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Abstract

In the �rst part of the paper� we present a framework for describing basic tech�

niques to improve the representation of a mixed integer programming problem� We

elaborate on identi�cation of infeasibility and redundancy� improvement of bounds

and coe�cients� and �xing of binary variables� In the second part of the paper� we

discuss recent extensions to these basic techniques and elaborate on the investigation

and possible uses of logical consequences�

Subject Classi�cation� Programming� Integer

Other key words� Preprocessing� Probing

The success of branch�and�cut algorithms for combinatorial optimization problems ��� ���
and large scale ��� linear programming problems ��� has lead to a renewed interest in
mixed integer programming	 The key idea of the branch�and�cut approach is reformula�
tion	 Problems are reformulated so as to make the di
erence in the objective function
values between the solutions to the linear programming relaxation and the integer pro�
gram as small as possible	

There are various ways to tighten the linear programming relaxation of an integer
program	 Preprocessing and probing techniques ��� �� �� 
� �� try� among others things�
to reduce the size of coe�cients in the constraint matrix and to reduce the size of bounds
on the variables	 Constraint generation techniques ��� ��� try to generate strong valid
inequalities	 Johnson ��� discusses a wide range of issues related to modeling and strong
linear programs for mixed integer programming	

It is well known� that there are many ways to represent a mixed integer program
by linear inequalities while guaranteeing that the underlying set of feasible solutions is
unchanged	 In the �rst part of this paper� we present a framework for describing various
techniques that modify a given representation of a mixed integer programming problem
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in such a way that the set of feasible solutions of the linear programming relaxation is
reduced� but the set of feasible solutions to the mixed integer program is not a
ected	
This may reduce the integrality gap� i	e	� the di
erence between the objective function
values of the linear programming relaxation and the integer program� which is crucial in
the context of a linear programming based branch and bound algorithm	 We concentrate
on identifying infeasibility and redundancy� improving bounds and coe�cients� and �xing
variables	

Several other papers have been written on this subject� most notably Dietrich and
Escudero ��� and Ho
man and Padberg �
�	 Dietrich and Escudero consider coe�cient
reduction for ��� linear programming problems containing variable upper bound con�
straints and Ho
man and Padberg discuss the implementation of coe�cient reduction
for ��� linear programming problems containing special ordered set constraints	 Both
papers deal with pure ��� linear programming problems and in both papers the general
ideas are somewhat obscured by the speci�c perspective	

The purpose of this paper is twofold	 First� to introduce a framework for describ�
ing preprocessing and probing techniques for mixed integer programming problems and
survey some of the well�known basic techniques	 In doing so� we clearly separate the
underlying ideas from the implementation issues	 Second� to present some of the� more
recently developed� techniques that are currently employed by the state�of�the�art general
purpose mixed integer optimizers	

� Basic preprocessing and probing techniques

The underlying idea of the basic techniques to improve a given representation of a mixed
integer programming problem minfcx � hy � Ax � Gy � b� x � f�� �gn� y � RRmg is to
analyze each of the inequalities of the system of inequalities de�ning the feasible region
in turn� trying to establish whether the inequality forces the feasible region to be empty�
whether the inequality is redundant� whether the inequality can be used to improve the
bounds on the variables� whether the inequality can be strengthened by modifying its
coe�cients� or whether the inequality forces some of the binary variables to either zero
or one	

We assume that the inequality currently under consideration is of the form
X

j�B�

ajxj �
X

j�B�

ajxj �
X

j�C�

gjyj �
X

j�C�

gjyj � b�

where B � B��B� is the set of binary variables� C � C��C� is the set of both integer
and continuous variables� and aj � � for j � B and gj � � for j � C	 Note that we
do not distinguish integer and continuous variables	 Furthermore� we assume that the
lower and upper bounds of integer and continuous variables are denoted by lj and uj 	
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For the remainder of this section� let Ax � Gy � b� x � f�� �gn� y � RRm be a
given representation of a mixed integer programming problem� let aix � giy � bi be
any inequality of the system� and let Aix � Giy � bi denote the system of inequalities
obtained from Ax� Gy � b by deleting row aix� giy � bi	

��� Basic preprocessing techniques

Identi�cation of infeasibility

Consider the following mixed integer programming problem

z � min
X

j�B�

aijxj �
X

j�B�

aijxj �
X

j�C�

gijyj �
X

j�C�

gijyj

subject to

Aix�Giy � bi

l � y � u

x � f�� �gn� y � RRm�

If z � bi� then obviously the feasible region is empty	 Unfortunately� the above mixed
integer programming problem is as hard to solve as the original problem� but it should
be clear that any lower bound on z su�ces �z � zLB � bi�	 The simplest� but also
weakest� lower bound is obtained by completely discarding the system Aix � Giy � bi	
In that case� we can conclude that the problem is infeasible if

�
X

j�B�

aij �
X

j�C�

gijlj �
X

j�C�

gijuj � bi�

Identi�cation of redundancy

Consider the following mixed integer programming problem

z � max
X

j�B�

aijxj �
X

j�B�

aijxj �
X

j�C�

gijyj �
X

j�C�

gijyj

subject to

Aix�Giy � bi

l � y � u

x � f�� �gn� y � RRm�
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If z � bi� then obviously the inequality aix� giy � bi is redundant	 Of course� the above
mixed integer programming problem is as hard to solve as the original problem� but it
should be clear that any upper bound on z su�ces �z � zUB � bi�	 The simplest� but also
weakest� upper bound is obtained by completely discarding the system Aix � Giy � bi	
In that case� we can conclude that the inequality is redundant if

X

j�B�

aij �
X

j�C�

gijuj �
X

j�C�

gijlj � bi�

Improving bounds

Consider a variable yk � k � C� and the following integer programming problem

zk � min
X

j�B�

aijxj �
X

j�B�

aijxj �
X

j�C�nfkg

gijyj �
X

j�C�

gijyj

subject to

Aix�Giy � bi

l � y � u

x � f�� �gn� y � RRm�

Clearly� yk � �bi � zk��gik	 Therefore� the upper bound uk on variable yk � k � C� can
be improved if �bi � zk��g

i
k � uk	 When we discard the system Aix � Giy � bi� we can

conclude that the upper bound on variable yk� k � C� can be improved if

�bi �
X

j�B�

aij �
X

j�C�nfkg

gijlj �
X

j�C�

gijuj��g
i
k � uk

Next� consider a variable yk � k � C� and the following integer programming problem

zk � min
X

j�B�

aijxj �
X

j�B�

aijxj �
X

j�C�

gijyj �
X

j�C�nfkg

gijyj

subject to

Aix�Giy � bi

l � y � u

x � f�� �gn� y � RRm�

Obviously� yk � �zk � bi��g
i
k	 Therefore� the lower bound lk on a variable yk� k � C�

can be improved if �zk � bi��gik � lk	 When we discard the system Aix � Giy � bi� we
can conclude that the lower bound on variable yk� k � C� can be improved if

��
X

j�B�

aij �
X

j�C�

gijlj �
X

j�C�nfkg

gijuj � bi��g
i
k � lk
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��� Basic probing techniques

Probing techniques are based on the investigation of logical consequences� i	e	� tenta�
tively setting a binary variable xk to either � or � and exploring the consequences	 In
the framework presented above� this amounts to adding the constraint xk � � or xk � �
to the set of constraints and applying the basic preprocessing techniques to this extended
formulation	 Obviously� the �ndings have to be interpreted di
erently	

Fixing variables

Consider a binary variable xk � k � B� and the following extended mixed integer pro�
gramming problem

zk � min
X

j�B�

aijxj �
X

j�B�

aijxj �
X

j�C�

gijyj �
X

j�C�

gijyj

subject to

Aix�Giy � bi

xk � �

l � y � u

x � f�� �gn� y � RRm�

In case zk � bi� then obviously the feasible region of this extended formulation is empty	
Therefore� xk �� � in any feasible solution of the original formulation and xk can be �xed
to �	 When we discard the system Aix�Giy � bi� we can �x the variable xk to � if

aik �
X

j�B�

aij �
X

j�C�

gijlj �
X

j�C�

gijuj � bi�

Next� consider a binary variable xk� k � B� and the following extended mixed integer
programming problem

zk � min
X

j�B�

aijxj �
X

j�B�

aijxj �
X

j�C�

gijyj �
X

j�C�

gijyj

subject to

Aix�Giy � bi

xk � �
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l � y � u

x � f�� �gn� y � RRm�

If zk � bi� then obviously the feasible region of this extended formulation is empty	
Therefore� xk �� � in any feasible solution of the original formulation and xk can be �xed
to �	 When we discard the system Aix�Giy � bi� we can �x the variable xk to � if

�
X

j�B�nfkg

aij �
X

j�C�

gijlj �
X

j�C�

gijuj � bi�

Improving coe�cients

Consider a binary variable xk � k � B� and the following extended mixed integer pro�
gramming problem

zk � max
X

j�B�

aijxj �
X

j�B�

aijxj �
X

j�C�

gijyj �
X

j�C�

gijyj

subject to

Aix�Giy � bi

xk � �

l � y � u

x � f�� �gn� y � RRm�

If zk � bi� then obviously the inequality aix � giy � bi is redundant in this extended
formulation	 Consequently� under the assumption that xk � �� the set of feasible solu�
tions is not a
ected if bi and aik are reduced by � � bi � zk	 Furthermore� also under
the assumption that xk � �� the set of feasible solutions is not a
ected if bi and aik are
reduced by � � bi � zk 	 To see this� rewrite the inequality aix� giy � bi as

X

j�B�nfkg

aijxj �
X

j�B�

aijxj �
X

j�C�

gijyj �
X

j�C�

gijyj � bi � aik �

X

j�B�nfkg

aijxj �
X

j�B�

aijxj �
X

j�C�

gijyj �
X

j�C�

gijyj � �bi � ��� �aik � �� � � RR� �

X

j�B�nfkg

aijxj � �aik � ��xk �
X

j�B�

aijxj �
X

j�C�

gijyj �
X

j�C�

gijyj � bi � � � � RR��






Therefore� ak and bi can be decreased by bi � zk without changing the set of feasible
solutions	 When we discard the system Aix� Giy � bi� we can decrease ak and bi if

X

j�B�nfkg

aij �
X

j�C�

gijuj �
X

j�C�

gijlj � bi�

Next� consider a binary variable xk� k � B� and the following extended mixed integer
programming problem

zk � max
X

j�B�

aijxj �
X

j�B�

aijxj �
X

j�C�

gijyj �
X

j�C�

gijyj

subject to

Aix�Giy � bi

xk � �

l � y � u

x � f�� �gn� y � RRm�

If zk � bi� then obviously the inequality aix� giy � bi is redundant in this extended for�
mulation	 Consequently� under the assumption that xk � �� the set of feasible solutions
is not a
ected if aik is decreased by � � bi� zk 	 Furthermore� also under the assumption
that xk � �� the set of feasible solutions is not a
ected if aik is decreased by � � bi � zk	

Therefore� ak can be decreased by bi�zk without changing the set of feasible solutions	
When we discard the system Aix�Giy � bi� we can decrease ak if

X

j�B�

aij � aik �
X

j�C�

gijuj �
X

j�C�

gijlj � bi�

Observe that if the simplest bounds are used� i	e	� the system Aix�Giy � bi is discarded�
only variables appearing in the constraint under consideration can be �xed and only
coe�cients of variables appearing in the constraint under consideration can be modi�ed	
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��� Implementation

The basic preprocessing and probing techniques can be implemented very e�ciently	
De�ne

Limax �
X

j�B�

aij �
X

j�C�

gijuj �
X

j�C�

gijlj

and

Limin � �
X

j�B�

aij �
X

j�C�

gijlj �
X

j�C�

gijuj �

i	e	� the maximum and minimum value of the summation on left�hand�side of the inequal�
ity under consideration	 It is not hard to see that the basic preprocessing and probing
techniques require the following tests

� identi�cation of infeasibility�

Limin � bi

� identi�cation of redundancy�

Limax � bi

� improvement of bounds�

�bi � �Limin � giklk���g
i
k � uk yk � k � C�

��Limin � gikuk�� bi��g
i
k � lk yk � k � C�

� �xing of variables�

Limin � aik � bi xk � k � B� �B�

� improvement of coe�cients�

Limax � aik � bi xk � k � B� � B�
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Obviously� all these tests can be performed in constant time once the values Limax and
Limin have been computed	 As a consequence� the application of the basic preprocessing
and probing techniques to all the inequalities of the system Ax� Gy � b requires O�n�
time� where n is the total number of nonzero�s in the system	

This concludes our discussion of the basic techniques to improve a given representation of
a mixed integer programming problem	 We end this section with some observations	 We
have assumed� without explicitly stating it� that we are always examining an inequality	
The techniques have to be modi�ed slightly in case of an equality	 The techniques
have been presented as simple and e�ciently solvable approximations of mixed integer
programming problems	 The simplicity and computational e�ciency is a consequence of
restricting attention to information in a single inequality� i	e	� discarding the information
contained in the system Aix� Giy � bi	

� Advanced preprocessing and probing techniques

��� Special substructures

As observed in the previous section� the computational e�ciency is a consequence of
restricting attention to information in a single constraint	 However� there is a trade
o
 between e�ciency and e
ectivity� more e
ective� but computationally less e�cient�
techniques are obtained when information from more than one inequality is used	

Dietrich and Escudero ��� and Ho
man and Padberg �
� investigate the trade o

between e�ciency and e
ectivity for special substructures� consisting of more than one
constraint� that often appear in ��� linear programming problems	

Dietrich and Escudero ��� analyze coe�cient improvement for the following special
substructure

X

j�J

fajzj �
X

k�Ij

akxkg � b

xk � zj 	k � Ij

xk� zj � f�� �g�

i	e	� they incorporate variable upper bound constraints xk � zj in the analysis	 Unfor�
tunately� no computational results are reported	

Ho
man and Padberg �
� analyse identi�cation of infeasibility and redundancy as
well as coe�cient improvement for the following substructure

X

j�J

X

k�Sj

ajkxjk � b

�



X

k�Sj

xjk � � 	j � J

xjk � f�� �g�

i	e	� they incorporate non�overlapping clique constraints
P

k�Sj xjk � � �also called spe�
cial ordered set constraints� in their analysis	 Computational results show an increase
in e
ectiveness at a moderate decrease in e�ciency	

��� Logical implications

The basic preprocessing and probing techniques can be used e
ectively to derive logical
implications between variables	

First� consider a binary variable xk� � k� � B and a continuous variable yk � k � C
and the following extended integer programming problems

zi�k� � min
X

j�B�

ai�j xj �
X

j�B�

ai�j xj �
X

j�C�nfkg

gi�j yj �
X

j�C�

gi�j yj

subject to

Ai�x� Gi�y � bi�

xk� � �

l � y � u

x � f�� �gn� y � RRm�

and

zi�k� � max
X

j�B�

ai�j xj �
X

j�B�

ai�j xj �
X

j�C�

gi�j yj �
X

j�C�nfkg

gi�j yj

subject to

Ai�x� Gi�y � bi�

xk� � �

l � y � u

x � f�� �gn� y � RRm�
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Clearly� yk � �bi� � zi�k���g
i�
k and yk � �zi�k� � bi���g

i�
k � i	e	� an analysis of the extended

system of inequalities may reveal that when xk� � �� the upper and lower bound on
the variable yk may be improved	 In case the improved bounds �x the variable yk�
i	e	� lk � uk � vk � we have established the logical implication xk� � � � yk � vk	
Analogously� it may be possible to establish a logical implication xk� � �� yk � vk	

Second� consider two binary variables xk� � k� � B and xk� � k� � B and the following
extended formulation

z � min
X

j�B�

aijxj �
X

j�B�

aijxj �
X

j�C�

gijyj �
X

j�C�

gijyj

subject to

Aix�Giy � bi

xk� � �

xk� � �

l � y � u

x � f�� �gn� y � RRm�

If z � bi� then obviously the feasible region of this extended formulation is empty	 In
that case� the following logical implications have been identi�ed

xk� � �� xk� � ��

xk� � �� xk� � ��

Similarly� the following logical implications can be identi�ed

xk� � �� xk� � ��

xk� � �� xk� � ��

xk� � �� xk� � ��

xk� � �� xk� � ��

xk� � �� xk� � ��

xk� � �� xk� � ��
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Implementation

The identi�cation of logical implications proceeds in two phases	 Suppose� without loss
of generality� that we want to identify logical implications associated with xk� � �	 In
the �rst phase� the system Ax � Gy � b is reduced by eliminating variable xk� � i	e	�
substituting xk� � � throughout	 In the second phase� each of the inequalities of the
reduced system is analysed in turn� using the basic preprocessing and probing techniques
to modify bounds and to �x variables� to establish whether any variables can be �xed	
If so� logical implications have been identi�ed	

Logical implications can be used to strengthen various functions embedded in mixed
integer optimizers� such as probing� knapsack cover generation� �ow cover generation�
and primal heuristics	

����� Enhanced probing techniques

The basic probing techniques tentatively set a binary variable to one of its bounds and
explore the logical consequences	 Suppose� without loss of generality� that a variable xk
is tentatively set to its upper bound	 If there already exist logical implications associated
with variable xk being �xed at its upper bound� they can be e
ectuated during the search
for other logical consequences	 Observe that the e
ectuation of one logical implication
may trigger e
ectuation of various other logical implications	

Note that the system Aix�Giy � bi is no longer completely discarded� since existing

logical implications may have been established during the analysis of inequalities other

than the one currently under consideration� Therefore� �xing variables and improving
coe�cients of variables is no longer restricted to variables appearing in the constraint
under consideration	 See for an example of this phenomenon the example below	

Implementation

Suppose� without loss of generality� that we probe with variable xk set to its upper bound	
In the �rst phase� the system Ax � Gy � b is reduced by eliminating all the variables
that are known to be �xed when the system Ax�Gy � b is extended with the equality
xk � �� i	e	� all the logical implications that become active when xk is tentatively �xed
at � are e
ectuated	 In the second phase� each of the inequalities of the reduced system
is analysed in turn� using the basic preprocessing techniques to identify infeasibility and
redundancy	 If infeasibility is detected� the variable on which we probe can be �xed
permanently� if redundancy is detected� the coe�cient of the variable on which we probe
can be improved in the inequality currently under consideration	

The set of variables that are �xed when the system Ax � Gy � b is extended with
the equality xk � � can be determined e�ciently using the logical implications	 Conse�
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quently� the reduced system can de determined e�ciently	

Example

In order to provide some insight into the e
ectiveness of logical implications� consider
the following mixed integer program

min ��x� � ��x� � �
x� � �y� � �y� � �y�

subject to

y� � �y� � ��

y� � �y� � ��

�y� � y� � ��

y� � ��x�

y� � ��x�

y� � �x�

y�� y�� y� � IR�

x�� x�� x� � f�� �g

Application of the basic preprocessing techniques will set the upper bounds on the contin�
uous variables to ��� �� and � respectively	 The logical implications that can be identi�ed
from the resulting formulation and their derivations are listed below

Implication Derivation

x� � �� y� � � �x� � �� y� � ��
y� � �� �x� � �� y� � �� y� � ���
y� � � �x� � �� y� � �� y� � ��
x� � � �x� � �� y� � �� y� � ��� x� � ��
x� � � �x� � �� y� � �� y� � �� x� � ��

x� � �� y� � � �x� � �� y� � ��
y� � �� �x� � �� y� � �� y� � ���
x� � � �x� � �� y� � �� y� � ��� x� � ��

x� � �� y� � � �x� � �� y� � ��
x� � � �x� � �� y� � �� y� � ��� x� � ��

Note that some of these logical implications would not have been identi�ed if the upper
bounds on the continuous variables would not have been improved by the basic pre�
processing techniques	 Also note that y� � � � y� � ��� although� according to our
de�nition� not a logical implication itself� is used in the derivation of x� � �� x� � �	
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Application of the enhanced probing techniques results in the following improved
formulation

min ��x� � ��x� � �
x� � �y� � �y� � �y�

subject to

��x� � y� � �y� � 
�

�x� � y� � �y� � ��

��x� � �y� � y� � ��

y� � ��x�

y� � ��x�

y� � �x�

� � y� � ��

� � y� � ��

� � y� � �

x�� x�x� � f�� �g

The value of the solution of the initial linear programming relaxation is ��	��	 The value
of the solution of the improved linear programming relaxation is ��	��	 The value of the
optimal solution is ��	��	

����� Clique inequalities

Logical implications can be used to derive clique inequalities� i	e	� inequalities with only
binary variables of the form

P
j�S� xj �

P
j�S� xj � � � jS�j	 Clique inequalities and

their theoretical foundation are described in Johnson and Padberg ���	 The construction
of clique inequalities is based on logical implications between binary variables	 Note
that the four types of logical implications between binary variables can be represented
as follows�

� xi � �� xj � �

� xi � �� xj � �

� xi � �� xj � �

� xi � �� xj � �

��



where xk � ��xk denotes the complement of xk	 That is� a logical implication identi�es
two variables� either original or complemented� that cannot be � at the same time in
any feasible solution	 Construct the graph G � �Bo �Bc� E� with Bo the set of original
binary variables� Bc the set of complemented binary variables� and E the set of edges�
where two variables are joined by an edge if and only if the two variables cannot be � at
the same time in a feasible solution	 Consequently� each implication de�nes an edge in
the graph	 Furthermore� there is an edge between each variable and its complement	

It is not hard to see that every �maximal� clique C � Co � Cc� with Co 
 Bo and
Cc 
 Bc� de�nes a valid clique�inequality

X

j�Co

xj �
X

j�Cc

xj � �

which implies
X

j�Co

xj �
X

j�Cc

xj � �� jCcj

Two important observations can be made with respect to these clique�inequalities�

� if jCo � Ccj � � and k � Co � Cc� then xj � � for all j � Co n fkg and xj � � for
all j � Cc n fkg	

� if jCo � Ccj � � the problem is infeasible	

Example

Consider the following system of inequalities

�x� � x� � �x� � �

�x� � �x� � �x� � �

x� � �x� � �x� � �

�x� � x� � �x� � 


x�� x�� x�� x� � f�� �g

The following implication inequalities will be identi�ed
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Implication Derivation

x� � �� x� � � �x� � �� x� � ��
x� � � �x� � �� x� � �� x� � ��
x� � � �x� � �� x� � ��

x� � �� x� � � �x� � �� x� � ��

x� � �� x� � � �x� � �� x� � ��
x� � � �x� � �� x� � ��

x� � �� x� � � �x� � �� x� � ��

The graph G � �Bo � Bc� E� for the system of inequalities is given in Figure � and
contains one maximal clique with cardinality greater than two� fx�� x�� x�g	 This clique
de�nes the inequality x� � x� � x� � �	

Figure �	 Auxiliary graph

����� Implication inequalities

Logical implications de�ne valid inequalities	 These inequalities will be referred to as
implication inequalities and are given below

� xi � �� yj � vj implies yj � lj � �vj � lj�xi	

� xi � �� yj � vj implies yj � uj � �uj � vj�xi	

� xi � �� yj � vj implies yj � vj � �vj � lj�xi	

� xi � �� yj � vj implies yj � vj � �uj � vj�xi	

�




Automatic disaggregation

A very important consequence of generating implication inequalities is that constraint
will automatically be disaggregated	 Consider an inequality

X

j�S

yj � �
X

j�S

uj�xk�

where yj � RR� for all j � S and xk � f�� �g	 An analysis of this inequality will
identify the logical implications xk � �� yj � � for all j � S	 Each of them de�nes an
implication inequality

yj � ujxk�

Collectively these implication inequalities provide a stronger linear approximation of the
feasible region than the original inequality	

Example

To provide a more concrete example� consider the following instance of the capacitated
facility location problem �CFLP�	 There are four possible locations for facilities and
three demand points	 If a facility is opened in one of the four locations� it will have
a production capacity of ��� units	 The costs associated with opening a facility at a
certain location are ���� ���� ���� and ��� respectively� the demand points require ���
��� �� units respectively	

The mixed integer program for this instance of CFLP is given by

min ���x� � ���x� � ���x� � ���x� �

��y�� � ��y�� � �
y�� � ��y�� �

��y�� � ��y�� � ��y�� � ��y�� �

��y�� � �
y�� � ��y�� � ��y��

subject to

y�� � y�� � y�� � y�� � ��

y�� � y�� � y�� � y�� � ��

y�� � y�� � y�� � y�� � ��

y�� � y�� � y�� � ���x�

y�� � y�� � y�� � ���x�
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y�� � y�� � y�� � ���x�

y�� � y�� � y�� � ���x�

yij � IR� xi � f�� �g�

Application of the basic preprocessing techniques will improve the upper bounds on the
continuous variables to yij � dj � where dj indicates the demand associated with point j	
The following implication inequalities will be identi�ed

yij � djxj

The solution to the initial linear programming relaxation is given by y�� � ��� x� �
���� y�� � ��� x� � ���� y�� � ��� x� � ��� and all other variables equal to �	 Obviously�
the solution violates the three implication inequalities

y�� � ��x�

y�� � ��x�

y�� � ��x�

If these three implication inequalities are added to the formulation and the thus obtained
linear program is solved� the solution is integral and therefore also optimal	

Observe that the clique inequalities as well as implication inequalities are globally valid
and can thus be used e
ectively in a branch�and�cut approach� i	e	� at every node of
the branch�and�bound tree	 Furthermore� these inequalities may also strengthen various
other components of mixed integer optimizers	 The variable upper bound constraints�
that have been identi�ed as implication inequalities� and the clique constraints may
strengthen the preprocessing techniques based on special substructures �such as the
ones studied by Dietrich and Escudero ��� and Ho
man and Padberg �
��	 Variable
upper bound constraints are also of crucial importance for the generation of simple and
extended generalized �ow cover inequalities as done by systems such as MPSARX ����
and MINTO ����	

����� Elimination of variables

Logical implications associated with �xing a binary variable at � together with logical
implications associated with �xing that variable at � may even reveal equalities� which
may be used to eliminate variables�

� xi � �� yj � uj and xi � �� yj � vj imply yj � vj 	

� xi � �� yj � lj and xi � �� yj � uj imply yj � lj � �uj � lj�xi	

� xi � �� yj � uj and xi � �� yj � lj imply yj � uj � �uj � lj�xi	
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��� Probing on constraints

The probing techniques exploit the fact that in any feasible solution the value of a binary
variable is either � or �	 Or� formulated slightly di
erent� the probing techniques exploit
the fact that there exists a simple scheme to divide the solution space in two parts	 This
observation suggests that in certain situations it is also possible to probe on constraints�
as opposed to probing on variables	

Consider a clique inequality
P

j�N� xj �
P
j�N� xj � �� jN�j	 The value of the left

hand side will be either �jN�j or �� jN�j	 If it is �jN�j� then xj � � for all j � N�

and xj � � for all j � N�	 If it is �� jN�j� then either xk � � for some k � N�� xj � �
for all j � N� n fkg� and xj � � for all j � N�� or xj � � for all j � N�� xk � � for
some k � N�� and xj � � for all j � N� n fkg	

Generalized variable �xing

Instead of trying to �x a single binary variable� we can try to �x all the variables in a
clique inequality

P
j�N� xj �

P
j�N� xj � � � jN�j	 Consider the following extended

integer programming problem

z � min
X

j�B�

aijxj �
X

j�B�

aijxj �
X

j�C�

aijyj �
X

j�C�

aijyj

subject to

Aix�Giy � bi

X

j�N�

xj �
X

j�N�

xj � �� jN�j

x � f�� �gn� y � RRm

If z � bi� then
P

j�N� xj�
P

j�N� xj �� ��jN�j in any feasible solution� i	e	�
P
j�N� xj�P

j�N� xj � �jN�j and thus xj � � for all j � N� and xj � � for all j � N�	

Generalized coe�cient reduction

Consider a clique inequality
P

j�N� xj �
P

j�N� xj � � � jN�j� with N� 
 B� and
N� 
 B�� jN�j � � and the following extended integer programming problem

z � max
X

j�B�

aijxj �
X

j�B�

aijxj �
X

j�C�

aijyj �
X

j�C�

aijyj

subject to

Aix�Giy � bi
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X

j�N�

xj �
X

j�N�

xj � �jN�j

x � f�� �gn� y � RRm�

If z � bi� then aij may be decreased for all j � N�� aij may be increased for all j � N��
and bi may be decreased by bi � z without changing the set of feasible solutions	

In case
P

j�N� xj �
P

j�N� xj � �� jN�j� then the inequality aix� giy � bi can be
rewritten as

X

j�B�nN�

aijxj �
X

j�N�

�aij � ��xj �
X

j�B�nN�

aijxj �
X

j�N�

�aij � ��xj�

X

j�C�

aijyj �
X

j�C�

aijyj � bi � � � jN�j� � � RR��

Therefore� also under the assumption that
P

j�N� xj �
P

j�N� xj � ��jN�j� aij may be

decreased for all j � N�� aij may be increased for all j � N�� and bi may be decreased
by bi � z without changing the set of feasible solutions	

� Computational results

The basic preprocessing and probing techniques as well as the various applications of
logical implications described in the previous sections have been incorporated in MINTO�
a Mixed INTeger Optimizer ����	 MINTO is a software system that solves mixed integer
programs by a linear programming based branch�and�bound algorithm	 Moreover� the
user can enrich the basic algorithm by providing a variety of specialized application
routines that can customize MINTO to achieve maximum e�ciency for a problem class	

We want to emphasize that there are many other techniques� besides preprocessing
and probing� that modify a given representation of a mixed integer programming prob�
lem in order to reduce the set of feasible solutions of the linear programming relaxation	
Various constraint generation techniques� such as knapsack cover generation and �ow
cover generation� have proven to be quite e
ective	 In addition to the techniques aim�
ing at improving the linear programming relaxation� powerful mixed integer optimizers
should also perform reduced cost �xing� have primal heuristics� and di
erent branching
strategies	 In our computational study� we have concentrated on preprocessing and prob�
ing techniques	 Our results indicate that these techniques are quite e
ective in reducing
the integrality gap and the size of the branch�and�bound tree	 Consequently� they should
be incorporated in any mixed integer optimizer	
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The e
ectiveness of the preprocessing and probing techniques has been tested on a
set of �� mixed integer programming problems	 Table � shows for each of these problems
its name� the number of constraints� variables� and nonzero coe�cients� and the number
of continuous� binary and integer variables	

Problem �c �v �nz �c �b �i

egout �� ��� ��� �
 �� �
�xnet� ��� ��� ���
 ��� ��� �
�xnet� ��� ��� ���
 ��� ��� �
�xnet
 ��� ��� ���
 ��� ��� �
khb����� ��� ���� ���� ���
 �� �
gen ��� ��� ���� ��� ��� 

att ��
� ���� ���
 ��� ��� �
sample� �� 
� ��� �
 �� �
p���� �� �� �� � �� �
lseu �� �� ��� � �� �

Table �� Characteristics of the test problems

Modifying the representation of a mixed integer program in MINTO involves four
phases	 In the �rst phase� the basic preprocessing and probing techniques are applied	
Every row of the constraint matrix is anlyzed to identify infeasibility or redundancy�
to improve coe�cients and bounds� and to �x variables	 If� after processing every row
in the constraint matrix� some variables have been �xed or some bounds have been
improved� the process is repeated	 In the second phase� logical implications are identi�ed
and enhanced probing techniques are applied	 Every binary variable is analyzed by
temporarily �xing it at one of its bounds� e
ectuating all possible logical implications�
and analyzing every row in the reduced system using the basic preprocessing and probing
techniques to identify logical implications� improve coe�cients� and �x variables	 If�
after processing every binary variable� some logical implications have been identi�ed or
some variables have been �xed� the process is repeated	 In the third phase� the logical
implications that have been identi�ed are used to construct the implication graph and the
resulting implication graph is analyzed to identify clique inequalities	 In the last phase�
implication and clique inequalities are generated �on the �y�� i	e	� they are iteratively
added to the linear program in case they are violated by the current linear programming
relaxation	

Table � shows the value of the linear program relaxation �zLP �� the value of the linear
programming relaxation after the basic preprocessing and probing techniques have been
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applied �z�LP �� the value of the linear programming relaxation after the basic preprocess�
ing and probing techniques as well as the enhanced probing techniques have been applied
�z�LP �� the value of the linear programming relaxation after the basic preprocessing and
probing techniques and the enhanced probing techniques have been applied and the de�
rived clique and implication inequalities have been added �z�LP �� and� �nally� the value
of the mixed integer program �zMIP �	

Problem zLP z�LP z�LP z�LP zMIP

egout ���	��� ���	�
� ���	��� �
�	��� �
�	���
�xnet� �����	� �����	� �����	� �����	� �����	�
�xnet� ����	�
 
���	�� ����	�� ����	�� ���
	��
�xnet
 ����	�� ����	�� ����	�� ����	�� ����	��
khb����� ������
�	 ������
�	 ������
�	 ��
����

	 ��
�����
	
gen ������	 ������	 ������	 ������	 ������	
att ���	�
� ���	��� ���	��� ���	��� �
�	���
sample� ���	��� ���	��� ���	��� ���	��� ���	���
p���� ����	�� ����	�� ����	�� ����	�� ����	��
lseu ���	
�� ���	��� ���	��� ���	��� ����	��

Table �� E
ect of preprocessing and probing techniques on LP value

Table � shows the number of nodes required to solve the problem to optimality when
MINTO is used without any preprocessing and probing �option �p��� when MINTO is
used with only basic preprocessing and probing �option �p��� and when MINTO is used
in its default setting� i	e	� with both basic and enhanced preprocessing and probing	

Inspecting the computational results� we observe the following	 First� the prepro�
cessing and probing techniques are quite e
ective in reducing the integrality gap and the
overall e
ort required to solve most of these problems	 Second� activating preprocessing
and probing does not always lead to a smaller search tree	 This shows� that at this mo�
ment� we do not have a clear understanding of how the di
erent techniques embedded
in state�of�the�art mixed integer optimizers interact	

� Conclusion

In this paper� we have given an overview of simple and advanced preprocessing and
probing techniques to improve the representation of a mixed integer program	 Our
computational results have demonstrated the e
ectiveness of these techniques	
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Problem minto �p� minto �p� minto

egout ��� � �
�xnet� ��� � �
�xnet� ��
� ���� ����
�xnet
 ���� ���� ����
khb����� ����� 
� ��
gen �� �� ��
att 
��� ��� ���
sample� ��
 �� ��
p���� �� � �
lseu ��� �
� �
�

Table �� E
ect of preprocessing and probing techniques on branch�and�bound tree

As indicated above� these techniques can be used to enhance the performance of a
mixed integer optimizer	 However� in a powerful mixed integer optimizer they should be
used in conjunction with other techniques� such as knapsack cover generation� �ow cover
generation� and primal heuristics	
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