0 63 34 26 – – – – – –
0:18 7 9 2 8 3 0 63 34 11 – – – – – –
0:24 2 9 2 8 3 0 63 34 11 – – – – – –
0:30 2 9 1 5 3 0 54 34 10 51 45 33 – – –
0:36 2 9 1 5 3 0 54 34 10 51 45 27 – – –
0:42 2 9 1 5 3 0 54 34 9 51 45 17 73 69 37
0:48 2 7 1 5 3 0 54 34 7 51 45 14 73 69 31
0:54 2 6 1 5 3 0 54 34 7 51 40 14 73 69 31
1:00 2 6 1 5 3 0 54 34 7 51 40 10 73 69 27
1:12 2 6 0 4 3 0 30 34 6 51 40 7 70 49 23
1:24 2 6 0 3 3 0 30 34 5 51 40 5 70 49 23
1:36 2 6 0 3 3 0 30 34 5 51 40 5 70 49 20
1:48 2 6 0 3 3 0 30 34 5 51 40 5 70 49 20
2:00 2 6 0 3 3 0 30 34 5 51 40 3 70 49 11
2:12 2 6 0 2 3 0 20 34 5 51 40 3 70 49 10
2:24 2 6 0 2 3 0 17 34 5 51 40 2 70 49 10
2:36 2 5 0 2 3 0 17 34 5 42 40 2 70 49 9
2:48 2 5 0 1 3 0 17 34 4 42 40 2 70 49 9
3:00 2 5 0 1 3 0 14 34 2 42 40 2 70 49 9
3:20 2 5 0 1 3 0 14 34 2 42 40 2 60 49 5
3:40 2 5 0 1 3 0 14 34 0 42 40 2 45 49 2
4:00 2 5 0 1 3 0 14 34 0 42 40 2 45 49 2
4:30 2 5 0 0 3 0 14 34 0 42 40 0 45 49 0
5:00 1 5 0 0 3 0 14 34 0 38 40 0 45 49 0

Table 8: Detailed results for instances D in Table 1.
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elapsed glass4 - %Gap UMTS - %Gap van - %Gap roll3000 - %Gap nsrand ipx - %Gap
Time cpx-O cpx-F LocBra cpx-O cpx-F LocBra cpx-O cpx-F LocBra cpx-O cpx-F LocBra cpx-O cpx-F LocBra
0:06 32.283 19.685 44.882 16.120 0.024 3.293 — — — 34.604 18.523 18.638 0.932 1.553 9.938
0:12 32.283 19.685 41.522 6.403 0.024 3.293 — — — 34.604 11.420 14.068 0.932 1.553 6.832
0:18 31.444 16.535 30.709 6.403 0.024 3.293 — — — 34.604 7.585 14.068 0.932 1.553 4.969
0:24 29.134 15.748 30.709 6.403 0.024 2.936 — — — 34.604 7.287 8.006 0.932 1.553 4.348
0:30 29.134 13.386 29.134 6.403 0.024 2.936 — — — 34.604 7.287 8.006 0.932 1.553 3.727
0:36 29.134 13.386 19.685 6.403 0.024 2.936 — — — 34.604 5.779 8.006 0.932 1.553 2.795
0:42 29.134 7.087 19.685 6.403 0.024 2.920 — — — 2.763 3.804 8.006 0.932 0.932 2.174
0:48 29.134 7.087 19.685 6.403 0.014 2.413 — — — 2.763 3.804 3.131 0.932 0.932 2.174
0:54 29.134 7.087 19.685 6.403 0.014 2.413 — — — 2.763 3.804 3.131 0.932 0.932 1.863
1:00 22.835 7.087 19.685 6.403 0 2.413 — — — 2.763 3.804 3.131 0.932 0.932 0.621
1:12 21.785 7.087 19.685 6.403 0 2.413 — — — 2.763 3.804 3.131 0.932 0.932 0.311
1:24 21.785 7.087 19.685 6.403 0 2.285 30.845 30.845 30.845 2.763 3.804 3.131 0.932 0.932 0.311
1:36 17.323 7.087 19.685 6.403 0 1.216 30.845 30.845 30.845 2.763 3.804 3.131 0.932 0.932 0.311
1:48 16.535 7.087 19.685 6.403 0 1.216 30.845 30.845 30.845 2.763 3.804 0 0.932 0.932 0.311
2:00 16.535 7.087 17.747 6.403 0 1.216 30.845 0 30.845 2.763 3.804 0 0.932 0.932 0.311
2:12 16.535 7.087 13.386 6.403 0 1.216 30.845 0 0 2.763 3.804 0 0.932 0.932 0
2:24 16.535 7.087 10.236 6.403 0 1.216 30.845 0 0 2.763 3.804 0 0.932 0.932 0
2:36 16.535 7.087 10.236 6.403 0 1.216 30.845 0 0 2.763 3.804 0 0.932 0.932 0
2:48 16.535 7.087 10.236 6.403 0 1.216 30.845 0 0 2.763 3.804 0 0.932 0.932 0
3:00 14.226 7.087 10.236 6.403 0 1.216 30.845 0 0 2.763 3.804 0 0.932 0.932 0
3:20 14.226 7.087 10.236 6.403 0 1.204 30.845 0 0 2.763 3.804 0 0.932 0.932 0
3:40 14.226 7.087 10.236 6.403 0 1.159 5.108 0 0 2.763 3.804 0 0.932 0.932 0
4:00 13.386 7.087 7.087 6.403 0 0.256 5.108 0 0 2.763 3.375 0 0.932 0.932 0
4:30 13.386 7.087 0 6.403 0 0.126 5.108 0 0 2.763 3.375 0 0.932 0.932 0
5:00 13.386 7.087 0 6.403 0 0.126 5.108 0 0 2.763 3.375 0 0.932 0.932 0

Table 9: Detailed results for instances E, F, G in Table 1.
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elapsed A1C1S1 - %Gap A2C1S1 - %Gap B1C1S1 - %Gap B2C1S1 - %Gap tr12-30 - %Gap
Time cpx-O cpx-F LocBra cpx-O cpx-F LocBra cpx-O cpx-F LocBra cpx-O cpx-F LocBra cpx-O cpx-F LocBra
0:06 9.753 9.055 18.149 10.021 13.802 12.000 — — — 18.196 8.317 19.116 0.227 0.789 1.171
0:12 9.126 5.438 7.943 8.303 11.670 8.082 18.513 13.689 13.903 18.196 7.173 14.491 0.036 0.736 1.171
0:18 9.126 5.438 5.570 8.303 9.065 5.596 18.513 13.689 13.903 18.196 7.173 11.642 0.036 0.659 1.113
0:24 7.297 5.438 5.570 8.303 8.772 4.623 18.513 13.689 13.903 18.196 7.173 11.642 0.036 0.659 1.085
0:30 7.297 5.438 5.514 7.615 8.318 3.716 18.513 13.689 13.903 18.196 7.173 11.642 0.036 0.659 1.085
0:36 7.297 5.438 5.277 7.615 8.287 3.716 18.513 13.689 13.903 18.196 7.173 11.642 0.036 0.659 0.782
0:42 7.297 5.438 4.536 7.615 8.124 3.289 18.513 13.689 13.903 18.196 0.505 11.642 0.036 0.651 0.739
0:48 7.297 5.438 4.536 7.615 7.604 2.166 18.513 13.689 13.903 18.196 0.505 11.641 0.036 0.608 0.712
0:54 7.297 5.438 4.464 7.615 7.604 2.166 11.672 13.689 7.115 18.196 0.268 11.642 0.036 0.573 0.712
1:00 7.297 5.438 4.464 7.615 7.261 0.995 11.672 13.689 4.495 18.196 0.268 11.642 0.036 0.573 0.622
1:12 6.508 5.438 4.464 7.615 7.144 0.964 11.672 13.689 4.290 18.196 0.268 11.642 0.036 0.573 0.470
1:24 6.508 5.438 4.464 6.379 7.144 0.264 11.672 11.442 0.863 18.196 0.268 11.642 0.036 0.573 0.332
1:36 5.569 5.438 4.464 6.379 7.144 0.264 11.672 11.221 0.863 18.196 0.268 11.642 0.036 0.573 0.332
1:48 5.569 5.438 3.992 6.379 7.144 0.264 11.672 10.589 0.863 18.196 0.268 11.642 0.036 0.436 0.332
2:00 5.569 5.438 3.359 6.379 7.144 0.264 11.672 8.457 0.863 18.196 0.268 11.642 0.036 0.410 0.332
2:12 5.569 5.438 3.359 6.379 7.144 0.264 11.672 8.457 0.863 18.196 0.268 11.642 0.036 0.410 0.332
2:24 5.569 5.438 3.359 6.379 5.556 0.264 11.672 8.457 0.863 18.196 0 5.037 0.013 0.410 0.332
2:36 5.569 5.438 3.359 6.379 5.123 0 11.672 8.457 0.863 18.196 0 5.037 0.007 0.410 0.332
2:48 5.569 5.438 3.177 6.379 5.123 0 11.672 8.457 0.863 18.196 0 5.037 0.007 0.410 0.332
3:00 5.569 5.438 2.361 6.379 5.123 0 11.672 7.749 0.863 18.196 0 5.037 0.007 0.410 0.332
3:20 5.429 5.438 0.780 6.379 5.079 0 11.672 7.749 0 18.196 0 5.037 0.007 0.410 0.332
3:40 5.429 5.438 0.695 6.379 5.079 0 11.672 7.749 0 18.196 0 5.037 0.007 0.410 0.332
4:00 5.429 4.978 0.160 6.379 5.079 0 11.672 7.749 0 18.196 0 5.037 0.007 0.410 0.332
4:30 5.429 4.793 0 6.379 5.079 0 11.672 7.749 0 14.734 0 5.037 0 0.389 0.332
5:00 5.429 3.423 0 5.846 5.079 0 11.672 7.132 0 14.734 0 5.037 0 0.389 0.332

Table 10: Detailed results for instances H in Table 1.

23



elapsed sp97ar - %Gap sp97ic - %Gap sp98ar - %Gap sp98ic - %Gap
Time cpx-O cpx-F LocBra cpx-O cpx-F LocBra cpx-O cpx-F LocBra cpx-O cpx-F LocBra
0:06 9.796 7.601 4.690 8.730 6.029 8.498 6.121 4.338 2.894 7.285 6.002 8.580
0:12 4.404 4.126 4.278 8.574 3.698 6.485 5.808 4.069 2.894 5.436 4.090 6.869
0:18 3.952 2.631 4.278 8.574 1.487 3.675 5.017 4.069 2.578 5.209 3.360 5.129
0:24 3.952 2.570 3.588 8.574 0.846 3.675 5.017 4.069 2.366 5.209 3.360 0.247
0:30 2.494 2.570 3.534 8.574 0.846 3.675 4.675 3.470 2.163 5.209 0.872 0.247
0:36 2.494 2.570 2.514 6.564 0.846 3.675 1.724 3.470 1.028 5.209 0.872 0.247
0:42 2.494 1.157 1.171 6.564 0.622 3.675 1.724 2.771 1.028 5.209 0.872 0.247
0:48 2.494 1.157 1.171 6.564 0.622 3.675 1.724 2.771 0.841 5.209 0.872 0.247
0:54 2.494 0.842 1.171 6.564 0.622 3.675 1.724 2.771 0.841 1.350 0.872 0.247
1:00 2.494 0.842 1.171 5.453 0.622 3.675 1.724 2.715 0.602 1.350 0.872 0.247
1:12 2.494 0.842 1.171 5.453 0.622 2.029 1.724 2.134 0.158 1.350 0.872 0.247
1:24 2.494 0.842 1.171 5.055 0.622 2.029 1.724 1.409 0.158 1.350 0.872 0.247
1:36 2.494 0.842 0.649 5.055 0.622 2.029 1.724 1.409 0.158 1.350 0.872 0.247
1:48 2.494 0.842 0.649 5.055 0.622 2.029 1.724 1.409 0.158 1.350 0.872 0.247
2:00 2.494 0.666 0.649 5.055 0.622 2.029 1.724 1.409 0.049 1.350 0.872 0.247
2:12 2.494 0.666 0.649 5.055 0.622 2.029 1.724 1.409 0.012 1.350 0.872 0.247
2:24 2.494 0.666 0.649 5.055 0.622 2.029 1.724 1.409 0.012 1.350 0.872 0.247
2:36 2.494 0.666 0.441 3.834 0.622 0.761 1.724 1.409 0 1.350 0.872 0.247
2:48 2.494 0.666 0 3.834 0.622 0.761 1.724 1.409 0 1.350 0.872 0.114
3:00 2.494 0.428 0 3.834 0.622 0.761 1.724 1.409 0 1.350 0.872 0
3:20 2.494 0.124 0 3.834 0.622 0.761 1.724 0.282 0 1.350 0.872 0
3:40 2.376 0.124 0 3.834 0.622 0.761 1.724 0.282 0 1.350 0.872 0
4:00 2.376 0.124 0 3.834 0.622 0.761 1.724 0.282 0 1.350 0.872 0
4:30 2.376 0.124 0 3.834 0.622 0.761 1.724 0.282 0 1.350 0.872 0
5:00 2.376 0.124 0 3.834 0.622 0 1.724 0.282 0 1.350 0.872 0

Table 11: Detailed results for instances I in Table 1.
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