Genetic algorithms

Exercise Consider a population of 4 individuals $X = \{x_1, x_2, x_3, x_4\}$, characterised by the following fitness values

$$\phi(x) = [10\ 18\ 9\ 13]$$

and assume that the pseudorandom number generator provides the following sequence: r = (0.47, 0.33, 0.80, 0.71, 0.12, 0.93). Generate a new population of individuals with

- a) the roulette wheel selection mechanism;
- b) the rank selection mechanism;
- c) the tournament selection mechanism on the following subsets of individuals: (1,3), (1,4), (2,3) and (2,4);

Solution

Part a) Roulette wheel selection assigns to each individual a probability proportional to the value of its fitness. Since the sum of all fitnesses is 10+18+9+13=50, the corresponding probabilities and their partial sums are reported in the following table.

Individual i	x_1	x_2	x_3	x_4
$\phi(\xi(x))$	10	18	9	13
$\pi_i = \frac{\phi_i}{\sum_i \phi_j}$	0.20	0.36	0.18	0.26
$\sum_{j=1}^{i}\pi_{j}$	0.20	0.56	0.74	1.00

The sequence of extractions is the following (the extracted elements are not removed, so that they can be extracted any number of times):

- 1. r = 0.47 falls in the second interval, so that we select x_2 ;
- 2. r = 0.33 falls in the second interval, so that we select x_2 ;
- 3. r = 0.80 falls in the fourth interval, so that we select x_4 ;
- 4. r = 0.71 falls in the third interval, so that we select x_3 .

The final population is $X = \{x_2, x_2, x_3, x_4\}.$

Part b) Rank selection assigns to each individual a probability proportional to its index in a fitness nondecreasing order. Since $\phi(\xi(x_3)) < \phi(\xi(x_1)) < \phi(\xi(x_2)) < \phi(\xi(x_4))$, solution x_3 has index 1, solution x_1 has index 2 and so on, producing the following table of indices, probabilities and partial sums of probabilities.

Individual i	x_1	x_2	x_3	x_4
Index k	2	4	1	3
$\pi_i = \frac{2k}{n(n+1)}$	0.20	0.40	0.10	0.30
$\sum_{j=1}^{i} \pi_j$	0.20	0.60	0.70	1.00

The sequence of extractions is the following (the extracted elements are not removed, so that they can be extracted any number of times):

- 1. r = 0.47 falls in the second interval, so that we select x_2 ;
- 2. r = 0.33 falls in the second interval, so that we select x_2 ;
- 3. r = 0.80 falls in the fourth interval, so that we select x_4 ;
- 4. r = 0.71 falls in the fourth interval, so that we select x_4 .

The final population is $X = \{x_2, x_2, x_4, x_4\}.$

Part c) Tournament selection extracts $n_p = 4$ subsets of $\alpha = 2$ individuals, given in the text of the exercise, and selects the individual with the largest fitness in each subset.

The sequence of selections is:

- 1. from (x_1, x_3) , select x_1 ;
- 2. from (x_1, x_4) , select x_4 ;
- 3. from (x_2, x_3) , select x_2 ;
- 4. from (x_2, x_4) , select x_2 .

The final population is $X = \{x_1, x_2, x_2, x_4\}.$