Genetic algorithms

Exercise Consider a population of 4 individuals $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, characterised by the following fitness values

$$
\phi(x)=\left[\begin{array}{lll}
10 & 18 & 9 \\
13
\end{array}\right]
$$

and assume that the pseudorandom number generator provides the following sequence: $r=(0.47,0.33,0.80,0.71,0.12,0.93)$. Generate a new population of individuals with
a) the roulette wheel selection mechanism;
b) the rank selection mechanism;
c) the tournament selection mechanism on the following subsets of individuals: $(1,3),(1,4),(2,3)$ and $(2,4)$;

Solution

Part a) Roulette wheel selection assigns to each individual a probability proportional to the value of its fitness. Since the sum of all fitnesses is $10+18+9+13=50$, the corresponding probabilities and their partial sums are reported in the following table.

Individual i	x_{1}	x_{2}	x_{3}	x_{4}
$\phi(\xi(x))$	10	18	9	13
$\pi_{i}=\frac{\phi_{i}}{\sum_{j} \phi_{j}}$	0.20	0.36	0.18	0.26
$\sum_{j=1}^{i} \pi_{j}$	0.20	0.56	0.74	1.00

The sequence of extractions is the following (the extracted elements are not removed, so that they can be extracted any number of times):

1. $r=0.47$ falls in the second interval, so that we select x_{2};
2. $r=0.33$ falls in the second interval, so that we select x_{2};
3. $r=0.80$ falls in the fourth interval, so that we select x_{4};
4. $r=0.71$ falls in the third interval, so that we select x_{3}.

The final population is $X=\left\{x_{2}, x_{2}, x_{3}, x_{4}\right\}$.
Part b) Rank selection assigns to each individual a probability proportional to its index in a fitness nondecreasing order. Since $\phi\left(\xi\left(x_{3}\right)\right)<\phi\left(\xi\left(x_{1}\right)\right)<\phi\left(\xi\left(x_{2}\right)\right)<$ $\phi\left(\xi\left(x_{4}\right)\right)$, solution x_{3} has index 1 , solution x_{1} has index 2 and so on, producing the following table of indices, probabilities and partial sums of probabilities.

Individual i	x_{1}	x_{2}	x_{3}	x_{4}
Index k	2	4	1	3
$\pi_{i}=\frac{2 k}{n(n+1)}$	0.20	0.40	0.10	0.30
$\sum_{j=1}^{i} \pi_{j}$	0.20	0.60	0.70	1.00

The sequence of extractions is the following (the extracted elements are not removed, so that they can be extracted any number of times):

1. $r=0.47$ falls in the second interval, so that we select x_{2};
2. $r=0.33$ falls in the second interval, so that we select x_{2};
3. $r=0.80$ falls in the fourth interval, so that we select x_{4};
4. $r=0.71$ falls in the fourth interval, so that we select x_{4}.

The final population is $X=\left\{x_{2}, x_{2}, x_{4}, x_{4}\right\}$.
Part c) Tournament selection extracts $n_{p}=4$ subsets of $\alpha=2$ individuals, given in the text of the exercise, and selects the individual with the largest fitness in each subset.

The sequence of selections is:

1. from $\left(x_{1}, x_{3}\right)$, select x_{1};
2. from $\left(x_{1}, x_{4}\right)$, select x_{4};
3. from $\left(x_{2}, x_{3}\right)$, select x_{2};
4. from $\left(x_{2}, x_{4}\right)$, select x_{2}.

The final population is $X=\left\{x_{1}, x_{2}, x_{2}, x_{4}\right\}$.

