
A Heuristic Methodfor the Set Covering ProblemAlberto Caprara�, Matteo Fischetti� and Paolo Toth�� DEIS, University of Bologna, Italy� DMI, University of Udine, ItalyAbstractWe present a Lagrangian-based heuristic for the well-known Set Covering Prob-lem (SCP). The algorithm was initially designed for solving very large scale SCPinstances, involving up to 5,000 rows and 1,000,000 columns, arising from crewscheduling in the Italian Railway Company, Ferrovie dello Stato SpA. In 1994Ferrovie dello Stato SpA, jointly with the Italian Operational Research Society,organized a competition, called FASTER, intended to promote the development ofalgorithms capable of producing good solutions for these instances, since the clas-sical approaches meet with considerable di�culties in tackling them. The maincharacteristics of the algorithm we propose are (1) a dynamic pricing scheme forthe variables, akin to that used for solving large-scale LP's, to be coupled withsubgradient optimization and greedy algorithms, and (2) the systematic use ofcolumn �xing to obtain improved solutions. Moreover, we propose a number ofimprovements on the standard way of de�ning the step-size and the ascent di-rection within the subgradient optimization procedure, and the scores within thegreedy algorithms. Finally, an e�ective re�ning procedure is proposed. Our codewon the �rst prize in the FASTER competition, giving the best solution value forall the proposed instances. The algorithm was also tested on the test instancesfrom the literature: in 92 out of the 94 instances in our test bed we found, withinshort computing time, the optimal (or the best known) solution. Moreover, amongthe 18 instances for which the optimum is not known, in 6 cases our solution isbetter than any other solution found by previous techniques.The Set Covering Problem (SCP) is a main model for several important applications,including crew scheduling, where a given set of trips has to be covered by a minimum-costset of pairings, a pairing being a sequence of trips that can be performed by a single crew.A widely-used approach to crew scheduling works as follows. First, a very large number ofpairings are generated. Then an SCP is solved, having as row set the trips to be covered,and as column set the pairings generated. In railway applications, very large scale SCPinstances typically arise, involving thousands of rows and millions of columns. Theclassical methods proposed for SCP meet with considerable di�culties in tackling these1



instances, concerning both the computing time and the quality of the solutions found.On the other hand, obtaining high-quality solutions can result in considerable savings.For this reason, in 1994 the Italian railway company, Ferrovie dello Stato SpA, jointlywith the Italian Operational Research Society, AIRO, decided to organize a competitioncalled FASTER (Ferrovie Airo Set covering TendER) among the departments of Italianuniversities, possibly including foreign researchers. Some well-known researchers fromall over the world took part in the competition.Three size classes of SCP instances were de�ned for FASTER, namely a micro sizeclass, with up to 600 rows and 60,000 columns, a medium size class, with up to 2,750rows and 1,100,000 columns, and a large size class, with up to 5,500 rows and 1,100,000columns. Each participant had to implement an algorithm, and send the correspondingcode to Ferrovie dello Stato SpA. A prize was to be assigned, for each size class, to thecode giving, for a particular instance, the best solution value within a given time limit.The three prizes were mutually exclusive, and amounted to approximately US $ 60; 000for the large instance, US $ 30; 000 for the medium instance, and US $ 15; 000 for themicro instance. The time limit was 3,000 seconds on a PC 486/33 with 4 Mb RAMfor the micro instance, and 10,000 seconds on a HP 735/125 workstation with 256 MbRAM for the medium and large instances. Four sample instances of di�erent sizes weredistributed before the competition. The SCP packages available on the market weretried by Ferrovie dello Stato SpA on these test instances. Of course, the instances to besolved in the competition were not distributed in advance.We took part in the FASTER competition as Dipartimento di Elettronica, Informaticae Sistemistica, University of Bologna. Our code ranked �rst for all the three size-classinstances. We also obtained the best solution values on all sample instances. For themedium and large sample instances, our solutions were strictly better than those providedby the commercial packages available on the market. After the competition, we testedour code on a wide set of SCP instances from the literature, with remarkably good results:in 92 out of the 94 instances in our test bed we found, within short computing time, theoptimal (or the best known) solution. Moreover, among the 18 instances for which theoptimum is not known, in 6 cases our solution is better than any other solution foundby previous techniques.The main characteristics of the algorithm we propose are (1) a dynamic pricingscheme for the variables, akin to that used for solving large-scale LP's, to be coupled withsubgradient optimization and greedy algorithms, and (2) the systematic use of column�xing to obtain improved solutions. Moreover, we propose a number of improvements onthe standard way of de�ning the step-size and the ascent direction within the subgradientoptimization procedure, and the scores within the greedy algorithms. Finally, an e�ective2



re�ning procedure is proposed.The paper is organized as follows. Section 1 gives an overview of the overall algorithm,which mainly consists of three parts: a subgradient phase, a heuristic phase, and a column�xing phase dealt with, respectively, in Sections 2, 3, and 4. Sections 5 and 6 describethe pricing technique and the re�ning procedure. The overall method is summarized inSection 7, and �nally extensive computational experiments are reported in Section 8.1 General FrameworkSCP can be formally de�ned as follows. Let A = (aij) be a 0-1 m�nmatrix, and c = (cj)be an n-dimensional integer vector. In the following we refer to the rows and columns ofA simply as rows and columns. Let M = f1; : : : ;mg and N = f1; : : : ; ng. The value cj(j 2 N) represents the cost of column j, and we assume without loss of generality cj > 0for j 2 N . We say that a column j 2 N covers a row i 2 M if aij = 1. SCP calls fora minimum-cost subset S � N of columns, such that each row i 2 M is covered by atleast one column j 2 S. A mathematical model for SCP isv(SCP) = minXj2N cjxj (1)subject to Xj2N aijxj � 1 i 2M (2)xj 2 f0; 1g j 2 N (3)where xj = 1 if j 2 S, xj = 0 otherwise. For notational convenience, for each row i 2Mlet Ji = fj 2 N : aij = 1gbe the set of columns covering row i. Analogously, for each column j 2 N letIj = fi 2M : aij = 1gbe the row subset covered by column j. Moreover, let q = Pi2MPj2N aij denote thenumber of nonzero entries of A.SCP is NP-hard in the strong sense, and has many practical applications, see e.g.Balas (1983). Many algorithms have been proposed in the literature for the exact solutionof the problem, see Balas and Ho (1980), Beasley (1987), Fisher and Kedia (1990),Beasley and J�ornsten (1992), Nobili and Sassano (1992), and Balas and Carrera (1996).These exact algorithms can solve instances with up to a few hundred rows and a fewthousand columns. When larger scale SCP instances are tackled, heuristic algorithms3



are needed. Classical greedy algorithms are very fast in practice, but typically do notprovide high quality solutions, as reported in Balas and Ho (1980) and Balas and Carrera(1996). The most e�ective heuristic approaches to SCP are those based on Lagrangianrelaxation with subgradient optimization, following the seminal work by Balas and Ho(1980), and then the improvements by Beasley (1990), Fisher and Kedia (1990), Balasand Carrera (1996), and Ceria, Nobili and Sassano (1995). Lorena and Lopes (1994)propose an analogous approach based on surrogate relaxation. Wedelin (1995) proposesa general heuristic algorithm for integer programs having a 0-1 constraint matrix; thealgorithm is based on Lagrangian relaxation with coordinate search, where a suitably-de�ned approximation term is introduced. Recently, Beasley and Chu (1996) proposedan e�ective genetic algorithm.Our heuristic scheme is based on dual information associated with the widely-usedLagrangian relaxation of model (1)-(3). We assume the reader is familiar with Lagrangianrelaxation theory; see, e.g., Fisher (1981) for an introduction. For every vector u 2 Rm+ ofLagrangian multipliers associated with the constraints (2), the Lagrangian subproblemreads: L(u) = minXj2N cj(u)xj + Xi2M ui (4)subject to xj 2 f0; 1g j 2 N (5)where cj(u) = cj � Pi2Ij ui is the Lagrangian cost associated with column j 2 N .Clearly, an optimal solution to (4)-(5) is given by xj(u) = 1 if cj(u) < 0, xj(u) = 0if cj(u) > 0, and xj(u) 2 f0; 1g when cj(u) = 0. The Lagrangian dual problem asso-ciated with (4)-(5) consists of �nding a Lagrangian multiplier vector u� 2 Rm+ whichmaximizes the lower bound L(u). As (4)-(5) has the integrality property, any optimalsolution u� to the dual of the Linear Programming (LP) relaxation of SCP, namely prob-lem maxnPi2M ui :Pi2Ij ui � cj (j 2 N); ui � 0 (i 2M)o, is also an optimal solutionto the Lagrangian problem; see Fisher (1981). On the other hand, computing an opti-mal multiplier vector by solving an LP is typically time-consuming for very large scaleinstances. A commonly used approach for �nding near-optimal multiplier vectors withina short computing time, uses the subgradient vector s(u) 2 Rm, associated with a givenu, de�ned by: si(u) = 1 �Xj2Ji xj(u); i 2M: (6)The approach generates a sequence u0; u1; : : : of nonnegative Lagrangian multiplier vec-tors, where u0 is de�ned arbitrarily. As to the de�nition of uk, k � 1, a possible choice4



(Held and Karp, 1971) consists of using the following simple updating formula:uk+1i = max(uki + �UB � L(uk)jjs(uk)jj2 si(uk); 0) for i 2M; (7)where UB is an upper bound on v(SCP), and � > 0 is a given step size parameter.For near-optimal Lagrangian multipliers ui, the Lagrangian cost cj(u) gives reliableinformation on the overall utility of selecting column j. Based on this property, we useLagrangian (rather than original) costs to compute, for each j 2 N , a score �j rankingthe columns according to their likelihood to be selected in an optimal solution. Thesescores are given on input to a simple heuristic procedure, that �nds in a greedy way ahopefully good SCP solution. Computational experience shows that almost equivalentnear-optimal Lagrangian multipliers can produce SCP solutions of substantially di�erentquality. In addition, no strict correlation exists between the lower bound value L(u) andthe quality of the SCP solution found. Therefore it is worthwhile applying the heuristicprocedure for several near-optimal Lagrangian multiplier vectors.Our approach consists of three main phases, described in detail in Sections 2 to 4.The �rst one is referred to as the subgradient phase. It is aimed at quickly �nding anear-optimal Lagrangian multiplier vector, by means of an aggressive policy. The secondone is the heuristic phase, in which a sequence of near-optimal Lagrangian vectors isdetermined and, for each vector, the associated scores are given on input to the heuristicprocedure to possibly update the incumbent best SCP solution. In the third phase,called column �xing, we select a subset of columns having an estimated high probabilityof being in an optimal solution, and �x to 1 the corresponding variables. In this waywe obtain an SCP instance with a reduced number of columns and rows, on whichthe three-phase procedure is iterated. According to our experience, column �xing isof fundamental importance to obtain high quality SCP solutions. The overall 3-phaseheuristic is outlined next.procedure 3-PHASE(x�);beginrepeat1. SUBGRADIENT PHASE:�nd a near-optimal multiplier vector u�;2. HEURISTIC PHASE:starting from u�, generate a sequence of near-optimal multiplier vectors, andfor each of them compute a heuristic solution to SCP (the best incumbentsolution x� being updated each time a better solution is found);3. COLUMN FIXING: 5



select a subset of \good" columns and �x to 1 the corresponding variablesuntil x� cannot be improvedend.The repeat-until loop terminates whenever either all the rows are covered by the �xedcolumns, or, as almost always occurs, the sum of the costs of the �xed columns plus alower bound on the cost of the residual problem is not less than the value of x�.When very large instances are tackled, the computing time spent on the �rst twophases becomes very large. We overcome this di�culty by de�ning a core problem,obtained from the original problem by keeping only a subset of the variables (columns),the remaining ones being �xed to 0. The choice of the columns in the core problemis often very critical, since an optimal solution typically contains some columns that,although individually worse than others, must be selected in order to produce an overallgood solution. Hence we decided not to \freeze" the core problem. Instead, we use avariable pricing scheme to update the core problem iteratively (see Section 5), in a veinsimilar to that used for solving large size LP's.After each application of procedure 3-PHASE, a re�ning procedure is used (see Section6), which in some cases produces improved solutions.In the following, M will denote the set of the rows that are not covered by thecurrently �xed columns, and N the set of the columns covering at least one row in M .2 Subgradient PhaseAs already mentioned, this phase is intended to quickly produce a near-optimal La-grangian multiplier vector. We use the updating formula (7).The starting vector u0 is de�ned in one of two di�erent ways. In the �rst applicationof procedure 3-PHASE, u0 is de�ned in a greedy way as follows:u0i = minj2Ji cjjIjj ; i 2M: (8)As to the other applications of procedure 3-PHASE, we start from the best multipliervector (i.e., the one producing the best lower bound for the subproblem de�ned by therows in M), say u�, computed before the last column �xing, and obtain the startingmultiplier vector u0 through random perturbation of u�. To be more speci�c, we �rstremove from u� all the entries associated with the rows covered by the columns �xedin the last iteration, and de�ne u0i = (1 + �i)u�i for the remaining rows i, where �i is auniformly random value in the range [�0:1; 0:1]. The perturbation lets the subgradient6



phase converge to a di�erent multiplier vector, hence it allows the subsequent heuristicphase to produce di�erent, and hopefully better, SCP solutions.The upper bound UB is set to the value of the best SCP solution found. As for itsinitial value, it is computed by applying the greedy heuristic in Section 3, by consideringu = 0 (i.e., the original costs instead of the Lagrangian costs).Parameter � controls the step-size along the subgradient direction s(uk). The classicalHeld-Karp approach halves parameter � if for p consecutive iterations no lower boundimprovement occurs. In order to obtain a faster convergence, we have implementedthe following alternative strategy. We start with � = 0:1. Every p = 20 subgradientiterations we compare the best and worst lower bounds computed on the last p iterations.If these two values di�er by more than 1%, the current value of � is halved. If, on theother hand, the two values are within 0.1% from each other, we multiply the current valueof � by 1.5. This last choice is motivated by the observation that either the current uk isalmost optimal (in which case we are not interested, in this phase, in obtaining a slightlybetter multiplier vector), or the small lower bound di�erence is due to an excessively smallstep-size (that we contrast by increasing �). According to our computational experience,this strategy leads to a faster convergence to near optimal multipliers, compared withthe classical approach. Figure 1 compares the behavior of the two strategies appliedto the instance RAIL516 described in Section 8.1 (both strategies use the improvedsubgradient direction discussed in the sequel). The classical approach halves �, for the�rst time, at iteration 181, although in the previous iterations the lower bound growthis far from regular. On the other hand, choosing a smaller initial value for � produceseven worse results, in that the asymptotic convergence value is much worse. The newapproach, however, recognizes a high variation of the lower bound in the early iterations,and reduces the step size. Our approach, which increases the value of � under certainconditions, guarantees an overall robust procedure.According to our computational experience, in many cases a large number of columnshappen to have a Lagrangian cost cj(u) very close to zero. In particular, this occurs forlarge scale instances with costs cj belonging to a small range, after a few subgradientiterations. For example, for instance RAIL516 more than 1000 Lagrangian costs withjcj(u)j < 0:001 arise, on average, after each subgradient iteration. In this situation, theLagrangian problem has a huge number of almost optimal solutions, each obtained bychoosing a di�erent subset of the almost zero Lagrangian cost columns. As a result,a huge number of subgradients s(uk) to be used in (7) exist. It is known that thesteepest ascent direction is given by the minimum-norm convex combination of the aboveactive subgradients. However, the exact determination of this combination is very timeconsuming, as it requires the solution of a quadratic problem. On the other hand, a7
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Figure 1: Comparison between the classical and new updating strategies for the step-sizeparameter � on instance RAIL516.random choice of the subgradient direction may produce very slow convergence due tozig-zagging phenomena. We overcome this drawback by heuristically selecting a small-norm subgradient direction, computed as follows. We �rst de�ne a column subset S =fj 2 N : cj(u) � 0:001g. This set corresponds to a partial solution covering a rowsubset I(S) = Sj2S Ij. Starting with S, we obtain a \prime" (i.e., minimal) partialcover by iteratively removing from S a redundant column, i.e., a column j 2 S such thatI(S n fjg) = I(S). To be more speci�c, let R � S be the set of the redundant columnsof the initial S. We sort the columns in R according to decreasing costs cj(u). Then,for each j 2 R, in the given order, we set S = S n fjg if I(S) = I(S n fjg). Finally, wede�ne xj(u) = 1 for j 2 S, xj(u) = 0 for j 2 N n S, and compute the reduced norm\subgradient" s(u) by means of (6) (notice that s(u) is no longer guaranteed to be asubgradient). This phase requires O(n log n) time for column sorting, plus O(q) timefor the remaining computation. Computational results show that this choice leads to afaster convergence of the subgradient procedure. As an example, Figure 2 compares thebehavior of the classical and new de�nitions of the subgradient directions to be used in(7), when applied to instance RAIL516 (both strategies use the improved updating rulefor the step-size parameter �, as described previously).The subgradient phase ends as soon as we estimate the procedure converged to a near-optimal Lagrangian vector. This occurs when the lower bound improvement obtainedin the last 300 subgradient iterations is smaller than 1.0, and, in percentage, below0.1%. Our computational experience showed that the number of iterations needed to8
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Figure 2: Comparison between the classical and new de�nitions of the subgradient di-rections on instance RAIL516.reach convergence grows linearly with m. In any case, no more than 10m iterations areallowed (this limit was never reached in our computational experiments).Each iteration of the subgradient phase requires (a) computing the Lagrangian costsassociated with the current multiplier vector, which is done in O(q) time; (b) computingthe reduced norm \subgradient", in O(n log n+ q) time; and (c) updating the multipliervector, in O(m) time. Since the maximum number of subgradient iterations allowed isO(m), the overall time complexity of this phase is O(m(n log n+ q)).3 Heuristic PhaseLet u� be the best Lagrangian vector found during the subgradient phase. Startingwith u� we generate a sequence of Lagrangian vectors uk in an attempt to \explore" aneighborhood of near-optimal multipliers. To this end, we update the multipliers as inthe subgradient phase, but we do not reduce the subgradient norm, so as to allow fora change in a larger number of components of uk. The heuristic phase ends after 250iterations.For each uk, we apply the following greedy heuristic procedure to produce a \good"SCP solution S. 9



procedure GREEDY(uk,S);begin1. Initialize M� :=M to be the set of the currently uncovered rows,and S := ; to be the set of the currently selected columns;repeat2. compute the score �j := SCORE(j; uk;M�) for each j 2 N n S,and let j� 2 N n S be a column with minimum score;3. S := S [ fj�g; M� :=M� n Ij�until M� = ;end.The key step of the procedure is Step 2, in which the column scores �j are de�nedthrough function SCORE(j; uk;M�). Several rules have been proposed in the literature(see Balas and Ho, 1980, and Balas and Carrera, 1996) which de�ne �j as a function ofcj and �j = jIj \M�j (e.g., �j = cj, or �j = cj=�j). According to our computationalexperience, these rules produce good results when cj is replaced byj = cj � Xi2Ij\M� uki ;since this term takes into account the dual information associated with the still uncoveredrows M�. The use of j instead of cj in a greedy-type heuristic was �rst proposed byFisher and Kedia (1990).We have also considered the following new rules, giving priority to columns havinglow cost j and covering a large number �j of uncovered rows.Rule a) �j = j=�j if j > 0, �j = j�j if j < 0.Rule b) �j = j � ��j (where � > 0 is a given parameter).In all cases we set �j =1 whenever �j = 0.An extensive computational analysis showed that Rule a) outperforms Rule b) (testedwith � = 0:1, � = 0:01, and � = 0:001) and all other rules, when our heuristic schemeis applied. Indeed, we ran di�erent versions of our code in which, for each given uk,GREEDY(uk; S) is applied by considering di�erent rules for the de�nition of the scores.For all the instances we tried, the version using only Rule a) produced the same resultas the one in which each call of GREEDY is replaced by a series of calls, one for each ofthe above-mentioned rules, and the best solution is chosen (the latter scheme requiredof course considerably more computing time). The same does not hold, however, whenany rule alternative to a) is used. In view of this behavior, we decided to only use Rulea) within our �nal algorithm. 10



Observe that the values j and �j need not be computed from scratch at each repeat-until iteration, as they can easily be updated before Step 3, by the following additionalstep:2'. for each i 2 Ij� \M� dofor each j 2 Ji do let j := j + ui and �j := �j � 1;In this way, the overall time complexity for the de�nition and the updating of j and �jis O(q) if an appropriate data structure is used (see Section 8), whereas the time requiredfor each execution of Step 2 is O(n). Therefore procedure GREEDY requires O(rn + q)time, where r � m is the cardinality of the solution found.For the instances in our test bed (see Section 8) the term rn is typically much largerthan q. To decrease the average computing time required by Step 2 we use the followingapproach. We determine the set B � N nS containing the minfm; jN nSjg columns withsmallest scores, and set � to the current value of the smallest score of a column not in B.Whereas in Step 2' the values of j and �j are updated for all columns j 2 N nS, in Step2, as long as �j� � � , the computation of �j and the search for j� are performed onlyamong the columns in B. When �j� > � , we re-de�ne B and � as above and iterate. Eachde�nition of B and � requires O(n) time by using median-�nding techniques, whereaseach computation of �j, j 2 B, and j� requires O(jBj) time.The solution S returned by GREEDY may contain redundant columns. This happensbecause the columns selected in a certain iteration to cover some uncovered rows, can leada previously-selected column to become redundant. Removing the redundant columnsin an optimal way leads to an SCP, de�ned by the redundant column set, say, R andby the set containing the rows covered only by the redundant columns. This problemcan be solved either exactly through an enumerative algorithm for small values of jRj,or heuristically. We use the following mixed approach. When jRj > 10, we removefrom S the column j� 2 R with maximum cost cj�, update R, and repeat. As soonas jRj � 10, we use a simple enumeration scheme to remove, in an optimal way, theredundant columns left.4 Column FixingAlthough typically very close to the optimum, the heuristic solution available at the endof the heuristic phase can often be improved by �xing in the solution a convenient setof columns, and re-applying the whole procedure to the resulting subproblem. To ourknowledge, only the heuristic of Ceria, Nobili and Sassano (1995) makes use of variable�xing. 11



Name Size Best Time Col-Fix No Col-FixRAIL582 582� 55; 515 211 575.6� 211 213RAIL507 507� 63; 009 174 634.8� 176 180RAIL2586 2; 586� 920; 683 947 486.1� 952 989RAIL4872 4; 872� 968; 672 1534 854.4� 1550 1606Table 1: Results of procedure 3-PHASE with and without column �xing { � Time in PC486/33 CPU seconds { � Time in HP 735/125 CPU seconds.Clearly, the choice of the columns to be �xed is of crucial importance. After extensivecomputational testing, we decided to implement the following simple criteria. Let u� bethe best multiplier vector found during the subgradient and heuristic phases, and de�neQ = fj 2 N : cj(u�) < �0:001g. We �rst �x each column j 2 Q for which thereis a row i covered only by j among the columns in Q, i.e., Ji \ Q = fjg. Then, weapply the heuristic procedure GREEDY(u�; S) described in Section 3, and �x the �rstmaxfbm=200c ; 1g columns therein chosen.Table 1 reports computational results for the 4 large scale instances from the FASTERtest bed, described in more detail in Section 8.1. In the table, \Name" is the name ofthe instance, \Size" its size (in the format m � n), and \Best" is the best solutionvalue known. For each instance, we �rst ran procedure 3-PHASE yielding the solutionvalue reported in column \Col-Fix", and then ran, for the same amount of time (column\Time"), the same procedure with no column �xing, yielding the solution value reportedin column \No Col-Fix". The times in the table refer to the �nal version of our algorithm,which uses the pricing procedure described in the next section. The table clearly showsthe e�ectiveness of column �xing, especially for the very large scale instances RAIL2586and RAIL4872.5 PricingIn order to reduce the computing time spent by the overall algorithm, in all phaseswe work on a small subset of columns, de�ning the current core problem. This is offundamental importance when large-scale instances are tackled, and gives substantialimprovements even for medium-size instances. The approach is in the spirit of the well-known partial pricing technique for solving large-scale LP's. To our knowledge, however,this approach was never used in combination with Lagrangian relaxation for SCP. Anexample of the combined use of Lagrangian relaxation and column generation for crewscheduling can be found in Carraresi and Gallo (1986).Our core problem is updated dynamically, by using the dual information associated12



with the current Lagrangian multiplier vector uk. To be speci�c, at the very beginning ofthe overall algorithm we de�ne a \tentative" core by taking the �rst 5 columns coveringeach row. Afterwards, we work on the current core for, say, T consecutive subgradientiterations, after which we re-de�ne the core problem as follows. We compute the La-grangian cost cj(uk), j 2 N , associated with the current uk, and de�ne the column setof the new core as C = C1[C2, where C1 = fj 2 N : cj(uk) < 0:1g, and C2 contains the5 smallest Lagrangian cost columns covering each row; if jC1j > 5m, we keep in C1 onlythe 5m smallest Lagrangian cost columns.Notice that a valid lower bound for the overall problem is only available after thepricing step. The pricing phase requires O(q) time, since the computation of the 5mlowest Lagrangian cost columns in C1 can be done in O(n) time by using median-�ndingtechniques. As we work with a core problem containing O(m) columns, the time com-plexity of each iteration of our subgradient procedure is O(m logm+ p), while the timerequired by procedure GREEDY becomes O(rm + p), where p � q is the maximumnumber of nonzero entries of the SCP matrix for the core problem.The pricing frequency is governed by parameter T . In our implementation we initiallyset T = 10. After each pricing, we compute � = (LBk(C 0)� LBk(N))=UB, where UBis the best SCP solution value available, LBk(N) = Pi2M uki + Pj2N minfcj(uk); 0gis the \true" lower bound value available after pricing, and LBk(C 0) = Pi2M uki +Pj2C0 minfcj(uk); 0g is its counterpart with respect to C 0, the column set of the coreproblem before pricing. If � is small, we decrease the pricing frequency by increasingT . If on the other hand � is large, i.e., the core problem is far from being settled, wereduce T . More precisely, we update T = 10 � T if � � 10�6; T = 5 � T if � � 0:02;T = 2 � T if � � 0:2; and T = 10 otherwise. In any case, the value T is not allowed toexceed minf1000;m=3g.According to our experience, for large scale instances the use of pricing cuts theoverall computing time by more than one order of magnitude.6 Re�ning ProcedureThe solution available at the end of procedure 3-PHASE is typically close to the optimum,but in some cases it can be improved. For this purpose, we have de�ned a simple schemefor re�ning a given SCP solution. The scheme assigns a score to the chosen columns,�xes to 1 the variables associated with the best scored columns, and re-optimizes theresulting subproblem.Let x� de�ne the best SCP solution computed by procedure 3-PHASE, and let u� bethe Lagrangian vector corresponding to the best lower bound computed for the overall13



problem (that with no �xed column). The gap between the associated lower and upperbound values is given byGAP = Xj2S cj � 0@Xi2M u�i + Xj2N :cj(u�)<0 cj(u�)1A= Xj2S0@cj(u�) +Xi2Ij u�i1A � Xi2M u�i � Xj2N :cj(u�)<0 cj(u�)= Xj2S:cj(u�)>0 cj(u�) +Xj2NnS:cj(u�)<0 jcj(u�)j +Xi2M u�i (jS \ Jij � 1) ;where S = fj 2 N : x�j = 1g. Accordingly, for each column j with x�j = 1 we computean estimate �j of the contribution of j to the overall gap, namely�j = maxfcj(u�); 0g +Xi2Ij u�i jS \ Jij � 1jS \ Jij : (9)The second term in (9) is obtained by uniformly splitting, for each row i, the gap contri-bution u�i (jS \ Jij � 1) among all the columns l 2 Ji with x�l = 1. Notice that this scorecannot be computed \on line" in a greedy heuristic like procedure GREEDY.In our view, columns with small �j are likely to be part of an optimal solution.Accordingly, we de�ne the ordered column set fj 2 N : x�j = 1g = fj1; : : : ; jpg, where�j1 � �j2 � : : : � �jp, and �nd the �rst j� 2 fj1; : : : ; jpg such thatjSj�j=j1 Ijjm � �; (10)where the parameter � 2 [0; 1] controls the percentage number of rows removed after�xing. We then �x columns j1; : : : ; j�, and re-optimize the resulting subproblem throughprocedure 3-PHASE.7 The Overall MethodThe above procedures are applied iteratively until a given time-limit is exceeded, or asu�cient precision is obtained, according to the following scheme:14



Value 1550 1549 1547 1546 1544 1543 1542 1541 1540 1538 1537 1536 1535 1534Time 733.7 866.1 866.3 866.6 868.6 881.6 882.4 937.8 1024.0 1150.0 1150.9 1187.8 4326.0 4556.1Table 2: Incumbent solution value updating for instance RAIL4872 { Times in HP735/125 CPU seconds { The �rst entry refers to the �rst application of procedure 3-PHASE.Algorithm CFT;begin1. Initialize zOPT := +1, u� := 0, and F := ;, where zOPT is the value of the bestavailable SCP solution, u� is the best multiplier vector for the original SCP instance,and F is the set of columns �xed by the re�ning procedure;repeat2. de�ne the SCP subinstance IF derived from �xing xj := 1 for all j 2 F ;3. apply procedure 3-PHASE(x; u) to IF ;4. comment: obtain the SCP solution x� associated with the partial solution x;for each j 2 N doif j 2 F then x�j := 1else x�j := xj;5. comment: update the best SCP solution;if Pj2N cjx�j < zOPT then beginzOPT := Pj2N cjx�j ;xOPT := x�end6. comment: de�ne the new value for the threshold �;if Pj2N cjx�j = zOPT or F = ; then � := �MINelse � := � � �;7. comment: update the set F of columns �xed;for each j 2 fk 2 N : x�k = 1g do compute �j as de�ned in (9);sort the set fj 2 N : x�j = 1g according to nondecreasing values �j and letfj1; : : : ; jpg be the corresponding sorted set;de�ne j� as in (10), and let F := fj1; : : : ; j�guntil zOPT � � � L(u�) or a time limit is exceededend.A careful choice of parameters �MIN , � and � is very important for the re�ning procedureto be e�ective. In our implementation, we set �MIN = 0:3, � = 1:1, and � = 1:0.15



As an illustration of the e�ectiveness of the re�ning procedure, in Table 2 we reportthe updating of the incumbent solution value for instance RAIL4872, along with theassociated computing times. The �rst entry refers to the �rst application of procedure3-PHASE.8 Computational ResultsAlgorithm CFT was implemented in ANSI FORTRAN 77. We store the whole SCPmatrix columnwise, in sparse form, by using the vectors IA (of length n+ 1) and A (oflength q), so as to have Ij = fAIAj ; AIAj+1; : : : ; AIAj+1�1g for j = 1; : : : ; n. We do notstore the whole SCP matrix rowwise, while we store the matrix for the core problem bothrowwise and columnwise, in sparse form. Unlike most existing algorithms for SCP, we donot perform any pre-processing on the initial data in order to remove dominated columnsand rows. This is motivated by several reasons. First of all, pre-processing is very timeconsuming for large scale instances. Furthermore, thanks to the pricing procedure therunning time of algorithm CFT does not change substantially if dominated rows andcolumns are also present. Finally, the score we use in procedure GREEDY and in thecolumn-�xing phase prevents the choice of dominated columns.8.1 Instances from the FASTER CompetitionAlgorithm CFT was �rst tested on the sample instances distributed by Ferrovie delloStato SpA within the FASTER competition. Table 3 reports the corresponding results,where the entries have the following meaning:Name is the name of the instance;Size is the size of the instance in the format m�n, where (�) stands for micro, (m) formedium, and (l) for large;Dens is the percentage number of entries equal to 1 in the SCP constraint matrix, i.e.,q=mn (for the FASTER instances, jIjj � 12 for each column j);Range is the cost range in the format min-max;LB is the lower bound on the optimal solution value computed by solving the LP relax-ation of SCP, and rounding up the corresponding value;Bologna reports the solution value found by algorithm CFT and the computing timespent up to the point where this solution is found for the �rst time;16



Bologna Roma Best IndustryName Size Dens Range LB Sol Time Sol SolRAIL582 582� 55; 515 (�) 1.2% 1-2 210 211 570.0� 211 211RAIL507 507� 63; 009 (�) 1.2% 1-2 173 175� 817.0� 174 174RAIL2586 2; 586� 920; 683 (m) 0.4% 1-2 937 948+ 1183.2� 951 952RAIL4872 4; 872� 968; 672 (l) 0.2% 1-2 1509 1534 4556.1� 1534 1538Table 3: Results on FASTER sample instances { � Time in PC 486/33 CPU seconds {� Time in HP 735/125 CPU seconds { � 174 with an ad hoc tuning { + 947 with an adhoc tuning.Roma reports the solution value found by the algorithm of the Dipartimento di Infor-matica e Sistemistica, University of Roma \La Sapienza";Best Industry is the best solution value found by the SCP packages available on themarket, as reported in Ceria, Nobili and Sassano (1995).The group named Roma consisted of S. Ceria, P. Nobili and A. Sassano. Theyused a Lagrangian heuristic, based on the initial de�nition of a core problem which isnot updated dynamically, and on a primal-dual subgradient technique combined withcolumn �xing, see Ceria, Nobili and Sassano (1995). The computing time of Roma iswithin 1,000 CPU seconds on an IBM RS/6000 375 (i.e., about 15,000 seconds on aPC/486 33) for the micro instances, and within 10,000 CPU seconds (i.e., about 5,000seconds on a HP 735/125) on the same machine for the medium and large instances (theauthors do not report the computing time spent up to the point where the best solutionis found for the �rst time).The results for the competition are reported in Table 4, where the entries have thefollowing meaning:Name, Size, Dens and Range are as in Table 3;LB is the rounded-up lower bound on the optimal solution value computed by algorithmCFT;An reports the solution value found by the algorithm of the Istituto di Informatica,University of Ancona (A. Brunori, E. Faggioli and F. Pezzella);Bo reports the solution value found by algorithm CFT;Bo2 reports the solution value found by the algorithm of the Dipartimento di Matema-tica, University of Bologna (J. Beasley and A. Mingozzi);17



Name Size Dens Range LB An Bo Bo2 Fi Rm TnRAIL516 � 516� 47; 311 (�) 1.3% 1-2 182 188 182 � 216 �+ �RAIL2536 � 2; 536� 1; 081; 841 (m) 0.4% 1-2 685 745 691 765 922 692 709RAIL4284 � 4; 284� 1; 092; 610 (l) 0.2% 1-2 1051 1175 1065 1156 � 1070 1117Table 4: Results on FASTER competition instances { � Time limit: 3,000 seconds on aPC 486/33 { � Time limit: 10,000 seconds on a HP 735/125 { + in Ceria, Nobili andSassano, 1995, value 182 is reported.Fi reports the solution value found by the algorithm of the Istituto di Matematica,University of Firenze (M. Antelmi Dazio, F. Carmusciano, A. Casavola and D. DeLuca Cardillo);Rm reports the solution value found by the algorithm of the Dipartimento di Informa-tica e Sistemistica, University of Roma \La Sapienza" (S. Ceria, P. Nobili and A.Sassano);Tn reports the solution value found by the algorithm of the Istituto di Matematica,University of Trento (R. Battiti and G. Tecchiolli).We report the results of all the groups whose code was successfully run by the Ferroviedello Stato yielding feasible SCP solutions, according to the �nal report of the FASTERJury. The entries with `�' mean that the group did not partecipate in the competitionfor the given instance.Algorithm CFT provided the best solution for all the instances. It is worth men-tioning that for the medium and large instances, after a few hundred CPU seconds oursolution was better than all the other �nal solutions, with the exception of those ob-tained by Roma. Moreover, when 1/6 of the time limit had elapsed, we had alreadyobtained solution values, namely 182 for RAIL516, 691 for RAIL2536, and 1069 forRAIL4284, that were better than all the other �nal solution values. Our best solutionsfor instances RAIL2536 and RAIL4284 were found after about 1; 200 and 8; 000 CPUseconds, respectively.8.2 Instances from the LiteratureIn order to analyze the e�ectiveness and robustness of algorithm CFT, we consideredthe SCP instances from the literature. We imposed a time limit of 5; 000 CPU secondson a DECstation 5000/240. As we will see, in most cases algorithm CFT is able to �ndan optimal solution, although it does not provide a proof of optimality.18



Be LL BaCa BeCh CFTName Size Dens Range Opt Sol Time Sol Time Sol Time� Sol Time Sol Time4.1 200� 1;000 2% 1-100 429 429 11.0 429 0.5 429 0.8 429 294.8 429 2.34.2 200� 1;000 2% 1-100 512 512 11.1 512 0.4 512 1.2 512 9.0 512 1.14.3 200� 1;000 2% 1-100 516 516 6.8 516 0.3 516 1.0 516 16.4 516 2.14.4 200� 1;000 2% 1-100 494 495 12.2 495 1.2 494 1.7 494 142.0 494 9.84.5 200� 1;000 2% 1-100 512 512 7.0 512 0.3 512 0.5 512 44.1 512 2.14.6 200� 1;000 2% 1-100 560 561 15.8 560 1.4 560 7.5 560 16.1 560 19.34.7 200� 1;000 2% 1-100 430 430 9.2 430 0.5 430 1.0 430 138.6 430 2.74.8 200� 1;000 2% 1-100 492 493 11.5 493 1.4 492 6.4 492 818.7 492 22.24.9 200� 1;000 2% 1-100 641 641 20.6 641 1.5 641 9.2 641 136.1 641 1.84.10 200� 1;000 2% 1-100 514 514 11.9 514 0.3 514 1.1 514 13.5 514 1.85.1 200� 2;000 2% 1-100 253 255 17.4 253 1.5 254 11.1 253 42.1 253 3.35.2 200� 2;000 2% 1-100 302 304 20.9 302 1.8 307 20.1 302 1332.6 302 2.35.3 200� 2;000 2% 1-100 226 226 10.1 226 0.3 226 1.0 228 11.0 226 2.15.4 200� 2;000 2% 1-100 242 242 11.5 242 1.5 243 11.4 242 10.1 242 1.95.5 200� 2;000 2% 1-100 211 211 7.2 211 0.2 211 2.1 211 14.9 211 1.25.6 200� 2;000 2% 1-100 213 213 11.3 213 0.4 213 1.3 213 29.9 213 0.95.7 200� 2;000 2% 1-100 293 294 18.1 293 1.5 293 7.5 293 194.9 293 15.05.8 200� 2;000 2% 1-100 288 288 20.7 288 1.6 288 4.3 288 3733.3 288 1.65.9 200� 2;000 2% 1-100 279 279 15.7 279 0.8 279 1.5 279 13.5 279 2.65.10 200� 2;000 2% 1-100 265 265 9.8 265 0.2 265 1.1 265 19.2 265 1.36.1 200� 1;000 5% 1-100 138 141 16.8 138 1.7 140 9.2 138 46.1 138 22.66.2 200� 1;000 5% 1-100 146 146 14.5 149 1.9 147 9.2 146 210.5 146 17.86.3 200� 1;000 5% 1-100 145 145 15.0 145 1.6 145 11.5 145 11.8 145 2.36.4 200� 1;000 5% 1-100 131 131 10.3 131 1.2 131 8.3 131 4.8 131 1.86.5 200� 1;000 5% 1-100 161 162 13.3 161 2.1 163 10.4 161 12.1 161 2.2A.1 300� 3;000 2% 1-100 253 255 36.0 254 2.7 258 39.0 253 222.4 253 82.0A.2 300� 3;000 2% 1-100 252 256 44.2 255 2.9 254 40.9 252 327.9 252 116.2A.3 300� 3;000 2% 1-100 232 234 28.1 234 2.6 237 28.6 232 127.0 232 249.9A.4 300� 3;000 2% 1-100 234 235 33.5 234 2.4 235 36.3 234 45.5 234 4.7A.5 300� 3;000 2% 1-100 236 237 19.0 238 2.2 236 26.2 236 23.7 236 80.0B.1 300� 3;000 5% 1-100 69 70 28.4 70 3.0 69 29.0 69 20.0 69 4.0B.2 300� 3;000 5% 1-100 76 77 40.8 76 4.0 76 29.0 76 11.6 76 6.1B.3 300� 3;000 5% 1-100 80 80 25.4 81 4.4 81 35.1 80 709.7 80 18.0B.4 300� 3;000 5% 1-100 79 80 37.0 81 4.3 79 29.0 79 29.9 79 6.3B.5 300� 3;000 5% 1-100 72 72 26.0 72 4.1 72 32.6 72 5.3 72 3.3C.1 400� 4;000 2% 1-100 227 230 42.4 227 4.0 230 116.2 227 187.9 227 74.0C.2 400� 4;000 2% 1-100 219 223 66.0 222 4.1 220 56.1 219 40.7 219 64.2C.3 400� 4;000 2% 1-100 243 251 75.1 251 4.9 248 61.7 243 541.3 243 70.2C.4 400� 4;000 2% 1-100 219 224 63.4 224 5.4 224 68.1 219 144.6 219 61.6C.5 400� 4;000 2% 1-100 215 217 39.9 216 4.1 217 64.6 215 80.6 215 60.3D.1 400� 4;000 5% 1-100 60 61 40.9 60 4.8 61 36.6 60 13.8 60 23.1D.2 400� 4;000 5% 1-100 66 68 52.7 68 3.5 67 46.6 66 198.6 66 22.0D.3 400� 4;000 5% 1-100 72 75 55.8 75 5.8 74 47.2 72 785.3 72 22.6D.4 400� 4;000 5% 1-100 62 64 36.5 63 4.8 63 39.8 62 73.5 62 8.3D.5 400� 4;000 5% 1-100 61 62 36.7 62 4.5 61 36.2 61 79.8 61 10.3Table 5: Results on the test instances from Beasley's OR-Library { Times are given inDECstation 5000/240 CPU seconds { � Overall time for the execution of the heuristicalgorithm. 19



Be BaCa CNS BeCh CFTName Size Dens Range Best LB Sol Time Sol Time� Sol Time� Sol Time Sol TimeE.1 500� 5;000 10% 1-100 29 29 29 72.6 29 55.3 � � 29 38.2 29 26.0E.2 500� 5;000 10% 1-100 30 28 32 92.7 32 76.0 � � 30 14647.7 30 408.0E.3 500� 5;000 10% 1-100 27 27 28 92.7 28 80.9 � � 27 28360.2 27 94.2E.4 500� 5;000 10% 1-100 28 28 30 100.3 29 77.5 � � 28 539.9 28 26.3E.5 500� 5;000 10% 1-100 28 28 28 80.8 28 61.6 � � 28 35.0 28 36.6F.1 500� 5;000 20% 1-100 14 14 15 43.9 14 67.5 � � 14 76.4 14 33.2F.2 500� 5;000 20% 1-100 15 15 16 102.6 15 88.6 � � 15 78.1 15 31.2F.3 500� 5;000 20% 1-100 14 14 15 124.7 15 76.5 � � 14 266.8 14 248.5F.4 500� 5;000 20% 1-100 14 14 15 118.2 15 74.8 � � 14 209.7 14 31.0F.5 500� 5;000 20% 1-100 13 13 14 129.3 14 62.2 � � 13 13192.6 13 201.1G.1 1; 000� 10;000 2% 1-100 176 165 184 287.8 183 325.6 176 4905.5 176 30200.0 176 147.0G.2 1; 000� 10;000 2% 1-100 154 147 163 204.9 161 370.1 155 4905.5 155 360.5 154 783.4G.3 1; 000� 10;000 2% 1-100 166 153 174 318.2 175 378.6 167 4905.5 166 7841.6 166 978.0G.4 1; 000� 10;000 2% 1-100 168 154 176 292.0 176 332.2 170 4905.5 168 25304.7 168 378.5G.5 1; 000� 10;000 2% 1-100 168 153 175 277.5 172 262.6 169 4905.5 168 549.3 168 237.2H.1 1; 000� 10;000 5% 1-100 63 52 68 317.7 68 488.4 64 4905.5 64 1682.1 63 1451.1H.2 1; 000� 10;000 5% 1-100 63 52 66 293.9 67 380.7 64 4905.5 64 530.3 63 887.0H.3 1; 000� 10;000 5% 1-100 59 48 65 325.1 63 443.1 60 4905.5 59 1803.5 59 1560.3H.4 1; 000� 10;000 5% 1-100 58 47 63 333.5 62 354.7 59 4905.5 58 27241.8 58 237.6H.5 1; 000� 10;000 5% 1-100 55 46 60 303.0 58 321.3 55 4905.5 55 449.6 55 155.4Table 6: Results on the test instances from Beasley's OR-Library { Times are given inDECstation 5000/240 CPU seconds { � Overall time for the execution of the heuristicalgorithm { � Time limit.Tables 5 and 6 give the results for the instances from Beasley's OR Library (seeBeasley, 1990). Since 1990, all the proposed algorithms for SCP have been mainly testedon these instances. We compare algorithm CFT with the genetic algorithm BeCh byBeasley and Chu (1996) yielding the best published solution values on all these instances.Comparison is also made with faster heuristics, namely algorithms Be by Beasley (1990),BaCa by Balas and Carrera (1996), and CNS by Ceria, Nobili and Sassano (1995),based on Lagrangian relaxation, and algorithm LL by Lorena and Lopes (1994) basedon surrogate relaxation. Balas and Carrera give two di�erent versions of their heuristic;we report the results of the version yielding better solution values, which on the otherhand is typically three to �ve times slower.For each algorithm, we report the computing time spent up to the point where itsbest solution is found for the �rst time, with the exception of algorithms BaCa andCNS. Balas and Carrera give the overall computing time spent on the execution of theirheuristic procedure, while Ceria, Nobili and Sassano give the solution value obtained aftera pre�xed time limit. Furthermore, in Beasley and Chu (1996) the computational resultsrefer to 10 trials for each instance, each corresponding to a di�erent set of parametersfor the genetic algorithm. For each instance, we report for algorithm BeCh an estimateof the time needed for �nding the best solution, computed as follows. Among the 10trials, we consider the �rst one, say the k-th, in which the best solution value is found,20



and set the time to (k � 1) �AET +AST , where AET is the average execution time fora single trial, and AST is the average time for �nding the best solution in a trial; boththese average values are given in Beasley and Chu (1996).Times in the tables are in DECstation 5000/240 CPU seconds, obtained by estimat-ing the times of other machines according to the performances reported in Dongarra(1993). This leads to some unavoidable approximation when comparing codes runningon di�erent computers.Table 5 reports the results for instances in Classes 4, 5, 6, A, B, C, and D, for whichthe optimal solution value is known (see column \Opt"). Ceria, Nobili and Sassano donot report any result for these instances. For all the instances, both algorithms BeChand CFT �nd the optimum, with the exception of instance 5.3, for which BeCh �ndsa solution of value 228, while CFT �nds an optimal solution of value 226. AlgorithmsBe, LL and BaCa give solution values which are on average slightly worse. The averagecomputing time is about 2 seconds for algorithm LL, 25 seconds for Be, BaCa and CFT,and 250 seconds for BeCh. Therefore algoritm CFT is much faster than BeCh, while itsspeed is comparable to that of Be and BaCa. As to LL, it is by far the fastest algorithm,although the computing times reported in Lorena and Lopes (1994) do not include thetime for the initial reduction. In 18 cases, however, this algorithm is not capable of�nding the optimal solution.Table 6 reports the results for larger instances (Classes E, F, G, and H) for which theoptimal solution value was not known. In order to check the quality of the heuristic solu-tions, we tried to solve these instances by using the CPLEX 3.0 mixed integer optimizeron a DECstation 5000/240 with 32 Mbytes of core memory and 128 Mbytes of virtualmemory. On each instance, we �rst ran CPLEX giving as initial upper bound the valueof the best solution known. We set the time limit to 600,000 seconds, deactivated thenode limit, and used the depth-�rst node selection. Column \Best" reports the value ofthe best solution found by CPLEX within the time limit (possibly, CPLEX did not im-prove the solution given on input). If optimality was proven, the same value is reportedin column \LB". Otherwise, in order to improve the lower bound value, we ran againCPLEX with best-�rst node selection, reporting in column \LB" the best lower boundfound in the two trials. Due to the di�culty of these instances, CPLEX always ran out ofmemory when best-�rst node selection was used. Timing is not reported for the CPLEXruns, which were made only for the purpose of producing an optimal solution or a tightlower bound. Anyway, the CPLEX runs took much longer than those of the heuristicalgorithms. In particular, for the instances for which optimality was proven, the timerequired by CPLEX is about 1,000 times larger than that of algorithm CFT.Lorena and Lopes do not report results for the instances in Table 6, while Ceria,21
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Figure 3: Comparison between the average computing times required by algorithms Be,LL, BaCa, BeCh and CFT on each instance class in Beasley's OR-Library { Times aregiven in DECstation 5000/240 CPU seconds.Nobili and Sassano report results only for the instances in Classes G and H. For all theseinstances, algorithm BeCh yields the best solution known in the literature. AlgorithmCFT always �nds solutions that are at least as good as those of BeCh, yielding a bettersolution for instances G.2, H.1 and H.2. Algorithm CNS gives solutions which are onaverage slightly worse than those of BeCh and CFT, but better than those of Be andBaCa. The average computing time is about 200 seconds for algorithms Be and BaCa,400 seconds for CFT, and 7500 seconds for BeCh. No fair comparison with the computingtimes of algorithm CNS can be made.Figures 3 and 4 report an overall comparison of algorithms Be, LL, BaCa, BeCh andCFT on each instance class from Beasley's OR-Library. The lines between the pointsin these �gures have no meaning, and are only given for the sake of readibility. The�rst �gure gives the average computing time on each class, showing that algorithm CFTrequires on average the same computing time as Be and BaCa, with the exception ofClasses A, G and H. In this �gure, we reported the computing time of BeCh up to ClassD, since for the bigger classes the algorithm is at least one order of magnitude slower thanthe others. The second �gure reports the average percentage gap between the solutionfound and the best one known, which is always found by algorithm CFT. This �gureshows that, on these instances, the quality of the solutions found by algorithms Be, LLand BaCa considerably decreases when the size of the instances increases.We also tested algorithm CFT on the SCP instances arising from crew scheduling22
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4 4 4 4 4 4 4 4 4 4 4Figure 4: Comparison between the average percentage errors with respect to the bestsolution known for algorithms Be, LL, BaCa, BeCh and CFT on each instance class inBeasley's OR-Library.in some airline companies, mentioned in Wedelin (1995), with the exception of instanceSASD9imp1, for which we could not get the same data as reported in Wedelin (1995).In these instances, each column (pairing) has a cost taking into account several factors,and is expressed by very large numbers (with up to 7 digits). This is a substantial dif-ference with respect to the previously-mentioned railway instances, where each columncost is either 1 or 2, and to the instances from the OR Library, where costs are alwaysin f1; : : : ; 100g. We compare algorithm CFT with algorithm Wed proposed by Wedelin(1995). For all instances but the last one, an optimal solution was found by CPLEX,and the corresponding values are reported in column \Opt" in Table 7. For instanceSASD9imp2, this column reports the rounded-up solution value of the LP relaxation.Wedelin reports the computing time for the overall execution of his algorithm, but notthat for �nding the best solution for the �rst time; therefore a comparison of the com-puting times is not easy. The solution values are similar for all instances: for instancesA320coc and SASD9imp2 Wed provides a slightly better solution, whereas the conversehappened for instance SASjump. No computational result for Beasley's OR-Library testinstances is reported in Wedelin (1995).Finally, table 8 gives results for the real-world instances mentioned in Balas andCarrera (1996). These instances arise from crew scheduling applications, either in airline(Class `AA') or bus (Class `BUS') companies. For these instances, an optimal solutionwas found by Balas and Carrera's branch-and-bound algorithm, requiring, on average,23



Wed CFTName Size Dens Range Opt Sol Time� Sol TimeB727scratch 29� 157 8.2% 1,600-11,850 94,400 94,400 4.7 94,400 0.3ALITALIA 118� 1; 165 3.1% 2,200-2,110,900 27,258,300 27,258,300 37.2 27,258,300 6.2A320 199� 6; 931 2.3% 1,600-2,111,450 12,620,100 12,620,100 216.9 12,620,100 79.5A320coc 235� 18;753 1.9% 1,900-1,812,000 14,495,500 14,495,500 1023.7 14,495,600 577.8SASjump 742� 10;370 0.6% 4,720-55,849 7,338,844 7,340,777 806.8 7,339,537 396.3SASD9imp2 1;366� 25;032 0.3% 3,860-35,200 5,261,088� 5,262,190 1579.7 5,263,640 2082.1Table 7: Results on the airline instances from Wedelin { Times are given in DECstation5000/240 CPU seconds { � LP lower bound { � Overall time for the execution of theheuristic algorithm.100 CPU seconds. We also report the results of Balas and Carrera's heuristic (again theversion yielding better values). Algorithm CFT is capable of �nding an optimal solutionin all cases, within a computing time which is typically shorter (with a few exceptions)than that required for the overall execution of algorithm BaCa.9 ConclusionsWe have proposed a new heuristic for the set covering problem, based on Lagrangianrelaxation. The algorithm uses subgradient optimization coupled with a very e�ectivepricing technique for cutting computing-time. The convergence properties of the stan-dard subgradient procedures are improved on by taking into account the massive dualdegeneracy typically found in large scale instances from crew scheduling applications.In particular, we propose a new way of de�ning the ascent direction and the step size,allowing for a faster convergence to near-optimal dual solutions. We also describe andtest computationally several score-de�nition rules to be used within greedy algorithms,exploiting the dual information available during subgradient optimization. A crucial stepof our algorithm is that of variable �xing. Extensive computational testing shows thee�ectiveness of the �xing criteria we propose.Although designed for solving very large scale instances coming from real-world rail-way applications, our algorithm proved very robust: in 92 out of 94 instances of our testbed we were able to �nd, within short computing time, the optimal (or the best known)solution. Moreover, among the 18 instances for which the optimum is not known, in 6cases our solution is better than any other solution found by previous techniques. Wedo not know of any other commercial or academic code with comparable performance.The proposed approach is also suitable for considering additional constraints arising inreal-world applications. We are currently developing an extension of our method whichtakes into account several types of base constraints arising in railway crew scheduling24



BaCa CFTName Size Dens Range Opt Sol Time� Sol TimeAA03 106� 8; 661 4.05% 91-3619 33,155 33,157 96.4 33,155 61.0AA04 106� 8; 002 4.05% 91-3619 34,573 34,573 39.2 34,573 3.6AA05 105� 7; 435 4.05% 91-3619 31,623 31,623 53.9 31,623 3.1AA06 105� 6; 951 4.11% 91-3619 37,464 37,464 44.4 37,464 5.2AA11 271� 4; 413 2.53% 35-2966 35,384 35,478 72.3 35,384 193.7AA12 272� 4; 208 2.52% 35-2966 30,809 30,815 48.0 30,809 53.8AA13 265� 4; 025 2.60% 35-2966 33,211 33,211 19.6 33,211 8.3AA14 266� 3; 868 2.50% 35-2966 33,219 33,222 86.2 33,219 30.3AA15 267� 3; 701 2.58% 35-2966 34,409 34,510 39.9 34,409 18.8AA16 265� 3; 558 2.63% 35-2966 32,752 32,858 54.5 32,752 33.6AA17 264� 3; 425 2.61% 35-2966 31,612 31,717 47.0 31,612 10.9AA18 271� 3; 314 2.55% 35-2966 36,782 36,866 66.2 36,782 13.5AA19 263� 3; 202 2.63% 35-2966 32,317 32,317 27.6 32,317 5.9AA20 269� 3; 095 2.58% 35-2966 34,912 35,160 34.4 34,912 13.6BUS1 454� 2; 241 1.89% 120-877 27,947 27,947 62.8 27,947 5.0BUS2 681� 9; 524 0.51% 120-576 67,760 67,868 356.0 67,760 19.2Table 8: Results on the real-world instances from Balas and Carrera { Times are givenin DECstation 5000/240 CPU seconds { � Overall time for the execution of the heuristicalgorithm.problems. Preliminary computational results are promising. More generally, our frame-work can be adapted to other 0-1 linear programs. Indeed, the main ideas of the scheme(Lagrangian optimization coupled with pricing, the use of Lagrangian dual informationto drive a simple heuristic, variable �xing, and re�ning) can be applied in a more generalcontext, provided that an e�ective heuristic algorithm is available as a substitute forprocedure GREEDY.AcknowledgementsWe are grateful to Ferrovie dello Stato SpA, in particular to Pier Luigi Guida, for havingorganized the FASTER competition. We also thank Egon Balas and Anders Nilsson forproviding us with the instances given in Tables 8 and 7, respectively, the anonymousreferees for their useful comments, and Stefano Nucci for his help in programming.References[1] Associazione Italiana di Ricerca Operativa, Ferrovie dello Stato SpA, \Metodi diOttimizzazione delle Risorse su Larga Scala - F.A.S.T.ER", Bando di Concorso,March 1994. 25
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