Heuristic Algorithms

Master's Degree in Computer Science/Mathematics

Roberto Cordone

DI - Università degli Studi di Milano

Schedule: \quad Thursday 14.30-16.30 in classroom 303
Friday 14.30-16.30 in classroom 303
Office hours: on appointment
E-mail: roberto.cordone@unimi.it
Web page: https://homes.di.unimi.it/cordone/courses/2022-ae/2022-ae.html
Ariel site: https://rcordoneha.ariel.ctu.unimi.it

Lesson 21: Recombination metaheuristics: SS and PR Milano, A.A. 2022/23

Recombination heuristics

Constructive and exchange heuristics manage one solution at a time (except for the Ant System)

Recombination heuristics manage several solutions in parallel

- start from a set (population) of solutions (individuals) obtained somehow
- recombine the individuals generating a new population

Their original aspect is the use of operations working on several solutions, but they often include features of other approaches (sometimes renamed)

Some are nearly or fully deterministic

- Scatter Search
- Path Relinking
others are strongly randomised (often based on biological metaphors)
- genetic algorithms
- memetic algorithms
- evolution strategies

Of course the effectiveness of a method does not depend on the metaphor

The basic idea is that

- good solutions share components with the global optimum
- different solutions can share different components
- combining different solutions, it is possible to merge optimal components more easily than building them step by step

The typical scheme of recombination heuristics is

- build a starting population of solutions
- as long as a suitable termination condition does not hold
- at each iteration (generation) update the population
- extract single individuals and apply exchange operations to them
- extract subsets of individuals (usually, pairs) and apply recombination operations to them
- collect the individuals thus generated and choose whether to accept or not each of them and how many copies into the new population

Scatter Search

Scatter Search (SS), proposed by Glover (1977), proceeds as follows
(1) generate a starting population of solutions
(2) improve all of them with an exchange procedure
(3) build a reference set $R=B \cup D$ where

- subset B includes the best known solutions
- subset D includes the "farthest" solutions (from B and each other) (this requires a distance definition, e.g. the Hamming distance)

4) for each pair of solutions $(x, y) \in B \times(B \cup D)$

- "recombine" x and y, generating z
- improve z obtaining z^{\prime} with an exchange procedure
- if $z^{\prime} \notin B$ and B contains a worse solution, replace it with z^{\prime} (we want no duplicates in the reference set)
- if $z^{\prime} \notin D$ and D includes a closer solution, replace it with z^{\prime} (we want no duplicates in the reference set)
(5) terminate when R is unchanged

The rationale is that

- the recombinations in $B \times B$ intensify the search
- the recombinations in $B \times D$ diversify the search

General scheme of the Scatter Search approach

```
Algorithm ScatterSearch \(\left(I, P, n_{B}, n_{D}\right)\)
\(B:=\emptyset ; D:=\emptyset ;\)
Repeat
    Stop \(=\) true;
    For each \(x \in P\) do
    \(z:=\) SteepestDescent \((I, x)\); If \(f(z)<f\left(x^{*}\right)\) then \(x^{*}:=z\);
    \(y_{B}:=\arg \max _{y \in B} f(y) ; y_{D}:=\arg \min _{y \in D} d(y, B \cup D \backslash\{y\})\);
    If \(z \notin B\) and \(\left(|B|<n_{B}\right.\) or \(\left.f(z)<f\left(y_{B}\right)\right)\) then
        \(\left\{B\right.\) keeps the \(n_{B}\) best unique solutions \}
        \(B:=B \cup\{z\}\); Stop \(:=\) false; If \(|B|>n_{B}\) then \(B:=B \backslash\left\{y_{B}\right\}\);
    Elself \(z \notin D\) and \(\left(|D|<n_{D}\right.\) or \(\left.d\left(z, B \cup D \backslash\left\{y_{D}\right\}\right)>d\left(y_{D}, B \cup D \backslash\left\{y_{D}\right\}\right)\right)\) then
        \{ \(D\) keeps the \(n_{D}\) most diverse unique solutions \}
        \(D:=D \cup\{z\}\); Stop \(:=\) false; If \(|D|>n_{D}\) then \(D:=D \backslash\left\{y_{D}\right\}\);
    Endlf
    EndFor
    \(P:=\emptyset\);
    For each \((x, y) \in B \times(B \cup D)\) do \(\quad\{\) Recombine to build the new population \}
        \(P:=P \cup \operatorname{Recombine}(x, y, I)\);
    EndFor
until Stop \(=\) true;
Return ( \(x^{*}, f\left(x^{*}\right)\) );
```


Recombination procedure

The recombination procedure depends on the problem
Usually, solutions x and y are manipulated as subsets
(1) include in z all the elements shared by x and y :

$$
z:=x \cap y
$$

(both solutions concur in suggesting those elements)
(2) augment solution z adding elements from $x \backslash z$ or $y \backslash z$

- chosen at random or with a greedy selection criterium
- alternatively from each source or freely from the two sources
(this is similar to a restricted constructive heuristic)
(3) if necessary, add external elements from $B \backslash(x \cup y)$
(4) if subset z is unfeasible, apply an auxiliary exchange heuristic to make it feasible (repair procedure)

Examples

MDP

- start with $z:=x \cap y$
- augment z with $k-|z|$ random or greedy points from $x \backslash z$ or $y \backslash z$
- no repair procedure is required

Max-SAT

- start with $z:=x \cap y$
- augment z with $n-|z|$ random or greedy truth assignments from $x \backslash z$ or $y \backslash z$
- no repair procedure is required

Examples

$K P$

- start with $z:=x \cap y$
- augment z with random or greedy elements from $x \backslash z$ or $y \backslash z$ respecting the capacity
- no repair procedure is required
- the solution could be augmented with elements from $B \backslash(x \cup y)$

SCP

- start with $z:=x \cap y$
- augment z with random or greedy columns from $x \backslash z$ or $y \backslash z$ (avoiding the redundant ones)
- remove the redundant columns with a destructive phase

Path Relinking

Path Relinking ($P R$), proposed by Glover (1989), is generally used as a final intensification procedure more than as a stand-alone method

Given a neighbourhood N and an exchange heuristic based on it

- collect in a reference set R the best solutions generated by the auxiliary heuristic (elite solutions)
- for each pair of solutions x and y in R
- build a path $\gamma_{x y}$ from x to y in the search space of neighbourhood N applying to $z^{(0)}=x$ the auxiliary exchange heuristic, but choosing at each step the solution closest to the destination y

$$
z^{(k+1)}:=\arg \min _{z \in N\left(z^{(k)}\right)} d(z, y)
$$

where d is a suitable metric function on the solutions In case of equal distance, optimise the objective function f

- find the best solution $z_{x y}^{*}$ along the path (and improve it)

$$
z_{x y}^{*}:=\arg \min _{k \in\left\{1, \ldots,\left|\gamma_{x y}\right|-1\right\}} f\left(z^{(k)}\right)
$$

- if $z_{x y}^{*} \notin R$ and is better than the worst in R, add it to R

General scheme of the Path Relinking approach

```
Algorithm PathRelinking \(\left(I, P, n_{R}\right)\)
Repeat
    \(R:=\emptyset ;\)
    For each \(x \in P\) do
        \(z:=\) SteepestDescent \((I, x)\); If \(f(z)<f\left(x^{*}\right)\) then \(x^{*}:=z\);
        \(y_{R}:=\arg \max _{y \in R} f(y)\);
        If \(z \notin R\) and \(\left(|R|<n_{R}\right.\) or \(\left.f(z)<f\left(y_{R}\right)\right)\) then
            \(\left\{R\right.\) keeps the \(n_{R}\) best unique solutions \(\}\)
            \(R:=R \cup\{z\}\); Stop \(:=\) false; If \(|R|>n_{R}\) then \(R:=R \backslash\left\{y_{R}\right\} ;\)
        Endlf
    EndFor
    \(P:=\emptyset\);
    For each \(x \in R\) and \(y \in R \backslash\{x\}\) do \(\quad\{\) Recombine to build the new population \(\}\)
    \(z:=x ; z^{*}:=x ;\)
    While \(z \neq y\) do \(\quad\{\) Build a path from \(x\) to \(y\) \}
            \(Z:=\arg \min _{z^{\prime} \in N(z)} d\left(z^{\prime}, y\right) ; z:=\arg \min _{z^{\prime} \in Z} f\left(z^{\prime}\right) ;\)
            If \(f(z)<f\left(z^{*}\right)\) then \(z^{*}:=z\)
        EndWhile;
        If \(z^{*} \notin P\) then \(P:=P \cup\left\{z^{*}\right\} ;\)
    EndFor
until Stop \(=\) true;
Return \(\left(x^{*}, f\left(x^{*}\right)\right) ;\)
```


Relinking paths

The paths explored in this way

- intensify the search, because they connect good solutions
- diversify the search, because they follow different paths with respect to the exchange heuristic (especially if the extremes are far away)

- since the distance of $z^{(k)}$ from y is decreasing, one can explore
- worsening solutions without the risk of cyclic behaviours
- unfeasible subsets without the risk of not getting back to feasibility (they do not improve directly, but open the way to improvements)

Given two solutions x and y, Path Relinking has several variants:

- forward path relinking: build a path from the worse to the better one
- backward path relinking: build a path from the better to the worse one
- back-and-forward path relinking: build both paths
- mixed path relinking: build a path with alternative steps from each extreme (updating the destination)
- truncated path relinking: build only the first steps of the path (if the good solutions are experimentally close to each other)
- external path relinking: build a path from one moving away from the other (if the good solutions are experimentally far from each other)

