
Chapter 2

Just MIP it!

Matteo Fischetti, Andrea Lodi, and Domenico Salvagnin

Abstract Modern Mixed-Integer Programming (MIP) solvers exploit a rich
arsenal of tools to attack hard problems. It is widely accepted by the OR
community that the solution of very hard MIPs can take advantage from
the solution of a series of time-consuming auxiliary Linear Programs (LPs)
intended to enhance the performance of the overall MIP solver. For instance,
auxiliary LPs may be solved to generate powerful disjunctive cuts, or to
implement a strong branching policy. Also well established is the fact that
finding good-quality heuristic MIP solutions often requires a computing time
that is just comparable to that needed to solve the LP relaxations. So, it
makes sense to think of a new generation of MIP solvers where auxiliary
MIPs (as opposed to LPs) are heuristically solved on the fly, with the aim of
bringing the MIP technology under the chest of the MIP solver itself. This
leads to the idea of “translating into a MIP model” (MIPping) some crucial
decisions to be taken within a MIP algorithm (How to cut? How to improve
the incumbent solution? Is the current node dominated?). In this paper we
survey a number of successful applications of the above approach.

Matteo Fischetti

DEI, Università di Padova, Padua, Italy

e-mail: matteo.fischetti@unipd.it

Andrea Lodi
DEIS, Università di Bologna, Bologna, Italy
e-mail: andrea.lodi@unibo.it

Domenico Salvagnin
DMPA, Università di Padova, Padua, Italy

e-mail: dominiqs@gmail.com

V. Maniezzo et al., (eds.), Matheuristics, Annals of Information Systems 10, 39

DOI 10.1007/978-1-4419-1306-7 2, c© Springer Science+Business Media, LLC 2009

40 M. Fischetti, A. Lodi, and D. Salvagnin

2.1 Introduction

Modern MIP solvers exploit a rich arsenal of tools to attack hard problems.
Some successful examples involve the solution of LP models to control the
branching strategy (strong branching), the cut generation (lift-and-project),
and the heuristics (reduced costs). As a matter of fact, it is well known by
the OR community that the solution of very hard MIPs can take advantage
of the solution of a series of auxiliary LPs intended to guide the main steps
of the MIP solver.

Also well known is the fact that finding good-quality heuristic MIP solu-
tions often requires a computing time that is just comparable to that needed
to solve the LP relaxation of the problem at hand. This leads to the idea
of “translating into a MIP model” (MIPping) some crucial decisions to be
taken within a MIP algorithm (in particular: How to cut? How to improve
the incumbent solution? Is the current node dominated?), with the aim of
bringing the MIP technology well inside the MIP solver.

The present paper gives a survey of three successful applications of the
MIPping approach. In Section 2.2 we address the generation of strong cutting
planes. In this context, the MIPping approach has been extensively applied
to modeling and solving (possibly in a heuristic way) the NP-hard separa-
tion problems of famous classes of valid inequalities for mixed integer linear
programs. Besides the theoretical interest in evaluating the strength of these
classes of cuts computationally, the approach proved successful also in prac-
tice, and allowed the solution of very hard MIPLIB instances [2] that could
not be solved before.

In Section 2.3 we address enhanced (primal) heuristic approaches for the
solution of hard MIP models. An example of the benefits deriving from the
use of a black-box MIP solver to produce heuristic primal solutions for a
generic MIP is the recently-proposed local branching paradigm that uses a
general-purpose MIP solver to explore large solution neighborhoods defined
through the introduction in the MIP model of invalid linear inequalities called
local branching cuts [25]. More recently, a different heuristic approach called
Feasibility Pump has been proposed to address the problem of finding an
initial feasible solution and of improving it. In Section 2.3 we describe a
hybrid algorithm that uses the feasibility pump method to provide, at very
low computational cost, an initial (possibly infeasible) solution to the local
branching procedure.

In Section 2.4 we finally address the general-purpose dominance procedure
proposed in the late 80’s by Fischetti and Toth [30], that overcomes some of
the drawbacks of the classical dominance definition. Given the current node α
of the search tree, let Jα be the set of variables fixed to some value. Following
the MIPping paradigm, we construct an auxiliary problem XPα that looks
for a new partial assignment involving the variables in Jα and such that
(i) the objective function value is not worse than the one associated with the
original assignment, and (ii) every completion of the old partial assignment

2 Just MIP it! 41

is also a valid completion of the new one. If such a new partial assignment is
found (and a certain tie-breaking rule is satisfied), one is allowed to fathom
node α.

The present survey is based on previous published work; in particular,
Sections 2.2, 2.3 and 2.4 are largely based on [26], [28] and [54], respectively.

2.2 MIPping Cut Separation

In this section we first introduce our basic notation and definitions and review
some classical results on cutting planes for pure and mixed integer problems.
Then, we discuss in Section 2.2.1 the separation of pure integer cuts, i.e., those
cuts in which (i) all coefficients are integer and (ii) continuous variables (if
any) have null coefficients. In Section 2.2.2 we address the more general (and
powerful) family of split cuts which are instead mixed integer inequalities
because the two conditions above do not apply. Finally, in Subsection 2.2.3
we discuss computational aspects of these models and we report results on
the strength of the addressed cuts.

Consider first the pure integer linear programming problem min{cTx :
Ax ≤ b, x ≥ 0, x integral} where A is an m× n rational matrix, b ∈ Qm, and
c ∈ Qn, along with the two associated polyhedra P := {x ∈ Rn

+ : Ax ≤ b}
and PI := conv{x ∈ Zn

+ : Ax ≤ b} = conv(P ∩ Zn).
A Chvátal-Gomory (CG) cut (also known as Gomory fractional cut) [35,

13] is an inequality of the form buTAcx ≤ buT bc where u ∈ Rm
+ is a vector of

multipliers, and b·c denotes the lower integer part. Chvátal-Gomory cuts are
valid inequalities for PI . The Chvátal closure of P is defined as

P 1 := {x ≥ 0 : Ax ≤ b, buTAcx ≤ buT bc for all u ∈ Rm
+}. (2.1)

Thus PI ⊆ P 1 ⊆ P . By the well-known equivalence between optimization
and separation [37], optimizing over the first Chvátal closure is equivalent to
solving the CG separation problem where we are given a point x∗ ∈ Rn and
are asked to find a hyperplane separating x∗ from P 1 (if any). Without loss
of generality we can assume that x∗ ∈ P , since all other points can be cut by
simply enumerating the members of the original inequality system Ax ≤ b,
x ≥ 0. Therefore, the separation problem we are actually interested in reads:

CG-SEP: Given any point x∗ ∈ P find (if any) a CG cut that is violated
by x∗, i.e., find u ∈ Rm

+ such that buTAcx∗ > buT bc, or prove that no such
u exists.

It was proved by Eisenbrand [23] that CG-SEP is NP-hard, so optimizing
over P 1 also is.

Moreover, Gomory [36] proposed a stronger family of cuts, the so-called
Gomory Mixed Integer (GMI) cuts, that apply to both the pure integer and

42 M. Fischetti, A. Lodi, and D. Salvagnin

the mixed integer case. Such a family of inequalities has been proved to be
equivalent to two other families, the so-called split cuts defined by Cook et al.
[15], and the Mixed Integer Rounding (MIR) cuts introduced by Nemhauser
and Wolsey [50]. The reader is referred to Cornuéjols and Li [17] for formal
proofs of the correspondence among those families, and to Cornuéjols [16] for
a very recent survey on valid inequalities for mixed integer linear programs.
Let us consider a generic MIP of the form:

min{cTx+ fT y : Ax+ Cy ≤ b, x ≥ 0, x integral, y ≥ 0} (2.2)

where A and C are m× n and m× r rational matrices respectively, b ∈ Qm,
c ∈ Qn, and f ∈ Qr. We also consider the two following polyhedra in the
(x, y)-space:

P (x, y) := {(x, y) ∈ Rn
+ × Rr

+ : Ax+ Cy ≤ b}, (2.3)
PI(x, y) := conv({(x, y) ∈ P (x, y) : x integral}). (2.4)

Split cuts are obtained as follows. For any π ∈ Zn and π0 ∈ Z, the dis-
junction πTx ≤ π0 or πTx ≥ π0 + 1 is of course valid for PI(x, y), i.e.,
PI(x, y) ⊆ conv(Π0 ∪Π1) where

Π0 := P (x, y) ∩ {(x, y) : πTx ≤ π0}, (2.5)
Π1 := P (x, y) ∩ {(x, y) : πTx ≥ π0 + 1}. (2.6)

A valid inequality for conv(Π0 ∪ Π1) is called a split cut. The convex set
obtained by intersecting P (x, y) with all the split cuts is called the split
closure of P (x, y). Cook et al. proved that the split closure of P (x, y) is a
polyhedron.

Nemhauser and Wolsey [50] introduced the family of MIR cuts, whose basic
(2-dimensional) version can be obtained in the following way. Let 1 < b̂ < 0
and b̄ ∈ Z, and consider the two-variable mixed integer program T = {(x, y) :
x+ y ≥ b̂+ b̄, y ≥ 0}. Then, it is easily seen that the points in T with x ∈ Z
satisfy the basic MIR inequality:

b̂x+ y ≥ b̂(b̄+ 1), (2.7)

that turns out to be a split cut derived from the disjunction x ≤ b̄ and x ≥
b̄+1. The hardness of separation of split cuts (and hence of MIR inequalities)
has been established by Caprara and Letchford [11].

While Chvátal-Gomory cuts are by definition integer inequalities, split/
GMI/MIR inequalities are instead mixed integer cuts in the sense that the
coefficients are generally not integer and the continuous variables (if any)
might have nonzero coefficients.

2 Just MIP it! 43

2.2.1 Pure Integer Cuts

As just mentioned, Chvátal-Gomory cuts are of course pure integer inequal-
ities because of the rounding mechanism and since they do apply only to the
pure integer case. In the following section we discuss their separation through
a MIP model while in Section 2.2.1.2 we show that a closely related model
has been used to separate a new class of pure integer cuts for mixed integer
problems.

2.2.1.1 Chvátal-Gomory Cuts

Fischetti and Lodi [27] addressed the issue of evaluating the practical strength
of P 1 in approximating PI . The approach was to model the CG separation
problem as a MIP, which is then solved through a general-purpose MIP solver.
To be more specific, given an input point x∗ ∈ P to be separated1, CG-SEP
calls for a CG cut αTx ≤ α0 which is (maximally) violated by x∗, where
α = buTAc and α0 = buT bc for some u ∈ Rm

+ . Hence, if Aj denotes the jth
column of A, CG-SEP can be modeled as:

max αTx∗ − α0 (2.8)
αj ≤ uTAj ∀j = 1, . . . , n (2.9)
α0 + 1− ε ≥ uT b (2.10)
ui ≥ 0 ∀i = 1, . . . ,m (2.11)
αj integer ∀j = 0, . . . , n, (2.12)

where ε is a small positive value. In the model above, the integer variables
αj (j = 1, . . . , n) and α0 play the role of coefficients buTAjc and buT bc
in the CG cut, respectively. Hence the objective function (2.8) gives the
amount of violation of the CG cut evaluated for x = x∗, that is what has
to be maximized. Because of the sign of the objective function coefficients,
the rounding conditions αj = buTAjc can be imposed through upper bound
conditions on variables αj (j = 1, . . . , n), as in (2.9), and with a lower bound
condition on α0, as in (2.10). Note that this latter constraint requires the
introduction of a small value ε so as to prevent an integer uT b being rounded
to uT b− 1.

Model (2.8)-(2.12) can also be explained by observing that αTx ≤ α0 is
a CG cut if and only if (α, α0) is an integral vector, as stated in (2.12), and
αTx ≤ α0 +1− ε is a valid inequality for P , as stated in (2.9)-(2.11) by using
the well-known characterization of valid inequalities for a polyhedron due to
Farkas.

1 Recall that Gomory’s work [35] implies that CG-SEP is easy when x∗ is an extreme point

of P .

44 M. Fischetti, A. Lodi, and D. Salvagnin

2.2.1.2 Projected Chvátal-Gomory Cuts

Bonami et al. [10] extended the concept of Chvátal-Gomory cuts to the mixed
integer case. Such an extension is interesting in itself and has the advantage of
identifying a large class of cutting planes whose resulting separation problem
retains the simple structure of model (2.8)-(2.12) above. One can define the
projection of P (x, y) onto the space of the x variables as:

P (x) := {x ∈ Rn
+ : there exists y ∈ Rr

+ s.t. Ax+ Cy ≤ b} (2.13)

= {x ∈ Rn
+ : ukA ≤ ukb, k = 1, . . . ,K} (2.14)

=: {x ∈ Rn
+ : Āx ≤ b̄}, (2.15)

where u1, . . . , uK are the (finitely many) extreme rays of the projection cone
{u ∈ Rm

+ : uTC ≥ 0T }. Note that the rows of the linear system Āx ≤ b̄ are of
Chvátal rank 0 with respect to P (x, y), i.e., no rounding argument is needed
to prove their validity.

We define a projected Chvátal-Gomory (pro-CG) cut as a CG cut derived
from the system Āx ≤ b̄, x ≥ 0, i.e., an inequality of the form bwT Ācx ≤
bwT b̄c for some w ≥ 0. Since any row of Āx ≤ b̄ can be obtained as a
linear combination of the rows of Ax ≤ b with multipliers ū ≥ 0 such that
ūTC ≥ 0T , it follows that a pro-CG cut can equivalently (and more directly)
be defined as an inequality of the form:

buTAcx ≤ buT bc for any u ≥ 0 such that uTC ≥ 0T . (2.16)

As such, its associated separation problem can be modeled as a simple ex-
tension of the system (2.8)-(2.12) by amending it through the following set
of inequalities:

uTCj ≥ 0 ∀j = 1, . . . , r. (2.17)

Projected Chvátal-Gomory cuts are dominated by split cuts, and therefore
P 1(x, y) contains the split closure of P (x, y). More precisely, P 1(x, y) is the
intersection of P (x, y) with all the split cuts where one of the sets Π0, Π1

defined in (2.5) and (2.6) is empty (see [10]).

2.2.2 Mixed Integer Cuts

The computational results reported in [27] and [10] showed that P 1 often
gives a surprisingly tight approximation of PI , thus triggering research in the
attempt of extending the approach to (more powerful) mixed integer cuts.

Unfortunately, model (2.8)-(2.12) does not extend immediately to the
mixed integer case if one wants to concentrate on split/MIR/GMI cuts where
coefficients are not necessarily integer and the continuous variables might as-

2 Just MIP it! 45

sume nonzero coefficients in the cut. A natural mixed integer nonlinear model
has been suggested in [11]. Variants of such a model have been solved with two
different approaches: by solving either a parametric mixed integer problem
[7] (Section 2.2.2.1) or a nonlinear mixed integer problem [19, 20] (Section
2.2.2.2).

Finally, it is not difficult to see that one can use the multipliers u computed
as in (2.8)-(2.12) or (2.8)-(2.12),(2.17) and write a GMI inequality instead
of a CG or pro-CG cut. However, such an a posteriori strengthening did not
turn out to be very effective (see [10]).

2.2.2.1 Split Cuts Solving a Parametric MIP

Balas and Saxena [7] directly addressed the separation problem of the most
violated split cut of the form αTx+ γT y ≥ β by looking at the union of the
two polyhedra (2.5) and (2.6). In particular, they addressed a generic MIP
of the form:

min{cTx+ fT y : Ax+ Cy ≥ b, x integral}, (2.18)

where the variable bounds are included among the explicit constraints, and
wrote a first nonlinear separation model for split cuts as follows:

min αTx∗ + γT y∗ − β (2.19)
αj = uTAj − u0πj ∀j = 1, . . . , n (2.20)
γj = uTCj ∀j = 1, . . . , r (2.21)
αj = vTAj + v0πj ∀j = 1, . . . , n (2.22)
γj = vTCj ∀j = 1, . . . , r (2.23)
β = uT b− u0π0 (2.24)
β = vT b+ v0(π0 + 1) (2.25)
1 = u0 + v0 (2.26)

u, v, u0, v0 ≥ 0 (2.27)
π, π0 integer. (2.28)

Normalization constraint (2.26) allows one to simplify the model to the form
below:

minuT (Ax∗ + Cy∗ − b) − u0(πTx∗ − π0) (2.29)
uTAj − vTAj − πj = 0 ∀j = 1, . . . , n (2.30)

uTCj − vTCj = 0 ∀j = 1, . . . , r (2.31)
−uT b+ vT b+ π0 = u0 − 1 (2.32)

0 < u0 < 1 , u, v ≥ 0 (2.33)
π, π0 integer, (2.34)

46 M. Fischetti, A. Lodi, and D. Salvagnin

where v0 has been removed by using constraint (2.26), and one explicitly
uses the fact that any nontrivial cut has u0 < 1 and v0 < 1 (see Balas
and Perregaard [6]). Note that the nonlinearity only arises in the objective
function. Moreover, for any fixed value of parameter u0 the model becomes
a regular MIP.

The continuous relaxation of the above model yields a parametric linear
program which can be solved by a variant of the simplex algorithm (see, e.g.,
Nazareth [49]). Balas and Saxena [7] however avoided solving the parametric
MIP through a specialized algorithm, and considered a grid of possible values
for parameter u0, say u1

0 < u2
0 < · · · < uk

0 . The grid is initialized by means of
the set {0.05, 0.1, 0.2, 0.3, 0.4, 0.5} and then is enriched, on the fly, by bisecting
a certain interval [ut

0, u
t+1
0] through the insertion of the new grid point u′0 :=

(ut
0 + ut+1

0)/2.

2.2.2.2 Split Cuts Solving a Nonlinear MIP

Dash et al. [19, 20] addressed the optimization over the split closure by looking
at the corresponding MIR inequalities and, more precisely, developed a mixed
integer nonlinear model and linearized it in an effective way.

For the ease of writing the model, we slightly change the definition of
polyhedron P (x, y) by putting the constraints in equality form as:

P (x, y) = {(x, y) ∈ Rn
+ × Rr

+ : Ax+ Cy + Is = b, s ≥ 0}, (2.35)

through the addition of nonnegative slack variables s.
One is looking for an MIR inequality in the form:

u+s+ γ̂T y + (α̂T + β̂ᾱT)x ≥ β̂(β̄ + 1), (2.36)

where ᾱ and β̄ are vectors of integer variables, u+, α̂ and γ̂ are vectors of
nonnegative variables, and 0 < β̂ < 1.

Let
∑

k∈K εk < 1 (e.g., εk = 2−k). We approximate β̂ with
∑

k∈K̄ εk for
some K̄ ⊂ K and write the RHS of the MIR inequality as

∑
k∈K̄ εk∆ where

∆ = β̄ + 1− ᾱTx∗. Using the fact that there is a violated MIR inequality if
and only if there is one with ∆ < 1, we have the following formulation for
the separation of the most violated MIR inequality, where for each k ∈ K we
set πk = 1 if k ∈ K̄, and πk = 0 otherwise.

2 Just MIP it! 47

minu+s∗ − εTΦ + γ̂T y∗ + α̂Tx∗ (2.37)
γ̂j ≥ uTCj ∀j = 1, . . . , r (2.38)

α̂j + ᾱj ≥ uTAj ∀j = 1, . . . , n (2.39)

β̂ + β̄ ≤ uT b (2.40)

β̂ =
∑
k∈K

εkπk (2.41)

∆ = (β̄ + 1)− ᾱTx∗ (2.42)
Φk ≤ ∆ ∀k ∈ K (2.43)
Φk ≤ πk ∀k ∈ K (2.44)
u+

i ≥ ui ∀i = 1, . . . ,M (2.45)

u+, α̂, β̂, γ̂ ≥ 0 (2.46)
ᾱ, β̄ integer, π ∈ {0, 1}|K| (2.47)

where u+
i = max{ui, 0} and M := {i : s∗i > 0, i = 1, . . . ,m}, i.e., we define

a variable u+
i only if the corresponding constraint i written in ‘less or equal

form’ is not tight.
The validity of inequality (2.36) can be easily shown. Inequality uT s +

(ᾱT + α̂T)x + γ̂T y ≥ uT b is valid by Farkas derivation. It remains of course
valid by replacing ui,∀i ∈ M with u+

i and then one can use the basic MIR
inequality (2.7) to obtain the MIR form (2.36) by having as a continuous
(nonnegative) part the term u+s+ α̂Tx+ γ̂T y.

The approximate model (2.37)–(2.47) turns out to be an exact model if K
is chosen appropriately (see [19, 20]).

2.2.3 A Computational Overview

In this section we discuss some simple issues that turn out to be crucial to
make the presented models solvable and the MIPping approach successful.
Moreover, we show their strength by reporting computational results on MIPs
included in the MIPLIB 3.0 [9].

2.2.3.1 Making the Models Solvable

All papers discussed in the previous sections implement pure cutting plane
approaches in which (as usual) the following steps are iteratively repeated:

1. the continuous relaxation of the mixed integer program at hand is solved;
2. the separation problem is (heuristically) solved and a set of violated con-

straints is eventually found;
3. the constraints are added to the original formulation.

48 M. Fischetti, A. Lodi, and D. Salvagnin

Of course, the original formulation becomes larger and larger but in order
to provide cuts of rank 1, the separation problem solved at step 2 above
only uses the original constraints in the cut derivation. For what concerns
the solution of those separation problems, it is important that state-of-the-
art MIP solvers such as ILOG-Cplex or Xpress Optimizer are used, as they
incorporate very powerful heuristics that are able to find (and then improve)
feasible solutions in short computing times. Indeed, good heuristic solutions
are enough for step 2 above, where the NP-hard separation problem does not
need to be solved to optimality2 since any feasible solution provides a valid
inequality cutting off the current solution of step 1 above.

In order to make these MIPs solvable, a few issues have to be addressed.
All authors noted that only integer variables in the support of the frac-

tional solution of step 1 above have to be considered, e.g., a constraint
αj ≤ uTAj for j such that x∗j = 0 is redundant because αj (times x∗j)
does not contribute to the violation of the cut, while it can be computed a
posteriori by an efficient post-processing procedure. It is easy to see that this
is also the case of integer variables whose value is at the upper bound, as
these variables can be complemented before separation.

The ultimate goal of the cutting plane sketched above is to find, for each
fractional point (x∗, y∗) to be cut off, a “round” of cuts that are significantly
violated and whose overall effect is as strong as possible in improving the
current LP relaxation. A major practical issue for accomplishing such a goal
is the strength of the returned cuts. As a matter of fact, several equivalent
solutions of the separation problems typically exist, some of which produce
very weak cuts for the MIP model. This is because the separation problem
actually considers the face F (x∗, y∗) of PI where all the constraints that are
tight at (x∗, y∗) (including the variable bounds) are imposed as equalities.
Hence, for this face there exist several formulations of each cut, which are
equivalent for F (x∗, y∗) but not for PI .

The computational experiments in [27] have shown a relation between the
strength of a cut and the sparsity of the vector of multipliers u generating it.
In particular, the introduction of a penalty term −

∑
i wiui (where i denotes

the index of a constraint) in the objective function (2.8), has the effect of
making the cut itself sparser. The sparser the cuts the better for the LP
problems solved on step 1 of the cutting plane procedure.3 The importance
of making the cuts as sparse as possible has been also documented by Balas
and Saxena [7], who noticed that split disjunctions with sparse support tend
to give rise to sparse split cuts.

Another important issue in order to accelerate the cutting plane procedure
is the cut selection, i.e., finding a set of cuts whose overall behavior is as
effective as possible. Cut selection is somehow related to finding a set of cuts
which are “as diverse as possible”, possibly more effective together. One can

2 Except eventually in the last step, in which one needs a proof that no additional violated

cut exists.
3 The same sparsification trick is also used in Bonami et al. [10].

2 Just MIP it! 49

Table 2.1 Results for 25 pure integer linear programs in the MIPLIB 3.0.

Split closure CG closure

% Gap closed Average 71.71 62.59
% Gap closed 98-100 9 instances 9 instances

% Gap closed 75-98 4 instances 2 instances

% Gap closed 25-75 6 instances 7 instances
% Gap closed < 25 6 instances 7 instances

expect that such kind of diversification can be strongly improved with cuts
obtained by heuristically solving two or more of the discussed separation
models; promising results in this direction have been obtained by combining
either CG or pro-CG cuts with MIR inequalities [19, 20].

2.2.3.2 Strength of the Closures

The strength of the closures, namely CG, pro-CG and split (or MIR), have
been evaluated by running cutting plane algorithms for large (sometimes
huge) computing times. Indeed, the goal of the investigation was in all cases
to show the tightness of the closures, rather than investigating the practical
relevance of the separation MIPping idea when used within a MIP solver.
On the other hand, as discussed in the previous section, several techniques
can be implemented to speed up the computation and, even in the current
status, the MIPping separation approach is not totally impractical. Indeed,
one can easily implement a hybrid approach in which the MIP-based separa-
tion procedures are applied (for a fixed amount of time) in a preprocessing
phase, resulting in a tighter MIP formulation to be solved at a later time
by a standard MIP solver. Using this idea, two unsolved MIPLIB 2003 [2]
instances, namely nsrand-ipx and arki001, have been solved to proven op-
timality for the first time by Fischetti and Lodi [27] and by Balas and Saxena
[7], respectively. In other words, for very difficult and challenging problems it
does pay to improve the formulation by adding cuts in these closures before
switching to either general- or special-purpose solution algorithms.

In Tables 2.1 and 2.2 we report, in an aggregated fashion, the tightness
of the closures for MIPLIB 3.0 [9] instances, in terms of percentage of gap
closed4 for pure integer and mixed integer linear programs, respectively.

Most of the results reported in the previous tables give a lower approx-
imation of the exact value of the closures5, due to the time limits imposed
on the cutting plane algorithms. Nevertheless, the picture is pretty clear and

4 Computed as 100−100(opt value(PI)−opt value(P 1))/(opt value(PI)−opt value(P)).
5 In particular, the time limit in [10] to compute a bound of the pro-CG closure is rather
short, 20 CPU minutes, and there are pathological instances for which such a closure is

ineffective, see [10] for details.

50 M. Fischetti, A. Lodi, and D. Salvagnin

Table 2.2 Results for 33 mixed integer linear programs in the MIPLIB 3.0.

Split closure pro-CG closure

% Gap closed Average 84.34 36.38
% Gap closed 98-100 16 instances 3 instances

% Gap closed 75-98 10 instances 3 instances

% Gap closed 25-75 2 instances 11 instances
% Gap closed < 25 5 instances 17 instances

shows that, although one can construct examples in which the rank of the
facets for a polyhedron is very large, in most practical cases the inequalities
of rank 1 already give a very tight approximation of the convex hull of integer
and mixed integer programs.

2.3 MIPping Heuristics

In this section we consider the problem of finding a feasible (primal) solution
to a generic mixed-integer linear program with 0-1 variables of the form:

(P) min cTx (2.48)
s.t. Ax ≤ b (2.49)

xj ∈ {0, 1} ∀j ∈ B 6= ∅ (2.50)
xj ≥ 0, integer ∀j ∈ G (2.51)
xj ≥ 0 ∀j ∈ C, (2.52)

where A is an m×n input matrix, and b and c are input vectors of dimension
m and n, respectively. Here, the variable index set N := {1, . . . , n} is parti-
tioned into (B,G, C), where B 6= ∅ is the index set of the 0-1 variables, while
the possibly empty sets G and C index the general integer and the continuous
variables, respectively. Note that we assume the existence of 0-1 variables, as
one of the components of the method we actually implemented (namely, the
local branching heuristic) is based on this assumption. Our approach can,
however, be extended to remove this limitation, as outlined in the concluding
remarks of [25]. Also note that constraints (2.49), though stated as inequali-
ties, can involve equalities as well. Let I := B ∪ G denote the index set of all
integer-constrained variables.

Heuristics for general-purpose MIPs include [4, 5, 8, 18, 22, 29, 32, 33, 34,
38, 39, 40, 43, 44], among others. Recently, we proposed in [25] a heuristic
approach, called Local Branching (LB), to improve the quality of a given fea-
sible solution. This method, as well as other refining heuristics (including the
recently-proposed RINS approach [18]), requires the availability of a starting

2 Just MIP it! 51

feasible solution, which is an issue for some difficult MIPs. This topic was
investigated by Fischetti et al. [24], who introduced the so-called Feasibility
Pump (FP) scheme for finding a feasible (or, at least, an “almost feasible”)
solution to general MIPs through a clever sequence of roundings.

We analyze computationally a simple variant of the original LB method
that allows one to deal with infeasible reference solutions, such as those re-
turned by the FP method. Our approach is to start with an “almost feasible”
reference solution x̄, as available at small computational cost through the
FP method. We then relax the MIP model by introducing for each violated
constraint: (i) an artificial continuous variable in the constraint itself, (ii) a
binary (also artificial) variable, and (iii) a constraint stating that, if the artifi-
cial variable has to be used to satisfy the constraint satisfied, then the binary
variable must be set to 1. Finally, the objective function is replaced, in the
spirit of the first phase of the primal simplex algorithm, by the sum of the
artificial binary variables. The initial solution turns out now to be feasible for
the relaxed model and its value coincides with the number of initial violated
constraints. We then apply the standard LB framework to reduce the value
of the objective function, i.e., the number of infeasibilities and a solution of
value 0 turns out to be feasible for the initial problem. Note that, although
a continuous artificial variable for each violated constraint could be enough,
binary variables are better exploited by LB as it will be made clear in Section
2.3.1 and discussed in detail in Section 2.3.2.

Our approach also produces, as a byproduct, a small-cardinality set of
constraints whose relaxation (removal) converts a given MIP into a feasible
one–a very important piece of information in the analysis of infeasible MIPs.
In other words, our method can be viewed as a tool for repairing infeasible
MIP models, and not just as a heuristic for repairing infeasible MIP solutions.
This is in the spirit of the widely-studied approaches to find maximum feasible
(or minimum infeasible) subsystems of LP models, as addressed e.g. in [3, 12,
31], but is applied here to MIP models. This may be a useful technique in
practice.

The section is organized as follows. In Subsection 2.3.1 we review the
LB and FP methods. In Subsection 2.3.2 we describe the LB extension we
propose to deal with infeasible reference solutions. Computational results
are presented in Subsection 2.3.3, where we compare the LB performance
with that of the commercial software ILOG-Cplex on two sets of hard 0-1
MIPs, specifically 44 problems taken from the MIPLIB 2003 library [2] and
39 additional instances already considered in [24].

2.3.1 Local Branching and Feasibility Pump

We next review the LB and FP methods. The reader is referred to [25] and
[24] for more details.

52 M. Fischetti, A. Lodi, and D. Salvagnin

2.3.1.1 Local Branching

The Local Branching approach works as follows. Suppose a feasible reference
solution x̄ of the MIP is given, and one aims at finding an improved solution
that is “not too far” from x̄. Let S := {j ∈ B : x̄j = 1} denote the binary
support of x̄. For a given positive integer parameter k, we define the k-OPT
neighborhood N (x̄, k) of x̄ as the set of the feasible solutions of the MIP
satisfying the additional local branching constraint:

∆(x, x̄) :=
∑
j∈S

(1− xj) +
∑

j∈B\S

xj ≤ k, (2.53)

where the two terms in the left-hand side count the number of binary variables
flipping their value (with respect to x̄) either from 1 to 0 or from 0 to 1,
respectively. As its name suggests, the local branching constraint (2.53) can
be used as a branching criterion within an enumerative scheme for the MIP.
Indeed, given the incumbent solution x̄, the solution space associated with
the current branching node can be partitioned by means of the disjunction:

∆(x, x̄) ≤ k (left branch) or ∆(x, x̄) ≥ k + 1 (right branch), (2.54)

where the neighborhood-size parameter k is chosen so as to make the neigh-
borhood N (x̄, k) “sufficiently small” to be optimized within short computing
time, but still “large enough” to likely contain better solutions than x̄ (typi-
cally, k = 10 or k = 20).

In [25], we investigated the use of a general-purpose MIP solver as a black-
box “tactical” tool to explore effectively suitable solution subspaces defined
and controlled at a “strategic” level by a simple external branching frame-
work. The procedure is in the spirit of well-known local search metaheuris-
tics, but the neighborhoods are obtained through the introduction in the
MIP model of the local branching constraints (2.53). This allows one to work
within a perfectly general MIP framework, and to take advantage of the im-
pressive research and implementation effort that nowadays are devoted to the
design of MIP solvers. The new solution strategy is exact in nature, though
it is designed to improve the heuristic behavior of the MIP solver at hand. It
alternates high-level strategic branchings to define solution neighborhoods,
and low-level tactical branchings (performed within the MIP solver) to ex-
plore them. The result can then be viewed as a two-level branching strategy
aimed at favoring early updatings of the incumbent solution, hence producing
improved solutions at early stages of the computation. The computational re-
sults reported in [25] show the effectiveness of the LB approach. These have
also been confirmed by the recent works of Hansen et al. [38] (where LB is used
within a Variable Neighborhood Search metaheuristic [48]) and of Fischetti
et al. [29] (where MIPs with a special structure are investigated).

2 Just MIP it! 53

2.3.1.2 Feasibility Pump

Let P := {x ∈ Rn : Ax ≤ b} denote the polyhedron associated with the
LP relaxation of the given MIP, and assume without loss of generality that
system Ax ≤ b includes the variable bounds:

lj ≤ xj ≤ uj , ∀j ∈ I,

where lj = 0 and uj = 1 for all j ∈ B. With a little abuse of terminology, we
say that a point x is integer if xj ∈ Zn for all j ∈ I (no matter the value of
the other components). Analogously, the rounding x̃ of a given x is obtained
by setting x̃j := [xj] if j ∈ I and x̃j := xj otherwise, where [·] represents
scalar rounding to the nearest integer. The (L1-norm) distance between a
generic point x ∈ P and a given integer vector x̃ is defined as

Φ(x, x̃) =
∑
j∈I
|xj − x̃j |,

(notice that continuous variables xj , j 6∈ I, if any, are immaterial) and can
be modeled as:

Φ(x, x̃) :=
∑

j∈I:x̃j=lj

(xj − lj) +
∑

j∈I:x̃j=uj

(uj − xj) +
∑

j∈I:lj<x̃j<uj

(x+
j + x−j),

where the additional variables x+
j and x−j require the introduction into the

MIP model of the additional constraints:

xj = x̃j + x+
j − x

−
j , x+

j ≥ 0, x−j ≥ 0, ∀j ∈ I : lj < x̃j < uj . (2.55)

It follows that the closest point x∗ ∈ P to x̃ can easily be determined by
solving the LP:

min{Φ(x, x̃) : Ax ≤ b}. (2.56)

If Φ(x∗, x̃) = 0, then x∗j (= x̃j) is integer for all j ∈ I, so x∗ is a feasible MIP
solution. Conversely, given a point x∗ ∈ P , the integer point x̃ closest to x∗

is easily determined by just rounding x∗.
The FP heuristic works with a pair of points (x∗, x̃) with x∗ ∈ P and x̃

integer, that are iteratively updated with the aim of reducing as much as
possible their distance Φ(x∗, x̃). To be more specific, one starts with any
x∗ ∈ P , and initializes a (typically infeasible) integer x̃ as the rounding of
x∗. At each FP iteration, called a pumping cycle, x̃ is fixed and one finds
through linear programming the point x∗ ∈ P which is as close as possible
to x̃. If Φ(x∗, x̃) = 0, then x∗ is a MIP feasible solution, and the heuristic
stops. Otherwise, x̃ is replaced by the rounding of x∗ so as to further reduce
Φ(x∗, x̃), and the process is iterated.

The basic FP scheme above tends to stall and stop prematurely. This hap-
pens whenever Φ(x∗, x̃) > 0 is not reduced when replacing x̃ by the rounding

54 M. Fischetti, A. Lodi, and D. Salvagnin

of x∗, meaning that all the integer-constrained components of x̃ remained
unchanged in this iteration. In the original FP approach [24], this situation
is dealt with by heuristically choosing a few components x̃j to be modified,
even if this operation increases the current value of Φ(x∗, x̃). A different ap-
proach, to be elaborated in the next section, is to switch to a method based
on enumeration, in the attempt to explore a small neighborhood of the cur-
rent “almost feasible” x̃ (that typically has a very small distance Φ(x∗, x̃)
from P).

2.3.2 LB with Infeasible Reference Solutions

The basic idea of the method presented in this section is that the LB algorithm
does not necessarily need to start with a feasible solution—a partially feasible
one can be a valid warm start for the method. Indeed, by relaxing the model
in a suitable way, it is always possible to consider any infeasible solution, say
x̂, to be “feasible”, and penalize its cost so the LB heuristic can drive it to
feasibility.

The most natural way to implement this idea is to add a continuous arti-
ficial variable for each constraint violated by x̂, and then penalize the use of
such variables in the objective function by means of a very large cost M . We
tested this approach and found it performs reasonably well on most of the
problems. However, it has the drawback that finding a proper value for M
may not be easy in practice. Indeed, for a substantial set of problems in the
MIPLIB 2003 [2] collection, the value of the objective function is so large that
it is difficult to define a value for M that makes any infeasible solution worse
than any feasible one. Moreover, the way the LB method works suggests the
use of the following, more combinatorial, framework.

Let T be the set of the indices of the constraints aT
i x ≤ bi that are violated

by x̂. For each i ∈ T , we relax the original constraint aT
i x ≤ bi into aT

i x−σi ≤
bi, where σi ≥ 0 is a nonnegative continuous artificial variable, and add the
constraint:

σi ≤ δiyi, yi ∈ {0, 1}, (2.57)

where δi is a sufficiently large value, and yi is a binary artificial variable at-
taining value 1 for each violated constraint.6 Finally, we replace the original
objective function cTx by

∑
i∈T yi, so as to count the number of violated

constraints. It has to be noted that the set of binary variables in the relaxed
model is B ∪ Y, where Y := {yi : i ∈ T}, hence the structure of the re-
laxation turns out to be particularly suited for the LB approach, where the

6 Note that when the violated constraint is in equality form two nonnegative artificial
variables, σ+

i and σ−
i , are added with opposite signs and the corresponding constraint

(2.57) becomes σ+
i + σ−

i ≤ δiyi.

2 Just MIP it! 55

local branching constraint affects precisely the binary variables (including the
artificial ones).

An obvious drawback of the method above is that the original objective
function is completely disregarded, thus the feasible solution obtained can
be arbitrarily bad. A way of avoiding this situation could be to put a term
in the artificial objective function that takes the original costs into account.
However, a proper balancing of the two contributions (original cost and in-
feasibility penalty) may not be easy to achieve although promising results in
this direction have been reported very recently by Achterberg and Berthold
[1]. As a matter of fact, the outcome of a preliminary computational study is
that a better overall performance is obtained by using the artificial objective
function (alone) until feasibility is reached, and then improving the quality
of this solution by using a standard LB or RINS approach. This can be done
by recovering the original objective function and simply using the computed
feasible solution in the usual LB way. In other words, the overall algorithm
remains in principle exact (see [25] for details) and the proposed scheme is
used to provide an initial solution.

2.3.3 Computational Results

In this section, we report on computational results comparing the proposed
method with both the FP heuristic and the commercial software ILOG-Cplex
9.0.3. In our experiments, we used the “asymmetric” version of the local
branching constraint (2.53), namely:

∆(x, x̄) :=
∑
j∈S

(1− xj). (2.58)

Indeed, as discussed in [25], this version of the constraint seems to be par-
ticularly suited for set covering problems where LB aims at finding solutions
with a small binary support—which is precisely the case of interest in our
context.

Our testbed is made up of 33 among the 45 0-1 MIP instances from MIP-
LIB 2003 [2] and described in Table 2.3, plus an additional set of 39 hard
0-1 MIPs described in Table 2.4. (The 0-1 MIPLIB instance stp3d was not
considered since the computing time required for the first LP relaxation
is larger than one hour, while 11 instances, namely fixnet6, markshare1,
markshare2, mas74, mas76, modglob, pk1, pp08a, pp08aCUTS, set1ch and
vpm2 have been removed because all tested algorithms found a feasible solu-
tion within 0.0 CPU seconds.) The two tables report the name, total number
of variables (n), number of 0-1 variables (|B|), and number of constraints (m)
for each instance.

56 M. Fischetti, A. Lodi, and D. Salvagnin

Table 2.3 Set of 33 among the 45 0-1 MIP instances collected in MIPLIB 2003 [2].

Name n |B| m Name n |B| m
10teams 2025 1800 230 mod011 10958 96 4480

A1C1S1 3648 192 3312 momentum1 5174 2349 42680
aflow30a 842 421 479 net12 14115 1603 14021

aflow40b 2728 1364 1442 nsrand ipx 6621 6620 735

air04 8904 8904 823 nw04 87482 87482 36
air05 7195 7195 426 opt1217 769 768 64

cap6000 6000 6000 2176 p2756 2756 2756 755
dano3mip 13873 552 3202 protfold 1835 1835 2112
danoint 521 56 664 qiu 840 48 1192

ds 67732 67732 656 rd-rplusc-21 622 457 125899
fast0507 63009 63009 507 seymour 1372 1372 4944
fiber 1298 1254 363 sp97ar 14101 14101 1761

glass4 322 302 396 swath 6805 6724 884
harp2 2993 2993 112 t1717 73885 73885 551
liu 1156 1089 2178 tr12-30 1080 360 750

misc07 260 259 212 van 12481 192 27331
mkc 5325 5323 3411

Table 2.4 The additional set of 39 0-1 MIP instances.

Name n |B| msource Name n |B| msource
biella1 7328 61101203 [25] blp-ar98 1602115806 1128 [43]
NSR8K 38356320406284 [25] blp-ic97 9845 9753 923 [43]

dc1c 10039 83801649 [21] blp-ic98 1364013550 717 [43]
dc1l 37297356381653 [21] blp-ir98 6097 6031 486 [43]
dolom1 11612 97201803 [21] CMS750 4 11697 719616381 [42]

siena1 13741117752220 [21] berlin 5 8 0 1083 794 1532 [42]
trento1 7687 64151265 [21] railway 8 1 0 1796 1177 2527 [42]
rail507 6301963009 509 [25] usAbbrv.8.25 70 2312 1681 3291 [42]

rail2536c 15293152842539 [25] manpower1 105651056425199 [53]
rail2586c 13226132152589 [25] manpower2 100091000823881 [53]
rail4284c 21714217054284 [25] manpower3 100091000823915 [53]

rail4872c 24656246454875 [25] manpower3a 100091000823865 [53]
A2C1S1 3648 1923312 [25] manpower4 100091000823914 [53]

B1C1S1 3872 2883904 [25] manpower4a 100091000823866 [53]

B2C1S1 3872 2883904 [25] ljb2 771 681 1482 [18]
sp97ic 12497124971033 [25] ljb7 4163 3920 8133 [18]

sp98ar 15085150851435 [25] ljb9 4721 4460 9231 [18]
sp98ic 1089410894 825 [25] ljb10 5496 519610742 [18]
bg512142 792 2401307 [47] ljb12 4913 4633 9596 [18]

dg012142 2080 6406310 [47]

The framework described in the previous section has been tested by using
different starting solutions x̂ provided by FP. In particular, we wanted to test
the sensitivity of our modified LB algorithm with respect to the degree of
infeasibility of the starting solution, as well as its capability for improving it.
Thus, we executed the FP code for 0, 10 and 100 iterations and passed to LB
the integer (infeasible) solution x̂ with minimum distance Φ(x∗, x̂) from P .
(The case with 0 iterations actually corresponds to starting from the solution

2 Just MIP it! 57

of the continuous relaxation, rounded to the nearest integer.) The resulting
three versions of the modified LB are called LB0, LB10, and LB100, respectively.

In our experiments, we avoided any parameter tuning; FP was implemented
exactly as in [24], and for the modified LB code we used a time limit of 30
CPU seconds for the exploration of each local branching neighborhood. As
to the value of the neighborhood-size parameter k in LB, we implemented
an adaptive procedure: at each neighborhood exploration, we try to reduce
the number of violated constraints in the current solution by half, i.e., we
set k = b|T ′|/2c, where |T ′| is the value of the current solution. (Since the
support of the solution also takes into account non-artificial binary variables,
when the number of violated constraints becomes less than 20 we fix k = 10,
i.e., we use the value suggested in [25] for the asymmetric version of the local
branching constraint.) The motivation for this choice is that the number of
violated constraints in an initial solution can be extremely large, in which
case the use of a small value of k would result in a very slow convergence. A
possible drawback is that, in some cases, some of the neighborhoods in the LB
sequence can contain no feasible solutions (with respect to the original model)
because we do not allow enough artificial variables y to change. The approach
can therefore appear counterintuitive, but the idea is that of reducing the
neighborhood size iteratively so as to eventually converge.

All codes are written in ANSI C and use the ILOG-Cplex callable libraries.
The three modified LB codes (LB0, LB10, and LB100) are compared with FP
and ILOG-Cplex 9.0.3 in Table 2.5 for the MIPLIB 2003 instances, and in
Table 2.6 for the additional set of instances. Computing times are expressed
in CPU seconds, and refer to a Pentium M 1.6 GHz notebook with 512 MByte
of main memory. A time limit of 1,800 CPU seconds was provided for each
instance with each algorithm and the computation was halted as soon as a
first feasible solution was found.

For each instance, we report in both tables: for ILOG-Cplex, the number
of nodes (nodes) needed to find an initial solution and the corresponding
computing time (time); for FP, the number of iterations (FPit) and its com-
puting time (time); for each of the three variants of LB, the computing time
spent in the FP preprocessing phase (FP time), the initial number of violated
constraints (|T |), the number of LB iterations (LBit), and the overall com-
puting time (time). Note that we define an LB iteration as the exploration,
generally within a time limit, of the neighborhood of the current solution.
Moreover, the time reported is the sum of the time of the FP initialization
plus the LB time, thus it can be larger than 1,800 CPU seconds. When one
of the algorithms was not able to find a feasible solution in the given time
limit, we wrote (*) in column “nodes” (for ILOG-Cplex) or “FPit” (for FP),
or wrote (µ) in column “|T |” near the number of initial infeasible constraints
(for LB), where µ is the number of violated constraints in the final solution.

As expected, the degree of infeasibility of the starting solution plays an
important role in the LB methods—the better the initial solution, the faster
the method. In this view, the FP approach seems to fit particularly well in

58 M. Fischetti, A. Lodi, and D. Salvagnin

T
a
b
le

2
.5

C
o
n
v
er

g
en

ce
to

a
fi
rs

t
fe

a
si

b
le

so
lu

ti
o
n

o
n

th
e

M
IP

L
IB

2
0
0
3

in
st

a
n
ce

s.

I
L
O
G
-
C
p
l
e
x

9
.0

.3
F
P

L
B
0

L
B
1
0

L
B
1
0
0

n
a
m

e
n
o
d
es

ti
m

e
F
P
it

ti
m

e
F
P
ti
m

e
|T
|
L
B
it

ti
m

e
F
P
ti
m

e
|T
|
L
B
it

ti
m

e
F
P
ti
m

e
|T
|
L
B
it

ti
m

e

1
0
te

a
m

s
3
3
5

8
.4

7
0

1
1
.7

0
.1

7
5

2
9

6
6
7
.7

1
.1

1
8

1
1

1
7
7
.4

1
1
.7

–
–

1
1
.7

A
1
C

1
S
1

1
5
0

4
.1

8
3
.8

0
.1

6
3

5
0
.8

3
.8

–
–

3
.8

3
.8

–
–

3
.8

a
fl
o
w

3
0
a

0
0
.1

1
8

0
.1

0
.0

2
9

4
3
.0

0
.1

2
9

4
0
.3

0
.1

–
–

0
.1

a
fl
o
w

4
0
b

3
7
0

5
.9

6
0
.3

0
.1

4
0

5
5
7
.6

0
.3

–
–

0
.3

0
.3

–
–

0
.3

a
ir

0
4

4
0

8
.6

6
7
4
.7

3
.4

1
2
5

2
4

6
7
1
.8

7
4
.7

–
–

7
4
.7

7
4
.7

–
–

7
4
.7

a
ir

0
5

7
0

3
.4

2
5

8
3
.8

0
.8

2
0
8

1
2

1
3
5
.0

2
2
.8

1
4

3
2
5
.0

8
3
.8

–
–

8
3
.8

ca
p
6
0
0
0

0
0
.2

2
0
.2

0
.1

1
1

0
.2

0
.2

–
–

0
.2

0
.2

–
–

0
.2

d
a
n
o
3
m

ip
0

6
7
.7

2
8
6
.3

6
5
.0

9
4
6

(1
0
5
)

3
1

1
,8

6
5
.0

8
6
.3

–
–

8
6
.3

8
6
.3

–
–

8
6
.3

d
a
n
o
in

t
4
0

1
.7

2
3

1
.5

0
.1

1
2
5

6
1
6
.9

0
.6

1
2
0

5
3
.7

1
.5

–
–

1
.5

d
s

0
5
5
.0

1
3
3

(*
)

1
,8

0
0
.0

5
4
.5

6
5
6

1
6

5
8
2
.8

2
2
9
.9

3
5
0

8
3
0
2
.1

1
,3

5
8
.6

1
3
3

6
1
,3

8
5
.0

fa
st

0
5
0
7

0
3
9
.0

3
4
6
.7

4
3
.4

1
4
8

1
4
5
.8

4
6
.7

–
–

4
6
.7

4
6
.7

–
–

4
6
.7

fi
b
er

0
0
.1

2
0
.0

0
.0

4
1

5
0
.5

0
.0

–
–

0
.0

0
.0

–
–

0
.0

g
la

ss
4

5
3
8
9

1
.6

1
2
4

0
.3

0
.0

5
2

5
0
.9

0
.0

4
5

4
0
.1

0
.2

4
5

4
0
.3

h
a
rp

2
0

0
.0

6
5
4

5
.0

0
.0

9
3

0
.9

0
.1

6
1

0
.1

0
.8

6
1

0
.8

li
u

0
0
.1

0
0
.1

0
.1

–
–

0
.1

0
.1

–
–

0
.1

0
.1

–
–

0
.1

m
is

c0
7

6
7

0
.2

7
8

0
.4

0
.0

1
3
5

7
1
.7

0
.1

8
1

6
0
.6

0
.4

–
–

0
.4

m
k
c

0
0
.2

2
0
.2

0
.1

9
3

2
.2

0
.2

–
–

0
.2

0
.2

–
–

0
.2

m
o
d
0
1
1

0
0
.2

0
0
.1

0
.1

–
–

0
.1

0
.1

–
–

0
.1

0
.1

–
–

0
.1

m
o
m

en
tu

m
1

3
1
4

(*
)

1
,8

0
0
.0

5
0
2

1
,3

2
9
.6

1
.8

6
9
7

(1
0
6
)

1
8

1
,8

0
1
.8

4
2
.6

8
9
5

(1
5
)

5
8

1
,8

4
2
.6

1
7
8
.8

8
9
5

(1
5
)

5
8

1
,9

7
8
.8

n
et

1
2

2
0
3

(*
)

1
,8

0
0
.0

1
5
0
7

2
2
5
.0

1
.8

4
0
6

1
4

2
4
6
.2

1
2
.9

2
3
9

7
1
6
.8

2
1
.8

2
3
9

7
2
5
.5

n
sr

a
n
d

ip
x

0
0
.5

4
0
.9

1
1
.3

3
9
0

8
1
4
.1

0
.9

–
–

0
.9

0
.9

–
–

0
.9

n
w

0
4

0
4
.9

1
4
.6

0
.3

6
2

6
.8

4
.6

–
–

4
.6

4
.6

–
–

4
.6

o
p
t1

2
1
7

1
1
7

0
.1

0
0
.0

0
.0

–
–

0
.0

0
.0

–
–

0
.0

0
.0

–
–

0
.0

p
2
7
5
6

0
0
.1

1
5
0
0
2
3

(*
)

1
,8

0
0
.0

0
.0

4
1

6
0
.8

0
.1

1
9

1
0
.2

1
.2

1
9

1
1
.3

p
ro

tf
o
ld

1
9
0

6
4
0
.9

3
6
7

5
0
2
.0

2
.7

3
7

(3
7
)

7
1
,8

0
2
.7

1
6
.1

1
3

(1
)

5
0

1
,8

1
6
.1

1
2
5
.6

7
(1

)
5
5

1
,9

2
5
.6

q
iu

0
0
.2

5
0
.3

0
.1

1
3
2

1
0
.2

0
.3

–
–

0
.3

0
.3

–
–

0
.3

rd
-r

p
lu

sc
-2

1
1
0
9
7
8
(*

)
1
,8

0
0
.0

4
0
1

(*
)

1
,8

0
0
.0

3
.9

1
1
9
0
2
1

(7
0
9
4
)

2
3

1
,8

0
3
.9

3
6
.8

1
1
9
0
1
7

(1
)

7
1

1
,8

3
6
.8

4
4
9
.5

1
1
9
0
1
7

(2
)

7
5

2
,2

4
9
.5

se
y
m

o
u
r

0
3
.5

7
3
.6

3
.0

9
2
1

1
3
.8

3
.6

–
–

3
.6

3
.6

–
–

3
.6

sp
9
7
a
r

0
3
.4

4
4
.2

2
.9

2
2
2

1
3
.8

4
.2

–
–

4
.2

4
.2

–
–

4
.2

sw
a
th

0
0
.2

4
9

2
.9

0
.1

2
0

6
1
2
4
.6

1
.0

2
0

6
7
0
.8

2
.9

–
–

2
.9

t1
7
1
7

7
1
0

3
0
1
.0

4
0

8
1
4
.8

1
0
.7

4
4
5

(5
0
)

2
5

1
,8

1
0
.7

1
3
3
.2

1
0
8

(5
)

3
5

1
,9

3
3
.2

8
1
4
.8

–
–

8
1
4
.8

tr
1
2
-3

0
1
7
9

0
.9

8
0
.1

0
.0

3
4
8

8
0
.6

0
.1

–
–

0
.1

0
.1

–
–

0
.1

v
a
n

0
8
7
2
.8

1
0

3
0
0
.5

2
7
.4

1
9
2

(1
2
8
)

9
1
,8

2
7
.4

3
0
0
.5

–
–

3
0
0
.5

3
0
0
.5

–
–

3
0
0
.5

2 Just MIP it! 59

T
a
b
le

2
.6

C
o
n
v
er

g
en

ce
to

a
fi
rs

t
fe

a
si

b
le

so
lu

ti
o
n

o
n

th
e

a
d
d
it
io

n
a
l
se

t
o
f
0
-1

M
IP

in
st

a
n
ce

s.

I
L
O
G
-
C
p
l
e
x

9
.0

.3
F
P

L
B
0

L
B
1
0

L
B
1
0
0

n
a
m

e
n
o
d
es

ti
m

e
F
P
it

ti
m

e
F
P
ti
m

e
|T
|
L
B
it

ti
m

e
F
P
ti
m

e
|T
|
L
B
it

ti
m

e
F
P
ti
m

e
|T
|
L
B
it

ti
m

e

b
ie

ll
a
1

5
9
4

1
0
8
.4

4
2
.8

2
.3

1
1
9
3

9
1
8
.2

2
.8

–
–

2
.8

2
.8

–
–

2
.8

N
S
R

8
K

5
(*

)
1
,8

0
0
.0

3
1
9
5
.5

1
8
5
.8

5
4
8
8

(5
4
8
8
)

1
1
,9

8
5
.8

1
9
5
.5

–
–

1
9
5
.5

1
9
5
.5

–
–

1
9
5
.5

d
c1

c
4
7
4
9

4
7
4
.0

2
1
2
.7

1
1
.6

1
4
8
3

1
1

8
1
.6

1
2
.7

–
–

1
2
.7

1
2
.7

–
–

1
2
.7

d
c1

l
0

8
0
.8

2
1
6
.2

1
4
.0

1
5
6
7

1
1
4
.8

1
6
.2

–
–

1
6
.2

1
6
.2

–
–

1
6
.2

d
o
lo

m
1

3
6
7

5
0
4
.4

2
2

2
2
.6

1
1
.9

1
4
1
0

1
2

2
7
7
.1

1
7
.7

6
3
2

8
4
9
.4

2
2
.6

–
–

2
2
.6

si
en

a
1

6
0
0

1
,3

7
1
.5

3
4
3
.7

4
0
.6

1
7
5
0

1
2

2
7
1
.2

4
3
.7

–
–

4
3
.7

4
3
.7

–
–

4
3
.7

tr
en

to
1

3
4
0

2
7
6
.8

7
1
1
.0

9
.3

6
0
3

8
2
2
.6

1
1
.0

–
–

1
1
.0

1
1
.0

–
–

1
1
.0

ra
il
5
0
7

0
3
2
.8

2
8
.7

6
.5

2
1
8

1
7
.4

8
.7

–
–

8
.7

8
.7

–
–

8
.7

ra
il
2
5
3
6
c

0
1
6
.8

1
1
5
.2

1
4
.3

2
0
0
8

1
1
4
.9

1
5
.2

–
–

1
5
.2

1
5
.2

–
–

1
5
.2

ra
il
2
5
8
6
c

0
6
3
.9

1
8
.3

7
.6

1
8
7
1

1
7
.9

8
.3

–
–

8
.3

8
.3

–
–

8
.3

ra
il
4
2
8
4
c

0
2
0
4
.9

2
5
6
.7

5
3
.5

3
3
0
5

1
5
4
.2

5
6
.7

–
–

5
6
.7

5
6
.7

–
–

5
6
.7

ra
il
4
8
7
2
c

0
1
8
6
.4

2
1
9
.3

1
7
.5

3
2
5
4

1
1
8
.3

1
9
.3

–
–

1
9
.3

1
9
.3

–
–

1
9
.3

A
2
C

1
S
1

0
0
.1

5
4
.7

0
.1

6
0

1
0
.2

4
.7

–
–

4
.7

4
.7

–
–

4
.7

B
1
C

1
S
1

0
0
.1

6
5
.0

0
.1

2
0
8

1
0
.2

5
.0

–
–

5
.0

5
.0

–
–

5
.0

B
2
C

1
S
1

0
0
.1

7
4
.7

0
.1

2
1
7

1
0
.3

4
.7

–
–

4
.7

4
.7

–
–

4
.7

sp
9
7
ic

0
2
.4

3
3
.1

1
.7

1
7
3

1
2
.4

3
.1

–
–

3
.1

3
.1

–
–

3
.1

sp
9
8
a
r

0
3
.8

3
5
.2

3
.5

2
6
0

7
2
3
.6

5
.2

–
–

5
.2

5
.2

–
–

5
.2

sp
9
8
ic

0
2
.1

2
2
.6

1
.8

1
4
7

6
6
.0

2
.6

–
–

2
.6

2
.6

–
–

2
.6

b
lp

-a
r9

8
8
3
0
0

1
5
8
.3

8
3
5

1
2
2
.9

0
.5

2
1
2

8
3
1
.7

2
.5

2
0
4

7
1
6
.4

1
5
.7

2
0
5

7
2
5
.9

b
lp

-i
c9

7
1
1
2
0

1
6
.2

8
1
.3

0
.3

5
9

5
5
.5

1
.3

–
–

1
.3

1
.3

–
–

1
.3

b
lp

-i
c9

8
1
5
7
0

3
3
.6

3
1
.5

0
.9

7
6

5
5
.0

1
.5

–
–

1
.5

1
.5

–
–

1
.5

b
lp

-i
r9

8
1
2
3
0

8
.1

4
0
.4

0
.1

3
7

4
1
.3

0
.4

–
–

0
.4

0
.4

–
–

0
.4

C
M

S
7
5
0

4
9
4
0

2
7
.2

1
6

6
.5

0
.7

2
4
4
6

1
9
.2

3
.3

2
4
4
1

1
1
1
.7

6
.5

–
–

6
.5

b
er

li
n

5
8

0
1
5
2

0
.4

1
3

0
.2

0
.0

1
7
0

2
0

2
7
5
.4

0
.1

1
6
7

1
0
.2

0
.2

–
–

0
.2

ra
il
w

a
y

8
1

0
3
5
0

1
.3

1
2

0
.3

0
.1

3
7
4

1
7

3
5
8
.4

0
.2

3
7
3

1
0
.5

0
.3

–
–

0
.3

u
sA

b
b
rv

.8
.2

5
7
0

2
7
4
5
8
1

1
,3

7
1
.5

3
1

0
.7

0
.1

4
0
0

1
0
.6

0
.3

3
7
6

1
0
.8

0
.7

–
–

0
.7

b
g
5
1
2
1
4
2

0
0
.3

0
0
.2

0
.2

–
–

0
.2

0
.2

–
–

0
.2

0
.2

–
–

0
.2

d
g
0
1
2
1
4
2

0
1
.0

0
0
.8

0
.8

–
–

0
.8

0
.8

–
–

0
.8

0
.8

–
–

0
.8

m
a
n
p
o
w

er
1

1
5
4

(*
)

1
,8

0
0
.0

3
0

1
8
.8

8
.4

1
1
4
2

1
5

1
0
8
.7

1
3
.4

3
3
6

9
5
2
.0

1
8
.8

–
–

1
8
.8

m
a
n
p
o
w

er
2

1
5
0

3
6
4
.6

9
2

1
3
7
.5

3
9
.5

1
1
8
1

3
0

7
7
4
.2

7
3
.6

3
0
9

1
3

3
9
4
.8

1
3
7
.5

–
–

1
3
7
.5

m
a
n
p
o
w

er
3

1
8
1

3
2
6
.9

4
2

7
6
.2

2
7
.1

1
1
6
0

2
3

5
3
4
.7

5
5
.5

4
2
7

1
7

3
6
3
.3

7
6
.2

–
–

7
6
.2

m
a
n
p
o
w

er
3
a

1
8
1

9
2
5
.1

2
9
3

2
9
4
.1

3
0
.6

1
3
2
7

(7
)

5
7

1
,8

3
0
.6

5
3
.3

3
6
9

1
8

4
9
1
.2

1
1
4
.8

9
2

3
7
2
.1

m
a
n
p
o
w

er
4

1
8
5

6
7
1
.0

2
0
8

1
3
8
.9

1
4
.3

1
1
0
5

3
4

1
,0

1
0
.8

4
1
.8

6
0
4

1
9

4
2
7
.7

8
0
.5

4
0

8
3
8
3
.8

m
a
n
p
o
w

er
4
a

1
9
4

1
,0

3
9
.9

3
0
8

2
8
9
.2

3
6
.4

1
2
2
6

3
7

8
1
4
.8

6
9
.1

4
8
3

1
8

4
4
0
.0

1
5
9
.3

7
4

2
0
6
.2

lj
b
2

3
0

0
.2

0
0
.0

0
.0

–
–

0
.0

0
.0

–
–

0
.0

0
.0

–
–

0
.0

lj
b
7

1
0
0

3
.8

0
0
.6

0
.6

–
–

0
.6

0
.6

–
–

0
.6

0
.6

–
–

0
.6

lj
b
9

1
8
0

7
.0

0
0
.8

0
.8

–
–

0
.8

0
.8

–
–

0
.8

0
.8

–
–

0
.8

lj
b
1
0

9
0

5
.9

0
1
.1

1
.1

–
–

1
.1

1
.1

–
–

1
.1

1
.1

–
–

1
.1

lj
b
1
2

1
1
0

5
.8

0
0
.7

0
.7

–
–

0
.7

0
.7

–
–

0
.7

0
.7

–
–

0
.7

60 M. Fischetti, A. Lodi, and D. Salvagnin

our context, in that it is able to provide very good solutions (as far as the
degree of infeasibility is concerned) in very short computing times. Among the
three LB implementations, LB0 failed eight times in finding a feasible solution
within the time limit, LB10 four times, and LB0 only three times. Among the
64 instances for which the three LB implementations found a feasible solution
within the time limit, LB0 was at least as fast as the other two in 26 cases,
LB10 in 34 cases, and LB100 in 42 cases. Overall, LB100 qualifies as the most
effective (and stable) of the three methods.

A comparison between ILOG-Cplex and LB100 shows that:

1. ILOG-Cplex was not able to find any feasible solution (within the 1,800
second time limit) in five cases, whereas LB100 was unsuccessful three times;

2. among the 66 instances for which both algorithms found a feasible solution
within the time limit, ILOG-Cplex was strictly faster in 21 cases, while the
opposite holds in 41 cases;

3. among the same 66 instances, the average computing time for finding a
feasible solution for ILOG-Cplex was 146.7 CPU seconds, while for LB100

it was 65.0 CPU seconds.

As expected, the quality of the initial ILOG-Cplex solution (not reported
in the tables) is typically better than that provided by the LB methods. More
precisely, the geometric mean of the ratio between the solution found by
an algorithm and best solution is 2.28, 2.22, 2.11 and 1.13 for the three LB
implementations and ILOG-Cplex, respectively. As noted in Section 2.3.2,
however, the first solution can be easily improved by standard use of the LB
algorithm. As an example, on instance dc1c the ratio of the solution obtained
by algorithm LB0 with respect to the first solution computed by ILOG-Cplex
is 12.16. However, the ratio reduces significantly by applying LB, and becomes
4.83, 2.74, and 1.02 in the first three iterations, respectively, and reaches value
0.77 (i.e., the ILOG-Cplex solution is eventually improved) in the fourth one.
Those four iterations take 138.1 CPU seconds, plus 81.6 seconds to find the
first solution, thus the overall computing time of 219.7 CPU seconds is less
than a half of the time spent by ILOG-Cplex to find its first solution, namely
474.0 CPU seconds.

This very satisfactory behavior is unfortunately not confirmed on other
instances, though local search heuristics such as LB or RINS [18] generally
improve the first solution considerably. On the other hand, an effective ex-
ploitation of a first feasible solution within an enumerative algorithm is by
itself a relevant (and difficult) research topic, that recently started to receive
considerable attention in the field.

2 Just MIP it! 61

2.4 MIPping the Dominance Test

In the standard B&B (or B&C) framework, a node is fathomed in two situ-
ations:

1. the LP relaxation of the node is infeasible;
2. the LP relaxation optimum is not better than the value of the incumbent

optimal solution.

There is, however, a third way of pruning a node, by using dominances.
According to [51], a dominance relation is defined as follows: if we can show
that the best descendant of a node β is at least as good as the best descendant
of a node α, then we say that node β dominates node α, meaning that
the latter can be fathomed (in case of ties, an appropriate rule has to be
taken into account in order to avoid fathoming cycles). Unfortunately, this
definition may become useless in the context of general MIPs, where we do
not actually know how to perform the dominance test without storing huge
amounts of information for all the previously-generated nodes — which is
often impractical.

Fischetti and Toth [30] proposed a different (and more “local”) dominance
procedure which overcomes many of the drawbacks of the classical definition,
and resembles somehow the isomorphic-pruning introduced recently by Mar-
got [45]. Here is how the procedure works.

Let the MIP problem at hand denoted as:

min{cTx : x ∈ Rn
+, Ax ≤ b, xj integer for all j ∈ J}, (2.59)

where J ⊆ I := {1, · · · , n} is the index-set of the integer variables. For any
J ′ ⊆ J and for any x′ ∈ Rn

+, we denote as:

c(J ′, x′) :=
∑
j∈J′

cjx
′
j ,

the contribution of the variables in J ′ to the overall cost cTx′. Now, let us
suppose to solve problem (2.59) by an enumerative (B&B or B&C) algorithm
whose branching rule fixes some of the integer-constrained variables to some
values. For every node k of the search tree, let Jk ⊆ J denote the set of
indices of the variables xj fixed to a certain value xk

j (say). Every solution
x such that xj = xk

j for all j ∈ Jk (i.e., belonging to the subtree rooted at
node k) is called a completion of the partial solution associated at node k.

Definition 1. Let α and β be two nodes of the search tree. Node β dominates
node α if:

1. Jβ = Jα;
2. c(Jβ , xβ) ≤ c(Jα, xα), i.e., the cost of the partial solution at node β is not

worse than that at node α;

62 M. Fischetti, A. Lodi, and D. Salvagnin

3. every completion of the partial solution associated with node α is also a
completion of the partial solution associated with node β.

Clearly, according to the classical dominance theory, the existence of a node β
unfathomed that dominates node α is a sufficient condition to fathom node
α. A key question at this point is: Given the current node α, how can we
check the existence of a dominating node β? Fischetti and Toth answered
this question by modeling the search of dominating nodes as a structured
optimization problem, to be solved exactly or heuristically. For generic MIP
models, this leads to the following auxiliary problem:

XPα : min
∑

j∈Jα cjxj

s.t.
∑

j∈Jα Ajxj ≤ bα :=
∑

j∈Jα Ajx
α
j

xj integer for all j ∈ Jα

(2.60)

If a solution xβ (say) of the auxiliary problem having a cost strictly smaller
than c(Jα, xα) is found, then it defines a dominating node β and the current
node α can be fathomed.

It is worth noting that the auxiliary problem is of the same nature as
the original MIP problem, but with a smaller size and thus it is often easily
solved (possibly in a heuristic way) by a general-purpose MIP solver, so we
are indeed “MIPping the dominance test”.

The Fischetti-Toth dominance procedure, called Local Dominance (LD)
procedure in the sequel to stress its local nature, has several useful properties:

• there is no need to store any information about the set of previously gen-
erated nodes;

• there is no need to make any time-consuming comparison of the current
node with other nodes;

• a node can be fathomed even if the corresponding dominating one has not
been generated yet;

• the correctness of the enumerative algorithm does not depend on the
branching rule; this is a valuable property since it imposes no constraints
on the B&B parameters (though an unappropriate branching strategy
could prevent several dominated nodes to be fathomed).

In addition, the LD test needs not be applied at every node. This is a crucial
property from the practical point of view, as the dominance test introduces
some overhead and it would make the algorithm uncompetitive if applied at
every node. Note that skipping a LD test at a given node is not likely to
induce a great pruning loss, since the following inheritance property holds
(see [54] for the proof):

Proposition 1. Let α and β be two nodes of the search tree and let β domi-
nate α. Then for every α′ successor of α there exists a node β′ such that β′

dominates α′.

2 Just MIP it! 63

As a consequence, if β dominates α and α is not fathomed because the corre-
sponding dominance test was skipped, we still have the possibility to prune
some descendant nodes of α.

An important issue to be addressed when implementing the LD test is
to avoid fathoming cycles arising when the auxiliary problem actually has
a solution xβ different from xα but of the same cost, in which case one
is allowed to fathom node α only if a tie-break rule is used to guarantee
that node β itself is not fathomed for the same reason. In order to prevent
these “tautological” fathoming cycles the following criterion (among others)
has been proposed in [30]: In case of cost equivalence, define as unfathomed
the node β corresponding to the solution found by a deterministic7 exact
or heuristic algorithm used to solve the auxiliary problem. Unfortunately,
this criterion can be misleading for two important reasons. First of all, it is
not easy to define a “deterministic” algorithm for MIP. In fact, besides the
possible effects of randomized steps, the output of the MIP solver typically
depends, e.g., on the order in which the variables are listed on input, that can
affect the choice of the branching variables as well as the internal heuristics.

In view of the considerations above, in our implementation we used a
different tie-break rule, also described in [30], that consists in ranking cost-
equivalent solutions in lexicographical order. To be more specific, in case of
cost ties we fathom node α if and only if the partial solution xβ associated
with the dominating node β is lexicographically smaller8 than xα. Using
this tie-breaking rule, it is easy to prove [54] the correctness of the overall
enumerative method.

2.4.1 Borrowing Nogoods from Constraint
Programming

The computational overhead related to the LD test can be reduced consid-
erably if we exploit the notion of nogoods taken from Constraint Program-
ming. A nogood is a partial assignment of the problem variables such that
every completion is either infeasible (for constraint satisfaction problems) or
nonoptimal (for constraint optimization problems). The key observation here
is that whenever we discover (through the solution of the auxiliary problem)
that the current node α is dominated, we have indeed found a nogood con-
figuration [Jα, xα] that we want to exclude from being re-analyzed at a later
time.

There are two possible ways of exploiting nogoods in the context of MIP
solvers:

7 In our context, an algorithm is said to be deterministic if it always provides the same

output solution for the same input set.
8 We use the standard definition of lexicographic order on vectors of fixed size over a totally

ordered set.

64 M. Fischetti, A. Lodi, and D. Salvagnin

• Generate a constraint αTx ≤ α0 cutting the nogood configuration off, so
as to prevent it appears again in a later fractional solution. This is always
possible (for both binary and general-integer linear problems) through a
local branching constraint [25], and leads to the so-called combinatorial
Benders cuts studied by Codato and Fischetti [14].

• Maintain explicitly a pool of previously found nogood configurations and
solve the following problem (akin to separation) at each node α to be
tested: Find, if any, a nogood configuration [J ′, x′] stored in the pool, such
that J ′ ⊆ Jα and x′j = xα

j for all j ∈ J ′. If the test is successful, we can
of course fathom node α without the need of constructing and solving the
auxiliary problem XPα.

In our implementation we use the nogood-pool option, that according to
our computational experience outperforms the cut options. It is worth noting
that we are interested in minimal (with respect to set inclusion) nogoods, so
as to improve both for efficiency and effectiveness of the method. Indeed, if
node β dominates node α and J ′ := {j ∈ Jα : xα

j 6= xβ
j }, then clearly the

restriction of xβ onto J ′ dominates the restriction of xα onto J ′. If applied
at every node, our procedure guarantees automatically the minimality of the
nogood configurations found. If this is not the case, instead, minimality is no
longer guaranteed, and is enforced by a simple post-processing step before
storing any new nogood in the pool.

2.4.2 Improving the Auxiliary Problem

The effectiveness of the LD test presented in the previous section heavily
depends on the auxiliary problem that is constructed at a given node α. In
particular, it is crucial for its solution set to be as large as possible, so as to
increase the chances of finding a dominating partial solution. Moreover, we
aim at finding a partial solution different from (and hopefully lexicographi-
cally better than) the one associated with the current node; finding the same
solution xα is of no use within the LD context. For these reasons, several im-
provements of the original auxiliary-problem formulation have been proposed
in [54], as outlined below.

The auxiliary problem XPα constructed at node α is always feasible, as
the partial assignment xα corresponding to node α itself is always feasible.
This is not a desired behavior, for two main reasons:

• Often xα turns out to be the only feasible solution to XPα—for our pur-
poses, it would be better to consider it as infeasible, meaning that the
node cannot be fathomed by our procedure.

• When solving the auxiliary problem, the solver often finds solution xα

(even if it is not provided explicitly on input for initializing the incum-

2 Just MIP it! 65

bent) and proves its optimality without looking for alternative (hopefully
lexicographically better) optimal solutions.

Moreover, as the depth of the nodes in the B&B increases, the auxiliary
problem grows in size and becomes heavier to solve. In addition, the resulting
nogood (if any) may be of little applicability in the remaining part of the
search because it may involve too many variables.

For these reasons one can heuristically limit the search space of the aux-
iliary problem to alternative assignments that are not too far from the cur-
rent one, but different from it. This can be achieved again with two local
branching [25] constraints, which however, in the most general case, could
need the introduction of complicating auxiliary variables. According to our
computational experience, a good compromise is to consider local branching
constraints involving only the (binary or general integer) variables fixed to
their lower or upper bound, namely:∑

j∈U

(uj − xj) +
∑
j∈L

(xj − lj) ≤ k, (2.61)

∑
j∈U

(uj − xj) +
∑
j∈L

(xj − lj) ≥ 1, (2.62)

where

U = {j ∈ Jα | xα
j = uj} and L = {j ∈ Jα | xα

j = lj}.

It is worth noting that the above constraint may exclude some feasible
solutions that differ from xα with respect to variables fixed to values different
from a lower or upper bound. In this case, our fathoming test can become
less powerful, but the overall method remains correct. Finally, we found it
useful to add the following optimality constraint∑

j∈Jα

cjxj ≤
∑

j∈Jα

cjx
α
j .

2.4.3 Computational Results

The enhanced dominance procedure presented in the previous section has
been implemented in C++ within the ILOG-Cplex [41] framework on a Linux
platform. Here are some implementation issues that deserve further descrip-
tion.

One of the main drawbacks of LD tests is that they postpone finding a
better incumbent solution, thus increasing the number of nodes needed to
solve the problem. This behavior is quite undesirable, especially in the first
phase of the algorithm, when we have no incumbent and no nodes can be

66 M. Fischetti, A. Lodi, and D. Salvagnin

fathomed through bounding criteria. A practical solution to this problem is
to skip the dominance test until the first feasible solution is found.

The systematic application of the dominance test to every node of the
search tree can become too heavy to be worthwhile in practice. A first con-
sideration is that we should skip the dominance test on nodes near the top
or the bottom of the search tree. Indeed, in the first case only a few variables
have been fixed, hence there are little chances of finding a dominating partial
assignment. In the latter case, instead, it is likely that the node would be
pruned anyway by standard bounding tests; moreover, at the bottom of the
tree the number of fixed variables is large and the auxiliary problem may be
quite heavy to solve. In our implementation, we provide two thresholds on
the tree depth of the nodes, namely depthmin and depthmax, a node α being
tested for dominance only if depthmin ≤ depth(α) ≤ depthmax. Moreover,
we decided to test for dominance a node only if its depth is a multiple of a
given parameter, depth interval. The three parameters above have been set
as relative percentages on the number of variables. Finally, we set a limit on
the computing time spent by the black-box MIP solver used for solving each
auxiliary problem.

In our computational experiments we tested ILOG-Cplex 9.0 [41] commer-
cial code with and without our LD test. All runs were performed on a AMD
Athlon64 3500+ PC with 4GB of RAM, under Linux. The ILOG-Cplex code
was run with its default options, and the overall time limit for processing
each instance was set to 2,000 CPU seconds. As to LD tests, we used the
following parameters:

• depth min = 0.3 times the total number of variables;
• depth max = 0.8 times the total number of variables;
• depth interval = 0.1 times the total number of variables.

Moreover, in this implementation we did not use local branching constraint
(2.61). The definition of the test-bed for testing the potentiality of our ap-
proach is a delicate issue. As a matter of fact, one cannot realistically expect
any dominance relationship to be effective on all types of MIPs. Therefore,
we looked for classes of problems whose structure can trigger the dominance
relationship, and measured the speedup that can be achieved by using our
specific LD procedure. In particular, we next give results on single and mul-
tiple knapsack problems [46]. We generated hard single knapsack instances
according to the so-called spanner instances method in combination with
the almost strongly correlated profit generation technique; see Pisinger [52]
for details. Multiple knapsack instances were generated in a similar way, by
choosing a same capacity for all the containers.

The results on hard single knapsack instances with 60 to 90 items are given
in Table 2.7.

According to the table, LD tests are very effective on this class of problems,
yielding consistently a large speedup and solving to optimality three instances
where the standard code reached the time limit. It is worth noting that little

2 Just MIP it! 67

Table 2.7 Computational results for hard single knapsack instances.

Standard Cplex Dominance Code Ratio

Problem Nodes Time (s) Gap Nodes Time (s) Gap Nodes Time

kp60 1 286,056 9.60 0 725 0.04 0 394.56 240.00

kp60 2 27,108,819 2,050.82 0.016 773,890 2,067.44 0.028 35.03 1.00

kp60 3 718,887 24.89 0 1330 0.34 0 540.52 73.21
kp60 4 804,304 26.32 0 28,947 12.17 0 27.79 2.16

kp60 5 688,122 24.36 0 48,895 4.87 0 14.07 5.00
kp70 1 23,671,129 2,050.52 0.406 1,638,641 2,047.53 0.406 14.45 1.00

kp70 2 1,060,259 35.43 0 153,552 61.54 0 6.90 0.58

kp70 3 665,668 23.12 0 147,899 28.00 0 4.50 0.83
kp70 4 23,037,172 2,048.61 0.399 935,986 2,065.34 0.216 24.16 1.00

kp70 5 424,815 15.17 0 19,685 0.89 0 21.58 17.04

kp80 1 413,489 13.98 0 249,582 10.39 0 1.66 1.35
kp80 2 587,456 22.54 0 140,191 7.25 0 4.19 3.11

kp80 3 673,318 22.61 0 26,803 2.13 0 25.12 10.62

kp80 4 529,026 17.56 0 5,274 0.24 0 100.31 73.17
kp80 5 32,604,432 2,050.79 0.328 460,908 109.26 0 70.74 18.77

kp90 1 25,409,911 2,047.65 0.065 928,586 2,034.52 0.065 27.36 1.00
kp90 2 37,650,100 2,041.93 0.137 3,957,332 167,81 0 9.51 12.17
kp90 3 3,024,346 126.59 0 266,137 16.82 0 11.36 7.53

kp90 4 1,926,498 81.39 0 134,385 10.25 0 14.34 7.94
kp90 5 26,510,264 2,052.64 0.263 1,047,483 551.93 0 25.31 3.72

Total 207,794,071 14,787.34 - 10,966,231 9,198.76 - 18.95 1.61

Table 2.8 Parameter tuning on specific hard single knapsack instances.

Problem Nodes Time (s) Gap Depth Min Depth Max

kp60 2 1,653,691 68.24 0 0.3 0.6
kp70 2 7,763 1.02 0 0.3 0.8

kp80 2 11,171 0.57 0 0.3 0.8
kp80 3 2,955 0.30 0 0.3 0.6

parameter tuning would have produced better results in terms of elapsed time
and/or final gap for four instances, as in Table 2.8.

As to hard multiple knapsack problems, we have generated instances with
a number of items ranging from 20 to 40 and a number of knapsacks ranging
form 3 to 5. The LD parameters were set to:

• depth min = 0.3 times the total number of variables;
• depth max = 0.5 times the total number of variables;
• depth interval = 0.1 times the total number of variables.

For these problems, the time limit was increased to one hour.
The results on multiple knapsack problems are available in Table 2.9.
In the multiple knapsack case, LD was not as effective as in the single

case, yielding some improvements only on the smallest instances. It is how-

68 M. Fischetti, A. Lodi, and D. Salvagnin

Table 2.9 Computational results for hard multiple knapsack problems.

Standard Cplex Dominance Code Ratio
Problem Nodes Time (s) Gap Nodes Time (s) Gap Nodes Time

mkp20 3.lp 187,713 16.13 0 129,516 12.18 0 1.45 1.32

mkp20 4.lp 80,845 11.20 0 79,650 10.20 0 1.02 1.10
mkp20 5.lp 1,639,251 171.07 0 1,563,925 181.96 0 1.05 0.94

mkp30 3.lp 33,205,268 3,652.63 0.627 31,141,581 3,654.65 0.632 1.07 1.00
mkp30 4.lp 5,414,529 650.24 0 26,707,752 3,649.55 0.439 0.20 0.18

mkp30 5.lp 28,159,141 3,644.38 0.515 25,653,218 3,649.69 0.515 1.10 1.00

mkp40 3.lp 40,576,080 3,654.31 0.515 22,963,265 3,699.83 0.515 1.77 0.99
mkp40 4.lp 25,354,639 3,645.51 0.437 21,250,331 3,652.06 0.437 1.19 1.00

mkp40 5.lp 777,810 160.81 0 389,427 128.98 0 2.00 1.25

Total 135,395,276 15,606.28 - 129,878,665 18,639.10 - 1.04 0.84

ever worth mentioning that the ratio dominated nodes/dominance tests was
quite good also for these problems (though lower than in the single knapsack
case) and that the effectiveness of LD could have been hidden by the limited
computational time given to the solvers.

Acknowledgements This work was supported by the Future and Emerging Technologies
unit of the EC (IST priority), under contract no. FP6-021235-2 (project “ARRIVAL”) and
by MiUR, Italy.

References

1. T. Achterberg and T. Berthold. Improving the feasibility pump. Discrete Optimiza-
tion, 4:77–86, 2007.

2. T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research Letters,
34:361–372, 2006. Problems available at http://miplib.zib.de.

3. E. Amaldi, M.E. Pfetsch, and L.E. Trotter Jr. On the maximum feasible subsystem
problem, IISs and IIS-hypergraphs. Mathematical Programming, 95:533–554, 2003.

4. E. Balas, S. Ceria, M. Dawande, F. Margot, and G. Pataki. OCTANE: A new heuristic
for pure 0–1 programs. Operations Research, 49:207–225, 2001.

5. E. Balas and C.H. Martin. Pivot-and-complement: A heuristic for 0-1 programming.

Management Science, 26:86–96, 1980.
6. E. Balas and M. Perregaard. Lift-and-project for mixed 0-1 programming: Recent

progress. Discrete Applied Mathematics, 123:129–154, 2002.

7. E. Balas and A. Saxena. Optimizing over the split closure. Mathematical Programming,
113:219–240, 2008.

8. E. Balas, S. Schmieta, and C. Wallace. Pivot and shift — a mixed integer programming
heuristic. Discrete Optimization, 1:3–12, 2004.

9. R.E. Bixby, S. Ceria, C.M. McZeal, and M.W.P. Savelsbergh. An updated mixed

integer programming library: MIPLIB 3.0. Optima, 58:12–15, 1998.
10. P. Bonami, G. Cornuéjols, S. Dash, M. Fischetti, and A. Lodi. Projected Chvátal–

Gomory cuts for mixed integer linear programs. Mathematical Programming, 113:241–

257, 2008.

2 Just MIP it! 69

11. A. Caprara and A.N. Letchford. On the separation of split cuts and related inequalities.

Mathematical Programming, 94:279–294, 2002.
12. J.W. Chinneck. Fast heuristics for the maximum feasible subsystem problem. IN-

FORMS Journal on Computing, 13:210–223, 2001.

13. V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete
Mathematics, 5:305–337, 1973.

14. G. Codato and M. Fischetti. Combinatorial Benders cuts. In D. Bienstock and

G. Nemhauser, editors, Integer Programming and Combinatorial Optimization, IPCO
X, volume 3064 of Lecture Notes in Computer Science, pages 178–195. Springer, 2004.

15. W. Cook, R. Kannan, and A. Schrijver. Chvatal closures for mixed integer program-

ming problems. Mathematical Programming, 47:155–174, 1990.
16. G. Cornuéjols. Valid inequalities for mixed integer linear programs. Mathematical

Programming, 112:3–44, 2008.
17. G. Cornuéjols and Y. Li. On the rank of mixed 0,1 polyhedra. Mathematical Pro-

gramming, 91:391–397, 2002.

18. E. Danna, E. Rothberg, and C. Le Pape. Exploring relaxation induced neighborhoods
to improve MIP solutions. Mathematical Programming, 102:71–90, 2005.

19. S. Dash, O. Günlük, and A. Lodi. On the MIR closure of polyhedra. In M. Fis-

chetti and D.P. Williamson, editors, Integer Programming and Combinatorial Op-
timization, IPCO XII, volume 4513 of Lecture Notes in Computer Science, pages
337–351. Springer, 2007.

20. S. Dash, O. Günlük, and A. Lodi. MIR closures of polyhedral sets. Mathematical
Programming, DOI 10.1007/s10107-008-0225-x, 2008.

21. Double-Click sas. personal communication, 2001.

22. J. Eckstein and M. Nediak. Pivot, cut, and dive: a heuristic for 0-1 mixed integer
programming. Journal of Heuristics, 13:471–503, 2007.

23. F. Eisenbrand. On the membership problem for the elementary closure of a polyhedron.
Combinatorica, 19:297–300, 1999.

24. M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical Program-
ming, 104:91–104, 2005.

25. M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98:23–47,

2003.
26. M. Fischetti and A. Lodi. MIPping Closures: An instant survey. Graphs and Combi-

natorics, 23:233–243, 2007.

27. M. Fischetti and A. Lodi. Optimizing over the first Chvátal closure. Mathematical
Programming, 110:3–20, 2007.

28. M. Fischetti and A. Lodi. Repairing MIP infeasibility through local branching. Com-
puters & Operations Research, 35:1436–1445, 2008.

29. M. Fischetti, C. Polo, and M. Scantamburlo. A local branching heuristic for mixed-
integer programs with 2-level variables, with an application to a telecommunication
network design problem. Networks, 44:61–72, 2004.

30. M. Fischetti and P. Toth. A New Dominance Procedure for Combinatorial Optimiza-
tion Problems. Operations Research Letters, 7:181–187, 1988.

31. J. Gleeson and J. Ryan. Identifying minimally infeasible subsystems of inequalities.
ORSA Journal on Computing, 2:61–63, 1990.

32. F. Glover and M. Laguna. General purpose heuristics for integer programming – part

I. Journal of Heuristics, 2:343–358, 1997.
33. F. Glover and M. Laguna. General purpose heuristics for integer programming – part

II. Journal of Heuristics, 3:161–179, 1997.
34. F. Glover and M. Laguna. Tabu Search. Kluwer, 1997.
35. R.E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin

of the American Mathematical Society, 64:275–278, 1958.
36. R.E. Gomory. An algorithm for the mixed integer problem. Technical Report RM-

2597, The Rand Corporation, 1960.

70 M. Fischetti, A. Lodi, and D. Salvagnin

37. M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial

Optimization. Springer-Verlag, 1988.
38. P. Hansen, N. Mladenović, and D. Urosevic. Variable neighborhood search and local

branching. Computers & Operations Research, 33:3034–3045, 2006.

39. F.S. Hillier. Efficient heuristic procedures for integer linear programming with an
interior. Operations Research, 17:600–637, 1969.

40. T. Ibaraki, T. Ohashi, and F. Mine. A heuristic algorithm for mixed-integer program-

ming problems. Mathematical Programming Study, 2:115–136, 1974.
41. ILOG S.A. CPLEX: ILOG CPLEX 11.0 User’s Manual and Reference Manual, 2007.

http://www.ilog.com.

42. G.W. Klau. personal communication, 2002.
43. A. Løkketangen. Heuristics for 0-1 mixed-integer programming. In P.M. Pardalos and

M.G.C. Resende, editors, Handbook of Applied Optimization, pages 474–477. Oxford
University Press, 2002.

44. A. Løkketangen and F. Glover. Solving zero/one mixed integer programming problems

using tabu search. European Journal of Operational Research, 106:624–658, 1998.
45. F. Margot. Pruning by isomorphism in branch-and-cut. Mathematical Programming,

94:71–90, 2002.

46. S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implemen-
tations. Wiley, New York, 1990.

47. A.J. Miller. personal communication, 2003.

48. N. Mladenović and P. Hansen. Variable neighborhood search. Computers & Operations
Research, 24:1097–1100, 1997.

49. J.L. Nazareth. The homotopy principle and algorithms for linear programming. SIAM

Journal on Optimization, 1:316–332, 1991.
50. G. Nemhauser and L. Wolsey. A recursive procedure to generate all cuts for 0-1 mixed

integer programs. Mathematical Programming, 46:379–390, 1990.
51. C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and

Complexity. Prentice-Hall, 1982.
52. D. Pisinger. Where are the hard knapsack problems? Computers & Operations Re-

search, 32:2271–2284, 2005.

53. E. Rothberg. personal communication, 2002.
54. D. Salvagnin. A dominance procedure for integer programming. Master’s thesis,

University of Padua, October 2005.

http://www.springer.com/978-1-4419-1305-0

