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Abstract. Given a feasible solution to a Mixed Integer Programming (MIP) model, a natural question is
whether that solution can be improved using local search techniques. Local search has been applied very
successfully in a variety of other combinatorial optimization domains. Unfortunately, local search relies exten-
sively on the notion of a solution neighborhood, and this neighborhood is almost always tailored to the structure
of the particular problem being solved. A MIP model typically conveys little information about the underlying
problem structure. This paper considers two new approaches to exploring interesting, domain-independent
neighborhoods in MIP. The more effective of the two, which we call Relaxation Induced Neighborhood Search
(RINS), constructs a promising neighborhood using information contained in the continuous relaxation of the
MIP model. Neighborhood exploration is then formulated as a MIP model itself and solved recursively. The
second, which we call guided dives, is a simple modification of the MIP tree traversal order. Loosely speaking,
it guides the search towards nodes that are close neighbors of the best known feasible solution. Extensive com-
putational experiments on very difficult MIP models show that both approaches outperform default CPLEX
MIP and a previously described approach for exploring MIP neighborhoods (local branching) with respect to
several different metrics. The metrics we consider are quality of the best integer solution produced within a
time limit, ability to improve a given integer solution (of both good and poor quality), and time required to
diversify the search in order to find a new solution.
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1. Introduction

1.1. Mixed integer programming

Mixed Integer Programming (MIP) is one of the most important techniques for solving
complex optimization problems. A MIP problem is defined by a set of variables (x),
a set of linear constraints on these variables (Ax = b), a set of integrality constraints
specifying that some of the variables must assume integer values, and a linear objective
function of the variables to optimize (min c′x; we assume minimization throughout this
paper). MIP provides a powerful framework for modeling and solving a wide variety of
optimization problems.
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MIP problems are typically solved using a branch-and-bound or branch-and-cut
algorithm. This approach explores a tree of continuous relaxations of the original MIP
model, where at each node in the tree the space of possible solutions is split into two dis-
joint sub-spaces by imposing complementary bound constraints on an integer variable.
This technique is particularly effective when the continuous relaxation of the problem
is a good approximation of the convex hull of the feasible solutions (at least around the
optimal solution), or alternatively when the relaxation can be tightened by adding cutting
planes to have this property. Much work has been done to make commercial implemen-
tations robust with respect to problem size and numerical characteristics. Still, some
MIP models remain very hard to solve to optimality. In such cases, and unless another
exact technique such as constraint programming applies well to the problem, the user
must settle for a feasible solution of good quality. Alas, even a good feasible solution
might be difficult to obtain in the desired response time for some models.

A common reaction of an Operations Research practitioner confronted with such a
problem is to consider the use of other techniques, such as local search. Indeed, various
forms of local search, operating either on individual solutions (e.g., simulated anneal-
ing [33], tabu search [18]) or on populations of solutions (e.g., genetic algorithms [28],
scatter search, and path relinking [19]), are known to provide excellent feasible solu-
tions quite quickly for many problems. This suggests that applying local search concepts
(neighborhood, intensification, diversification) might be useful when solving extremely
difficult mixed integer programming models.

1.2. Integrating local search

To integrate local search and MIP, three questions must be answered. The most impor-
tant and also most difficult one is how to define the neighborhood of a given solution. A
neighborhood is a set of solutions that are close, by some metric, to the given solution.
Neighborhoods are almost always built in terms of the high-level structure of the spe-
cific problem at hand. For example, a graph partitioning neighborhood might be built by
considering swaps of pairs of nodes between the existing partitions. In a generic MIP,
this structure would have to be inferred from the constraint matrix, which would present
a major challenge. While the difficulty is no doubt clear, the appeal of being able to build
a domain-independent “unstructured” neighborhood is also clear: the resulting method
could then be applied to any MIP with no other input than the model itself.

An important related issue in local search is how large the neighborhood should
be. One strategy that has proven to be quite effective for difficult problems is Large
Neighborhood Search (LNS), where large neighborhoods are defined by adding new
constraints to the model to fix some explicit or implicit variables to their current values.
The remaining problem is then solved on the other variables. LNS has been successfully
applied in combination with operations research algorithms [2, 4], constraint program-
ming [7, 10, 12, 31] and recently mixed integer programming [30] — but always relying
on the high-level structure of the problem to define the neighborhood (i.e., to choose the
variables to fix).

The second important question that must be answered is how to search the neigh-
borhood; that is, how to perform intensification. Once a neighborhood has been defined,
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depending on its size, it can be explored by complete enumeration, heuristically, or,
following the paradigm of large neighborhood search, it can explored with the same
complete algorithm (possibly truncated) that is used to solve the global problem. For
mixed integer programming, the third option amounts to defining a neighborhood that
can be represented as a more constrained MIP model, and exploring this sub-MIP with
a generic MIP solver.

The final question to be answered is how to perform diversification. To be effective,
a local search algorithm needs to regularly change the reduced search space on which
it focuses. An obvious diversification approach in a MIP context is to consider new
incumbents generated in the branch-and-cut process. However, the motivation for this
investigation is that there are some models where the MIP solver has difficulty finding
new solutions, so this approach may not suffice.

A recently proposed approach called local branching [17] provides one set of an-
swers to these three questions. This paper introduces two new approaches. We call the
two approaches Relaxation Induced Neighborhood Search (RINS) and guided dives.
As will be discussed shortly, each takes a somewhat different approach to answering
these questions.

1.3. Outline of the paper

The organization of the remainder of the paper is as follows. Section 2 presents the
methods considered in this paper. We present RINS and guided dives, and also discuss
local branching [17]. Section 3 presents the benchmark models used to compare RINS,
guided dives, and the alternatives. Section 4 compares the methods in three different con-
texts. First, we look at how solution quality evolves over time when each of the methods
is started from scratch. Next, we look at the ability of each method to improve good
quality and poor quality initial solutions. Finally, we look at the ability of each method
to diversify the search. That is, we consider the ability of each approach to escape from
an unproductive neighborhood and generate a new incumbent solution. The results show
that RINS and guided dives are quite effective in all three contexts. Finally, Section 5
presents our conclusions.

2. Methods

We now describe the methods considered in this paper in more detail. As noted, all are
based on the notion that a small neighborhood of the current incumbent is likely to
contain better feasible solutions.

2.1. Relaxation induced neighborhood search

When exploring a branch-and-cut tree, two solutions are typically at our disposal. The
incumbent is feasible with respect to the integrality constraints but it is not optimal until
the last and optimal integer solution has been found. Conversely, the solution of the con-
tinuous relaxation at the current node is most often not integral, but its objective value
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is always better than that of the incumbent. Thus, the incumbent and the continuous
relaxation each achieve one and fail to achieve one of the following conflicting goals:
integrality and optimization of the objective value. While some variables clearly take
different values in the incumbent and the relaxation, it is important to note that many take
the same values. RINS is based on the intuition that the instantation of these variables
forms a partial solution that is likely to be extended towards a complete solution that
achieves both integrality and a good objective value. Therefore, it focuses attention on
those variables that differ in the continuous relaxation and in the incumbent, which are
intuitively the ones that merit further attention.

Our RINS algorithm is thus simple. At a node of the global branch-and-cut tree, the
following steps are performed:

1. Fix the variables that have the same values in the incumbent and in the current
continuous relaxation;

2. Set an objective cutoff based on the objective value of the current incumbent;
3. Solve a sub-MIP on the remaining variables.

Note that the global MIP formulation typically improves during the branch-and-cut
process, due to the addition of cutting planes and the discovery of new global bounds
on variables. Our sub-MIP takes advantage of this additional information. However, we
do not restrict our search to the current MIP sub-tree, so bounds added due to branching
are not respected.

Our RINS sub-MIP is also potentially large and difficult to solve, so its exploration
must often be truncated. We do so by setting a node limit nl. Any integer solution found
in the sub-MIP is by construction also a solution of the global MIP. Hence, when the
sub-MIP exploration terminates (because infeasibility or optimality of the sub-MIP has
been proved or nl nodes have been explored), the incumbent of the global MIP is updated
by the best integer solution found in the sub-MIP (if any), and exploration of the global
MIP is resumed. Note that the only effect of exploring a RINS sub-MIP on the global
MIP search is a potential new incumbent solution.

Since the continuous relaxation changes from one node in the branch-and-cut tree
to the next, RINS obtains automatic neighborhood diversification. While RINS could
be invoked at every node in the tree, the neighborhoods induced by the relaxations of
consecutive nodes are typically quite similar, so we have found that it is preferable to
apply it only every f nodes for some f � 1. We should mention that it is possible,
though unlikely, that even with a large choice of f , multiple MIP nodes may produce the
same RINS sub-MIPs, or similarly that a RINS sub-MIP may be identical to a sub-tree
of the global MIP tree. We take no steps to avoid this duplicated effort.

The strength of RINS is that it explores a neighborhood both of the incumbent and of
the continuous relaxation. Without outside information such as another lower or upper
bound provided by a different algorithm, the MIP solver does not know which of the
two is closer to the optimal integer solution. In RINS, the incumbent and the continu-
ous relaxation play perfectly symmetrical roles, so if one is of poor quality, the other
automatically helps to define a fruitful neighborhood and vice versa. Therefore, on the
one hand, RINS may greatly improve incumbents of poor quality because it is guided
by the continuous relaxation. On the other hand, RINS is likely to improve robustness
when faced with a loose relaxation, since it is also guided by the current incumbent.
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Setting RINS in the context of existing local search approaches, RINS can be viewed
as a large neighborhood search method that uses the continuous relaxation to fix vari-
ables, thereby defining its neighborhoods. To our knowledge, it is the first LNS method
— besides random choice, which is not particularly effective — that does not rely on
the known high-level structure of the problem.

RINS is also related to an approach called path relinking [19] because, in a certain
way, it relinks two solutions that were found in different parts of the global branch-and-
cut tree by exploring the solution space between them. RINS differs from path relinking
in the two following ways. First, instead of following one or at most a few paths between
two solutions, it explores the sub-space defined by the intersection of the two solutions.
This exploration is achieved by a powerful and complete method that is truncated to
control its execution time. Secondly, and more importantly, RINS combines solutions
of two related but different problems: the original MIP and its continuous relaxation. To
follow the terminology of path relinking, one of the key properties of RINS is that its
pool of elite solutions contains infeasible solutions. We believe that extending the pool
in this way addresses an important inherent difficulty in the problem, the gap between
the relaxation and any known feasible solutions.

2.2. Local branching

Local branching (LB) is a recently proposed strategy [17] for exploring an explicit
neighborhood of a MIP solution. Our RINS strategy borrows several ideas from local
branching, including the idea of describing a neighborhood as a sub-MIP model and
exploring it using the MIP solver.

Local branching is perhaps most easily described using a slightly generalized notion
of a Hamming distance. Given two vectors x and x∗, where some subset B of the entries
in the vectors are constrained to take values 0 or 1, the Hamming distance between x

and x∗ is:

H(x, x∗) =
∑

j∈B

|xj − x∗
j |.

Local branching constructs a sub-MIP that considers only a small neighborhood of the
current incumbent x∗ by introducing the additional (linearized) constraint H(x, x∗) ≤ r

for some neighborhood radius parameter r . If this neighborhood is indeed rich with
better solutions, then those solutions are likely to be found while exploring the sub-MIP
search tree. As in RINS, the local branching sub-MIP includes all cutting planes and
tighter global variable bounds found during the exploration of the global branch-and-cut
tree. It also ignores variable bounds imposed by branching.

Note that the non-binary values in the vectors x or x∗ make no contribution to the
metric H used by local branching. Hence the local branching constraint can be easily lin-
earized as

∑
j∈B∩{x∗

j =1}(1−xj )+
∑

j∈B∩{x∗
j =0} xj ≤ r . The metric H could be extended

in an obvious way to handle general integer variables, but linearizing the resulting local
branching constraint would require the introduction of additional variables. The local
branching constraints used in [17] and in our computational testing involve only the
binary variables.
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A few implementation details are important for obtaining an effective strategy. For
example, the local branching sub-MIP can still be quite difficult to solve to optimality,
so a truncation scheme is required. As in RINS, our implementation uses a node limit
nl for every local branching sub-MIP. Unlike RINS, however, we follow Fischetti and
Lodi’s approach and take further action if a sub-MIP hits the node limit but has not found
a new solution. Specifically, we divide the radius by 2 and solve a new sub-MIP. This
continues until the radius is less than 5, or until the sub-MIP produces a new solution.
After this successful sub-MIP has reached the node limit, the radius is reset to its original
value and the process is begun anew on the new solution. Thus, an extended sequence
of local branching solutions can be produced. Exploration of the global MIP is resumed
when a sub-MIP with r ≤ 5 fails to produce an improved solution within nl nodes. We
use different termination criteria for RINS and local branching because it is important
for local branching to fully exploit each opportunity to improve an incumbent, as local
branching can only be called when a new incumbent is found in the global MIP tree.

Another important implementation detail is the issue of when to apply LB. We call
local branching at any node where a new incumbent is found, building the local branch-
ing neighborhood around the best feasible solution found at that node. MIP heuristics
as implemented in CPLEX often find multiple solutions at the same node (particularly
at the root node), but we found it to be unproductive to explore any but the best.

One major difference between our implementation and that of Fischetti and Lodi
is in how the global MIP search is structured. We treat local branching solely as a
heuristic for finding improved integer solutions. Fischetti and Lodi also treat it as a
branching meta-strategy. Specifically, a local branching sub-MIP that includes the con-
straint H(x, x∗) ≤ r has a complementary sub-MIP that includes the reverse constraint
H(x, x∗) ≥ r + 1. In cases where the first sub-MIP is explored completely (producing
an optimal solution or a proof that no solution exists), then attention from that point
on can be restricted to the reverse sub-MIP. The main advantage of their approach is
that it avoids reexploration of the given neighborhood of x∗. An important disadvantage
is that the cost of each node increases as these dense reverse neighborhood constraints
accumulate. In our experience, the reduced node processing throughput caused by these
dense constraints outweighs the benefit of avoiding redundant node exploration.

The second major difference in our implementation is the diversification strategy.
Our sole means of diversification for local branching is the use of solutions found during
the global MIP tree exploration. Fischetti and Lodi don’t actually make use of solutions
found in the standard MIP tree search, but instead generate known sub-optimal feasible
solutions and explore local branching neighborhoods associated with these. Our exper-
imental results suggest that using the global MIP search for diversification is the more
effective approach. We show later in this paper that RINS and guided dives are yet more
effective.

An obvious question at this point is whether we have preserved the desirable prop-
erties of local branching after our modifications. We compared the performance of our
implementation against that of Fischetti and Lodi, both built on top of the same version of
CPLEX (8.1), and found that ours produced consistently better results. Mean optimality
gaps for our implementation on our test set were roughly 20%, while theirs were roughly
30%. Our implementation also outperformed the version Fischetti and Lodi used in their
paper [17], which was built on top of an earlier version of CPLEX (7.0).
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Another obvious question is why we found it necessary to modify local branching
at all. RINS and guided dives (see next section) use a standard MIP tree, so it seemed
natural to compare them with an implementation of local branching that also uses a
standard MIP tree. In particular, placing RINS and local branching within the identical
MIP search tree allows us to focus our attention exclusively on the question of whether
hard fixing (RINS) or soft fixing (local branching) produces more fruitful sub-MIPs.

All computational results in this paper come from our implementation of local
branching. Indeed, unless otherwise noted, the term “local branching” refers to our
implementation.

2.3. Guided dives

In contrast to the other approaches considered in this paper, our next strategy does
not consider neighborhoods explicitly, nor does it build sub-MIP models to be solved
recursively. Instead, it is a minor modification of the default MIP tree traversal strategy.
Consider two important decisions that are made at each node in a MIP search tree when
diving to a leaf node. The first is the choice of a variable on which to branch, and the
second is the choice of which of the resulting child nodes to explore first. In our guided
dives strategy, we base the second choice on the value of the branching variable in the
current incumbent solution. We choose the child in which the binary branching variable
is fixed to the value that it takes in the incumbent. (For a general integer branching
variable, we choose the child in which the branching variable is still allowed to take the
value it takes in the incumbent.)

This guided dives strategy is trivial to implement, requiring only a query of the value
of the branching variable in the current incumbent at each node. Despite its simplic-
ity, the results in the next section show that this approach is actually quite effective at
improving the solutions found by CPLEX for the models in our test set.

2.4. Related work

Before proceeding to computational results, let us first consider how the methods just
described relate to existing work. Perhaps the closest existing approach to RINS (and
local branching) is the TRIP system for crew pairing optimization [3]. This system
improved an existing set partitioning solution by repeatedly choosing a random set of
binary variables whose values in the current feasible solution are one, temporarily fixing
those variables to one, and then formulating and solving a sub-MIP on the remaining
variables (typically using column generation to augment the set of remaining variables
before solving the MIP). In a set partitioning framework, fixing a variable to one has
the effect of fixing a large number of other variables to zero (all those variables whose
columns share a non-zero with the column associated with the fixed variable), so the
resulting sub-MIP is typically much easier than the original problem. The TRIP approach
is conceivably quite general, but as far as we know, it has only been considered in the
context of set partitioning.

To the best of our knowledge, the idea of using a known feasible solution to derive
improved solutions has not been used often in MIP or constraint programming. Our
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introduction already mentioned a few large neighborhood search approaches that used
problem structure to create and explore sub-models that correspond to neighborhoods
of the best known feasible solution. An additional relevant approach is a problem-spe-
cific, branch-and-price heuristic for the vehicle routing problem with time windows that
performs local search around the incumbent [14]. Additionally, existing contraint pro-
gramming approaches for scheduling problems have used the incumbent to guide the
search [25] or as a preferred choice in the context of rescheduling to compute a new
solution with a minimal number of changes [23, 32].

Existing MIP heuristics most often try to transform a continuous relaxation solution
into an integer-feasible solution. In other words, they perform local search around the
continuous relaxation solution. General MIP heuristics include [5, 16, 20–22]. Some
other heuristics [1, 6, 26, 29] try to achieve integrality by performing simplex pivots.
A different class of heuristics is known as hard variable fixing or diving heuristics [9].
They start from the LP solution, fix some variables to integer values, infer new bounds
on the remaining variables due to these fixings, solve the LP relaxation (or not, for a
less expensive variant of the heuristic), and repeat until all variables have been fixed.
Note that diving heuristics typically fix all integer variables that are integral in the LP
relaxation to their relaxation values, whereas RINS only fixes those whose values agree
with the corresponding incumbent values. This often allows RINS to find solutions that
a diving heuristic could not find.

In constraint programming, the heuristics closest to our work are repair heuristics
that aim to transform an infeasible assignement of values to variables into a feasible
solution. This initial assignement may be complete, as for example in the min-conflicts
heuristic [27], or incomplete, as for example in the decision-repair heuristic [24].Another
related constraint programming heuristic is limited backtracking [11].

3. Benchmark models

We have gathered a collection of 37 models for which finding good feasible solutions
is difficult. All computational testing described in the next section are performed using
these models. These models have been drawn from four sources:

– Five job-shop scheduling instances with earliness and tardiness costs. These ljb
problems have been widely used in the genetic algorithms (GA) literature, as reported
for example in [35]. We use a simple disjunctive MIP formulation [4] to create our
test models. These models are available upon request from the authors.

– Eleven network design and multicommodity routing instances, described in [12].
On these rococo models, pure MIP approaches perform badly compared to other
solution methods. The best known solutions are either provided by branch-and-price
or by a combination of constraint programming and structured large neighborhood
search (CP+LNS) [12]. These models are part of a larger public benchmark based
on industrial data and are available upon request from the authors.

– Twenty of the twenty-four models studied in the local branching paper [17]. Original
sources for these models are given in [17]. Two models from this set, rail507 and
rail2586c, were removed because they were easily solved to optimality with the
latest version of CPLEX, and thus did not fit the objective of the benchmark set.
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One model, van, was removed because the main difficulty in this model is poor
numerical behavior, rather than an inherent combinatorial difficulty in finding good
feasible solutions. Finally, model NSR8K was removed because no algorithm we
tried, including Fischetti and Lodi’s implementation of local branching, found a fea-
sible solution, even after extended runs (5 hours) on our test platform (Fischetti and
Lodi’s original results were in fact obtained with CPLEX presolve turned off). These
models are available on the Web1.

– One model, swath, from MIPLIB 3.0 [8].

Table 1 gives various statistics for each instance, including the total number of vari-
ables (n), the number of binary variables (b), the number of general integer variables (i),
the number of constraints (m), the objective value for the best integer solution known to
us (bestUB), the corresponding relative gap with respect to the best known lower bound
known to us, computed as bestUB−bestLB

bestUB
, and the method that produced the best known

solution (bestUBAlg).
To get a better sense of the scope for improvement on these models, we also include

a few lower and upper bounds that were not obtained in the experiments described in
the next section of this paper. For example, we ran some of our codes for very long time
periods when we suspected that doing so might produce significantly better bounds.
For the network design and job-shop models, better solutions were also often found by
customized methods. We note those instances where the best solutions did not come
from the experiments of the next section, including relevant references when appro-
priate. LB+RINS 1 and 2 refer to two hybrid algorithms combining RINS and local
branching that are described in Section 4.1. Lower bounds used to compute the gaps
reported in Table 1 are the best bounds obtained during the experiments described in
Section 4 or during the few long runs previously mentioned. The best lower bounds for
production models tr12-30, A1C1S1, A2C1S1, B1C1S1, and B2C1S1 come from
M. Van Vyve’s PhD thesis [34].

Let us reiterate that the methods considered in this paper are geared towards very
difficult MIP models. They degrade performance, often significantly, on models
where good feasible solutions are not difficult to find. Most MIP models are not of
sufficient difficulty to showcase the abilities of these methods to find improved
MIP solutions.

4. Computational results

4.1. Methods

We now present experimental results for the methods we have described, run on the
benchmark set just presented. All experiments were done using CPLEX 8.1 on a 2Ghz
Pentium IV system running Linux. Recall that the approaches considered are:

– Default CPLEX (see [9] for a description of the default CPLEX branch-and-cut
strategies)

– Relaxation Induced Neighborhood Search (RINS), as described in Section 2.1

1 http://www.or.deis.unibo.it/research pages/ORinstances/MIPs.html
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Table 1. The benchmark

Instance n b i m bestUB gap bestUBAlg
A1C1S1 3648 192 0 3312 11557.09 4.00% LB+RINS 1
A2C1S1 3648 192 0 3312 10889.14 2.35% LB+RINS 2
B1C1S1 3872 288 0 3904 24544.25 10.96% LB+RINS 1 (long)
B2C1S1 3872 288 0 3904 25740.15 12.60% LB+RINS 1 (long)
arki001 1388 415 123 1048 7580813.0459 0.00% LB
biella1 7328 6110 0 1203 3065084.57 0.03% RINS, LB+RINS 2
glass4 322 302 0 396 1460013800.0 40.90% LB+RINS 1
net12 14115 1603 0 14021 214 25.34% RINS, guided dives, LB+RINS 1
nsrand ipx 6621 6620 0 735 51360 1.39% RINS, guided dives, LB+RINS 1, LB+RINS 2
rail2586c 13226 13215 0 2589 953 1.78% LB
rail4284c 21714 21705 0 4287 1071 1.58% LB
rail4872c 24656 24645 0 4875 1550 2.50% LB+RINS 1
roll3000 1166 246 492 2295 12890 3.05% LB+RINS 1
seymour 1372 1372 0 4944 423 2.62% RINS
sp97ar 14101 14101 0 1761 662671913.92 1.16% LB+RINS 2
sp97ic 12497 12497 0 1033 429562635.68 1.19% LB+RINS 1
sp98ar 15085 15085 0 1435 529814784.7 0.35% LB
sp98ic 10894 10894 0 825 449144758.40 0% LB+RINS 1 (long)
tr12-30 1080 360 0 750 130596 0% Default CPLEX and other strategies
UMTS 2947 2802 72 4465 30122200 0.21% LB+RINS 1 (long)
swath 6805 6724 0 884 471.03 15.99% LB-F&L 8.1
rococoB10-011000 4456 4320 136 1667 19449 3.04% CP+LNS — inferred [12]
rococoB10-011001 4456 4320 136 1677 21265 9.68% CP+LNS — inferred [12]
rococoB11-010000 12376 12210 166 3792 32246 11.99% CP+LNS — inferred [12]
rococoB11-110001 12431 12265 166 8148 42444 12.17% CP+LNS [12]
rococoB12-111111 9109 8778 331 8978 39831 19.50% LB+RINS 1 (long)
rococoC10-001000 3117 2993 124 1293 11460 0% CPLEX with MIPEmphasis = 3 (long)
rococoC10-100001 5864 5740 124 7596 16664 11.01% CP+LNS, default CPLEX — inferred [12]
rococoC11-010100 12321 12155 166 4010 20889 18.57% CP+LNS — inferred [12]
rococoC11-011100 6491 6325 166 2367 20889 6.66% CP+LNS [12]
rococoC12-100000 17299 17112 187 21550 35512 10.94% CP+LNS [12]
rococoC12-111100 8619 8432 187 10842 35909 3.09% CP+LNS — inferred [12]
ljb2 771 681 0 1482 0.507679 22.47% RINS, LB+RINS 1, LB+RINS 2
ljb7 4163 3920 0 8133 0.133655 57.08% RINS
ljb9 4721 4460 0 9231 0.739 76.67% GA [35]
ljb10 5496 5196 0 10742 0.512 54.58% GA [35]
ljb12 4913 4633 0 9596 0.399 79.73% GA [35]

– Our implementation of local branching (LB), as described in Section 2.2
– Default CPLEX with guided dives, as described in Section 2.3

As mentioned in Sections 2.1 and 2.2, RINS and local branching each have two param-
eters that need to be set. For RINS, we need to choose the frequency f at which to
call RINS and the sub-MIP node limit nl. For local branching, we need to choose the
neighborhood radius r and the sub-MIP node limit nl. We experimented with different
settings, and it turned out that results varied very little for RINS and slightly more for
local branching. For the experiments reported in the following, we chose the parameters
that appeared to perform best: f = 100 and nl = 1000 for RINS; r = 10 and nl = 1000
for local branching.

Note that it is possible to build many hybrid approaches by combining RINS, local
branching, and guided dives. To give a simple example, guided dives could be applied to
the RINS sub-MIP. It is a research subject of its own to explore thoroughly all possible
combinations of these methods. To get some sense of the scope for improvement, though,
we tried two straightforward hybrids that attempt to address some of the potential weak-
nesses of the individual algorithms. The first, which we call LB+RINS 1, enables both
LB and RINS in the same MIP tree. Local branching is thus used to improve solutions
found by RINS (as well as other solutions found in the branch-and-bound process).
More precisely, RINS is called every f nodes. When the RINS sub-MIP exploration
terminates, local branching is called on the last solution found by RINS (if an improving
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solution was found). Local branching is also directly called when the global MIP solver
finds a new incumbent. In both cases, when local branching terminates, optimization of
the global MIP is resumed with a possibly updated incumbent. Hence the next iteration of
RINS may use an incumbent discovered by local branching. The main goal is to increase
both the number of local branching neighborhoods explored and their quality. Our sec-
ond hybrid, LB+RINS 2, adds a local branching neighborhood constraint (r = 20) to
every RINS sub-MIP. The goal is to limit the difficulty of the sub-MIP in cases where
the relaxation and the incumbent differ significantly. For both hybrids, RINS and local
branching termination criteria are the same as in pure RINS and pure local branching.
Results for both of these hybrids will be presented along with those of the individual
methods.

4.2. Methodology

Before discussing our experimental results, we first must make a few comments about
how the results will be presented. Regarding solution quality, we have chosen to always
capture quality as ratios of the objective value for the solution obtained by a method
divided by the objective value for the best known solution for that model (from Table 1).
This ratio is of course never less than 1.0.

Given the sheer volume of data our tests generated (6 different methods on 37 differ-
ent models, with each generating multiple intermediate solutions), we found it necessary
to reduce the data into summary results. Our goal with this summary information is to
give a rough sense of which method has produced the best aggregate results in a given
amount of time. We try to capture this notion using the geometric mean over all models in
the relevant model set of the best solution obtained divided by the best solution known.

One obvious question is how long to allow the methods to run. A time limit that
is too short may not give a method the opportunity to finish. This is particularly true
for local branching, where a sequence of improving solutions may produce numerous
sub-MIPs. On the other hand, a time limit that is too long may obscure significant differ-
ences between the algorithms, especially if one finds the optimal solution early in the
time interval. We found that a one hour time limit struck a reasonable balance between
these two considerations for most of the models in our test. That is, most methods had
ceased to make significant progress after an hour, yet the methods were often finding
marginally better solutions late in this time period. This will be apparent in the graphs
shown shortly.

To avoid obscuring important differences between the behaviors of the different
algorithms, we chose to group our models into three different sets. The ‘small spread’
models were those where the gap between the worst solution obtained by any of the 6
methods considered here and the best was less than 10%. The ‘medium spread’ models
were those for which the gap was between 10% and 100%, and finally the ‘large spread’
models were those where the gap was larger than 100%. We chose to run the ‘large
spread’ models for two hours instead of one, on the assumption that large differences
between methods suggest that the results were likely to continue to evolve given more
time.
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4.3. Optimizing from scratch

We now present results for applying the various methods to each model from scratch.
Recall that we will look at the ability of the various methods to improve a given solution
or escape from a local minimum later in this section.

Table 2 shows solution quality obtained by the various methods at the end of the
time limit, expressed as the ratio of the solution value found by the method divided by
the best known solution value. The best ratio obtained by any method for a model is
emphasized in bold face (with ties producing multiple bold ratios).

The numbers in this table were used to classify our models into the three previ-
ously described sets. One may note that the ‘medium spread’ set consists essentially of
rococo problems, and that the ‘large spread’ set gathers all but one of the job-shop
problems with earliness and tardiness costs. It is perhaps interesting to note that model

Table 2. Ratio solution reached/best known solution

Instance Default RINS Local Guided LB+RINS 1 LB+RINS 2
CPLEX branching dives

‘Small spread’ problems - one hour
A1C1S1 1.039 1.006 1.011 1.016 1.000 1.002
A2C1S1 1.038 1.007 1.000 1.035 1.006 1.000
arki001 1.000 1.000 1.000 1.000 1.000 1.000
B2C1S1 1.070 1.041 1.079 1.047 1.010 1.024
biella1 1.004 1.000 1.001 1.000 1.001 1.000
nsrand ipx 1.006 1.000 1.003 1.000 1.000 1.000
rail2586c 1.015 1.016 1.014 1.018 1.007 1.019
rail4284c 1.007 1.009 1.007 1.005 1.002 1.009
rail4872c 1.010 1.008 1.008 1.014 1.000 1.006
rococoB10-011000 1.041 1.022 1.034 1.022 1.008 1.044
rococoB10-011001 1.041 1.033 1.025 1.083 1.101 1.079
rococoB11-010000 1.042 1.061 1.118 1.042 1.119 1.093
rococoC10-001000 1.001 1.001 1.001 1.001 1.000 1.000
roll3000 1.014 1.005 1.003 1.016 1.000 1.001
seymour 1.012 1.002 1.009 1.005 1.002 1.002
sp97ar 1.012 1.001 1.012 1.006 1.005 1.000
sp97ic 1.026 1.002 1.012 1.013 1.000 1.006
sp98ar 1.007 1.002 1.002 1.003 1.002 1.003
sp98ic 1.015 1.003 1.004 1.004 1.002 1.005
tr12-30 1.000 1.000 1.000 1.000 1.000 1.000
UMTS 1.001 1.000 1.001 1.001 1.000 1.001

‘Medium spread’ problems - one hour
B1C1S1 1.118 1.011 1.020 1.096 1.018 1.013
glass4 1.123 1.096 1.130 1.113 1.000 1.119
ljb2 1.225 1.000 1.116 1.038 1.000 1.000
net12 1.192 1.000 1.192 1.000 1.000 1.000
rococoB11-110001 1.205 1.121 1.254 1.224 1.216 1.148
rococoB12-111111 1.141 1.029 1.057 1.099 1.084 1.062
rococoC10-100001 1.180 1.095 1.214 1.132 1.137 1.294
rococoC11-010100 1.173 1.081 1.081 1.123 1.053 1.060
rococoC11-011100 1.312 1.055 1.330 1.118 1.055 1.452
rococoC12-100000 1.270 1.096 1.110 1.268 1.117 1.278
rococoC12-111100 1.148 1.025 1.125 1.112 1.070 1.081
swath 1.222 1.048 1.154 1.093 1.031 1.048

‘Large spread’ problems - two hours
ljb7 2.375 1.061 1.580 1.582 1.028 1.255
ljb9 1.858 1.581 1.995 1.718 1.646 1.809
ljb10 1.601 1.212 1.693 1.295 1.226 1.500
ljb12 2.568 1.512 3.083 2.012 2.097 2.418
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Fig. 1. ‘Small spread’ problems
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Fig. 2. ‘Medium spread’ problems

size is not the main determinant of spread in our set. In fact, the models in the ‘large
spread’ set are among the smallest we consider.

Figures 1 through 3 give information on how solution quality evolves over time for
the various methods.

We can draw a few basic conclusions from this experimental data. First, RINS is the
most effective of the methods. It obtains good solutions earlier than the alternatives, and
maintains a lead even as more time is allowed. Though less effective than RINS, guided
dives still performs quite well, providing significantly better results than default CPLEX.
Finally, local branching gives somewhat better results than default CPLEX overall, but
runs into serious trouble on the problems of the ‘large spread’ set.
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Fig. 3. ‘Large spread’ problems

If we look at the two hybrid methods LB+RINS 1 and LB+RINS 2, we find that both
perform better than pure local branching, but worse than pure RINS. In other words, we
see no apparent benefit to combining the techniques in this way. However, as we said ear-
lier, the methods we consider can be combined in many different ways to produce hybrid
approaches, so it seems likely to us that some other combination could be productive.

If we take a closer look at local branching performance on the ‘large spread’ models,
we find that this behavior can perhaps be explained by looking at the first solutions
discovered. Recall that RINS, local branching and guided dives are all inactive until the
MIP solver has found its first integer solution, and thus they all begin with the same
initial solution. It turns out that the first solutions found for these models are generally
of poor quality. Thus, the local branching neighborhoods around them are unlikely to
contain good solutions. This will produce new neighbor solutions of similarly poor qual-
ity, whose local branching neighborhoods will then be explored. This leads to a long
series of not very fruitful sub-MIP explorations. RINS is not as sensitive to the quality
of the first integer solutions found by the MIP solver for two reasons. The first is that
the incumbent and the continuous relaxation serve symmetric roles in RINS. A poor
quality incumbent does not necessarily produce a poor quality neighborhood. Secondly,
the RINS sub-MIP contains fewer variables than the LB sub-MIP, and does not include
the additional dense local branching constraint, so a given number of nodes is typically
processed much more quickly.

It is clear from Figure 3 that branching within the standard MIP tree, as is done in
default CPLEX and in guided dives, improves the initial poor quality solutions quickly
(note that the left-most point on Figure 3 shows the solution after 5 minutes, not the
first solution). It is therefore natural to wonder whether local branching would produce
better results if it simply waited until standard branching found a good quality solution.
The problem with such an approach is in how to recognize a good quality solution, espe-
cially for very difficult models, where the relaxation objective may be quite far from the
optimal objective and thus may not provide useful guidance.
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Table 3. RINS sub-MIPs

Instance Size of sub-MIPs Time spent in sub-MIPs Number of sub-MIPs
A1C1S1 0.882 0.910 35
A2C1S1 0.891 0.906 35
arki001 0.328 0.660 1260
B2C1S1 0.873 0.827 14
biella1 0.077 0.004 192
nsrand ipx 0.026 0.306 858
rail2586c 0.126 0.429 9
rail4284c 0.096 0.263 4
rail4872c 0.104 0.312 3
rococoB10-011000 0.109 0.104 331
rococoB10-011001 0.111 0.262 252
rococoB11-010000 0.062 0.123 48
rococoC10-001000 0.095 0.068 308
roll3000 0.423 0.126 1111
seymour 0.398 0.606 65
sp97ar 0.012 0.182 343
sp97ic 0.005 0.107 1380
sp98ar 0.009 0.144 601
sp98ic 0.006 0.151 887
tr12-30 0.590 0.353 2788
UMTS 0.134 0.506 741
B1C1S1 0.880 0.884 23
glass4 0.298 0.495 23856
ljb2 0.199 0.806 1700
net12 0.915 0.001 10
rococoB11-110001 0.057 0.142 42
rococoB12-111111 0.054 0.154 80
rococoC10-100001 0.095 0.068 65
rococoC11-010100 0.139 0.234 28
rococoC11-011100 0.109 0.178 56
rococoC12-100000 0.041 0.037 36
rococoC12-111100 0.043 0.043 144
swath 0.013 0.050 5056
ljb7 0.098 0.739 780
ljb9 0.110 0.794 547
ljb10 0.138 0.825 428
ljb12 0.142 0.839 359
Geometric mean over

... all instances 0.109 0.202 -

... ‘small spread’ set 0.092 0.211 -

... ‘medium spread’ set 0.141 0.113 -

... ‘large spread’ set 0.121 0.798 -

A natural question at this point is how large the RINS sub-MIPs are, and how difficult
they are to solve. Table 3 shows the average number of variables of a RINS sub-MIP
(expressed as a fraction of the global MIP size), the time spent in RINS sub-MIPs
(expressed as a fraction of the overall time), and the total number of sub-MIPs explored
within the time limit. While we had some concern that relaxations and incumbents might
sometimes differ greatly, thus producing large, time-consuming sub-MIPs, we in fact
found limited correlation between the size of the sub-MIP and the fraction of time spent
within the RINS heuristic. As is true of MIPs in general, the difficulty of a sub-MIP
depends on more than just its size.
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Another natural question is whether a failure to find a particular, good solution was
more often due to limitations in the neighborhood (i.e., the RINS neighborhoods did not
contain that solution), or limitations of sub-MIP exploration (i.e., the sub-MIP was too
difficult to explore in any depth). We tried a simple experiment, where we considered a
feasible solution that RINS had difficulty finding and tested whether any RINS neigh-
borhood built during the MIP search contained that solution. We found that they rarely
did. While RINS neighborhoods may contain improving solutions that weren’t found
by our exploration approach, our conclusion is that significant improvements in RINS
are more likely to come from improved neighborhood definition rather than improved
exploration of neighborhoods.

4.4. Improving a given solution

To further understand the strengths and weaknesses of the various strategies considered
in this paper, with the hope of using any resulting insights to build better combinations of
these strategies, we designed an additional set of experiments. In these experiments, we
identified three specific factors that might be useful for achieving good overall results.
The first was the ability of an algorithm to quickly improve on a poor solution. This was
motivated by our observations about the performance of local branching on the ‘large
spread’ model set. The second was the ability of an algorithm to continue improving
on a good incumbent. The last, somewhat related factor was the ability of an algorithm
to diversify the search so as to generate new neighborhoods in which to perform new
intensification. If different algorithms showed different strengths, that would certainly
help to guide our efforts to find an effective hybrid strategy.

This section considers the ability of each algorithm to improve on a given solution.
More specifically, for each model, two initial feasible solutions were used:

– A solution of poor quality: one of the first integer solutions obtained by default
CPLEX.

– A solution of good quality: the solution obtained by default CPLEX after one hour
computation.

For each algorithm (default CPLEX included), the initial solution is given as a MIP start
at the top of a new branch-and-cut tree. This does not exactly correspond to the situation
of improving a given solution encountered during optimizing from scratch since it does
not take into account how the MIP tree has been built and pruned before finding this
initial solution, but this information is equally disregarded for each algorithm.

For each model, the time limit was set to the amount of time needed by local branch-
ing to finish improving the initial solution, rounded up to the nearest 100 seconds. Since
one local branching iteration takes typically more time than one RINS sub-MIP, our
chosen time limit allows each method to complete at least one iteration. While RINS
benefits from the global MIP enumeration if the first RINS sub-MIP exploration termi-
nates before the time limit, experience shows that, on our benchmark, the global MIP
solver rarely finds integer solutions by itself. Therefore the incumbent improvement in
RINS runs is provided almost exclusively by the exploration of RINS sub-MIPs.

Table 4 shows the mean improvement in solution quality. We computed these num-
bers by taking the geometric mean of the solution objective value at the end of the time
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Table 4. Average percent improvement in solution quality

Default RINS Local Guided
CPLEX branching dives

Starting from a poor solution
... all instances 39.44% 44.98% 35.83% 42.16%
... ‘small spread’ set 26.96% 28.03% 24.56% 26.97%
... ‘medium spread’ set 38.91% 48.39% 40.03% 44.08%
... ‘large spread’ set 77.94% 83.74% 66.38% 81.19%

Starting from a good solution
... all instances 0.28% 3.95% 1.99% 2.82%
... ‘small spread’ set 0.00% 0.64% 0.62% 0.25%
... ‘medium spread’ set 0.18% 2.30% 2.53% 1.08%
... ‘large spread’ set 2.04% 23.62% 7.36% 19.69%

period over the initial solution value, and subtracting the result from 1.0.A 50% improve-
ment would thus mean that the objective was reduced by half. The data shows that RINS
is the best of these strategies for improving a poor solution. This result was expected,
since the use of the continuous relaxation often compensates for poor incumbents. The
tentative explanation given in the previous section to understand the poor performance
of local branching over the ljb models is confirmed here: local branching is signifi-
cantly worse than both RINS and guided dives, and only sometimes slightly better than
default CPLEX, at improving poor solutions. More surprisingly, Table 4 shows that local
branching is never significantly better than RINS or guided dives at improving a good
solution, and sometimes much less effective.

4.5. Diversifying the search

In this section, we look at another aspect of algorithm effectiveness by considering how
much time each algorithm requires to produce an improved solution; that is, how effec-
tive its diversification scheme is. Recall that our implementation of local branching relies
on the global MIP solver (default CPLEX) for diversification, so we present no local
branching results here.

Table 5 shows the effectiveness of each algorithm at diversifying the search, ex-
pressed as the median time required to produce an improved solution. We started each
algorithm from the same good and poor solutions as in the previous section. In contrast
to the previous test, runtimes for each method were limited to half an hour for all models.
The table shows that RINS is the most robust of the methods, experiencing the fewest
failures to find an improved solution within the time limit. It is also the fastest method
when starting from a solution of poor or good quality.

While it is interesting to discover that RINS was the most effective method in all of
our more focused experiments, these results unfortunately offer little insight into how
to combine algorithms to form a more effective hybrid.

5. Conclusion

In this paper we introduced two new generic strategies to quickly find good integer
solutions for hard MIP models: a heuristic we call Relaxation Induced Neighborhood
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Table 5. Diversification efficiency

Default RINS Guided
CPLEX dives

Starting from a poor solution
Number of fails (out of 37): no improved solution found in half an hour 1 0 1
Median time (in seconds) to first improved solution

... in the 36 cases where all algorithms succeed 36.48 24.98 30.59

Starting from a good solution
Number of fails (out of 37): no improved solution found in half an hour 32 4 14
Median time (in seconds) to first improved solution

... in the 5 cases where all algorithms succeed 284.44 9.09 53.19

... in the 23 cases where only RINS and guided dives succeed - 99.56 119.74

Search (RINS) and a tree traversal strategy we call guided dives. Both algorithms are
domain-independent; they can be applied to any MIP, with no other input than the model
itself.

Comparing RINS to an existing neighboorhood exploration method called local
branching [17], we find that RINS improves on it in several ways:

– Local branching defines its neighborhood around the incumbent. In contrast, RINS
neighborhoods are based on the incumbent and on the continuous relaxation, which
play symmetrical roles. This allows for RINS to improve quickly on poor incumbents
and to be robust with respect to loose continuous relaxation.

– Local branching can only be invoked when a new incumbent is found. In contrast,
RINS can be invoked at each node of the branch-and-cut tree, since diversification
is achieved through changes in the continuous relaxations. This automatic diversifi-
cation is especially important for models where a standard MIP solver may find new
feasible solutions only rarely.

– A RINS sub-MIP solves faster than a local branching sub-MIP. It contains fewer
variables, and it does not contain the local branching dense constraint.

We showed with extensive computational experiments on a number of very difficult
MIP models that RINS outperforms local branching, guided dives, and default CPLEX
for generating good integer solutions within a time limit, improving a given solution
of good or poor quality, and diversifying the search. Guided dives is the second best
strategy for these three criteria, also providing consistent improvements over default
CPLEX.

Both RINS and guided dives are included in CPLEX 9.0. RINS is invoked with
parameter IloCplex::MIPEmphasis=4, and guided dives is invoked with param-
eter IloCplex::DiveType=3.

Finally, let us set the algorithms considered in this paper in the more general context
of hybrid algorithms. We view RINS, guided dives, and local branching as being hybrid
in spirit. They combine concepts from mixed integer programming (linear relaxation
in RINS; valid inequalities in local branching), from general tree search (hard fixing in
RINS; soft fixing in local branching; diving to promising nodes in guided dives), and
from local search (intensification, diversification and particularly the concept of a solu-
tion neighborhood). However, unlike traditional hybrid algorithms [15], they integrate
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these concepts in the framework of only one optimization technique (here, branch-and-
cut). This property provides several advantages, including reduced software complexity,
limited risk of over-specialization to a particular problem class (no problem specific
parameter tuning was required for the results in this paper), and automatic gains from
improvements in the underlying method. We refer the reader to [13] for a more detailed
discussion of algorithms that are hybrid in spirit.
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