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Chapter 5

Exchange metaheuristics

5.1 Introduction

This chapter discusses the application of exchange metaheuristics to the Maximum
Diversity Problem (MDP). Exchange metaheuristic extend the basic scheme of ex-
change heuristics modifying its elements (the starting solution, the neighbourhood,
the objective function or the selection rule) in order to proceed with the search
after reaching a locally optimal solution. In the following, we will consider two
such extensions, both based on the basic steepest ascent heuristic described in the
previous chapter. The former is a Variable Neighbourhood Search (VNS ) heuristic,
that restarts the search from a new solution generated with a shaking procedure on
the best known solution. The latter is a Tabu Search (TS ) heuristic, that prolongs
the search beyond local optima by looking for the minimum cost neighbour solution
that respects suitable tabu conditions, designed to avoid a cyclic behaviour.

For the sake of simplicity, we will build the starting solution with the farthest-
point constructive heuristic introduced in Chapter 3 and apply the steepest ascent
heuristic with the first-best strategy that proved to be equally effective and more
efficient in Chapter 4. The command line arguments will allow the user to choose
which of the two metaheuristics to apply and the associated parameters:

• for the VNS metaheuristic, option -vns, followed by five parameters: the total
number of neighbourhood explorations tmax, the minimum neighbourhood
index smin, the index variation δs, the maximum neighbourhood index smax

and the seed of the pseudorandom number generator;

• for the TS metaheuristic, option -ts, followed by three parameters: the total
number of neighbourhood explorations tmax, the tabu tenure for the reinser-
tion of deleted elements Lin, and the tabu tenure for the removal of added
elements Lout.

parse_command_line(argc,argv,data_file,exchange_algo,&niter,&seed,

&s_min,&delta_s,&s_max,&l_in,&l_out);

load_data(data_file,&I);

create_solution(I.n,&x);

greedy_farthest(&I,&x);

start = clock();
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6 5 Exchange metaheuristics

if (strcmp(exchange_algo,"-vns") == 0)

variable_neighborhood_search(&I,&x,"-fb",niter,s_min,delta_s,s_max,&seed);

else if (strcmp(exchange_algo,"-ts") == 0)

tabu_search(&I,&x,"-fb",niter,l_in,l_out);

end = clock();

tempo = (double) (end - start) / CLOCKS_PER_SEC;

printf("%s ",data_file);

printf("%10.6f ",tempo);

printf("%8d ",niter);

print_sorted_solution(&x,I.n);

printf("\n");

destroy_solution(&x);

destroy_data(&I);

5.2 Variable Neighbourhood Search

The Variable Neighbourhood Search metaheuristic applies a basic steepest ascent
heuristic, and restarts it every time this terminates in a locally optimal solution.
The restart is performed with a shaking procedure that modifies the current best
known solution generating it at random in a suitable neighbourhood, whose size is
the main parameter of the method1. The scheme is the following:

Algorithm VariableNeighbourhoodSearch(I, x(0), `, smin, δs, smax)

x := SteepestAscent(x(0)); x∗ := x;

s := smin;

For l := 1 to ` do

x′ := Shaking(x∗, s);

x′ := SteepestAscent(x′);

If f (x′) > f (x∗)

then x∗ := x′; s := smin;

else s := s+ δs;

If s > smax then s := smin;

EndWhile;

Return (x∗, f (x∗));

This scheme is general enough to not require any specific adaptation for the
MDP, except for the replacement of steepest descent with steepest ascent, as usual
because it is a maximisation problem. However, we will also modify the termination
condition, replacing the number of restarts ` with the total number of neighbour-
hood explorations tmax in order to get a better control of the computational time
(of course, we could directly fix the total computational time, and that would be
even more precise). To this purpose, we exploit the information on the number
of neighbourhood explorations performed that is already provided by the steepest
ascent procedure, but we also need to terminate if before reaching a locally optimal
solution whenever the total number of available explorations has been consumed.

1This parameter is generally denoted as k (as in the slides of the theoretical lessons), but here
we will denote it as s to distinguish it from the required number of points in the feasible solutions
of the MDP.
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For the sake of simplicity, we will adopt the steepest ascent heuristic discussed in the
previous chapter, based on the single-swap neighbourhood NS1

with the first-best
exploration strategy. It is therefore straightforward to implement the VNS procedure
as follows.

truncated_steepest_ascent(pI,px,visit_strategy,niter,&iter);

tot_iter = iter;

create_solution(pI->n,&x_star);

copy_solution (px,&x_star);

s = s_min;

while (tot_iter < niter)

{

shaking(pI,px,s,pseed);

truncated_steepest_ascent(pI,px,visit_strategy,niter-tot_iter,&iter);

tot_iter += iter;

if (px->f > x_star.f)

{

copy_solution(px,&x_star);

s = s_min;

}

else

{

s += delta_s;

if (s > s_max) s = s_min;

}

The variable tot iter saves the cumulative number of neighbourhood explora-
tions performed, in order to compare it with the maximum imposed value niter.
Moreover, the truncated steepest ascent procedure coincides with the already
implemented steepest ascent procedure, with the additional termination condi-
tion of stopping as soon as the remaining niter-tot iter explorations have been
performed. The modified procedure is already provided in a modified localsearch.c

library.

*pniter = 0;

if (max_iter <= 0) return;

do

{

explore_neighbourhood(px,pI,visit_strategy,&p_in,&p_out,&delta_f);

if (delta_f > 0)

{

swap_points(p_in,p_out,px,pI);

(*pniter)++;

}

} while ( (delta_f > 0) && (*pniter < max_iter) );

The only part of the variable neighborhood search procedure that remains
unimplemented is the shaking procedure, that receives the reference solution (that
is the best known one, as we are applying the basic version of the VNS ) the current
value of parameter s and the seed of the pseudorandom number generator, and
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returns the perturbed solution that will be used as a starting point for the following
application of the steepest ascent procedure. In order to implement it, we need to
define a hierarchy of neighbourhoods from which to extract a random solution. In
general, these neighbourhoods should be progressively increasing, in order to allow
a controllable amount of intensification (using the first neighbourhoods) or diversi-
fication (using the last ones). In the specific case of the MDP, swaps are the most
natural operation to generate neighbourhoods, due to the cardinality constraint,
that guarantees the feasibility of every solution they generate, while proving the
unfeasibility of the subsets generated by any other kind of operation. Therefore, we
will adopt the hierarchy formed by the swap neighbourhoods NSs . Every solution
in NSs is obtained performing s single swaps of a point in the current solution with
a point out of it. A technical detail to be defined is whether we consider:

• s possibly overlapping swaps, in which a point deleted by one of the swaps
can be added again by a following swap;

• s disjoint swaps, that is we swap s points from the starting solution with s
points out of the starting solution.

The former definition allows to obtain also solutions that could be obtained with
any number s′ ≤ s of swaps (because swapping points i and j, followed by j and k
is equivalent to swapping directly i and k). Therefore, it is a more general definition
and it guarantees that each neighbourhood in the hierarchy include the previous
ones. The latter definition restricts the neighbourhood only to disjoint swaps and
yields disjoint neighbourhoods. However, it has the advantage that all neighbour
solutions have a Hamming distance exactly equal to 2s from the reference solution
x∗. This property seems particularly desirable from the point of view of controlling
the size of the perturbation introduced (in the former case, a perturbation with a
very large s might generate a solution very close to x∗, possibly even coincident
with it). We therefore adopt the second definition. Generating a random s-swap is
then straightforward: it requires to save in a vector the elements of the solution and
extract s uniformly without repetitions. The same must be done for the elements
out of the solution. Then, we can match the two sets of points in s pairs and
swap the points to obtain the perturbed solution. There are several ways to do
that, whose time and space complexity can be discussed in detail. Choosing one
arbitrarily, we will write in a single vector of n elements the indices of all points:
those in the solution in its first positions and the other ones in the last positions
(using the incidence vector to distinguish them). Then, we will randomly extract s
indices from the first and s from the second subvector, moving them to the ends of
the vector to avoid generating duplicate terms and finally swap the corresponding
points with the swap points procedure. It can be argued that an ad hoc procedure
could be more efficient (in particular for large values of s), but the shaking procedure
is applied rarely enough to assume that it will take a negligible part of the overall
computational time of the algorithm2

2This assumption should be verified, of course.
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/* Build a vector with the indices of the internal points in the first k positions

and the indices of the external point in the last n-k positions */

Indices = int_alloc(pI->n+1);

i_in = 1; i_out = pI->n;

for (i = 1; i <= pI->n; i++)

if (px->in_x[i] == true)

Indices[i_in++] = i;

else

Indices[i_out--] = i;

/* Select s internal points and move their indices to the first s positions of Indices */

for (i_in = 1; i_in <= s; i_in++)

{

i = rand_int(i_in,pI->k,pseed);

temp = Indices[i_in];

Indices[i_in] = Indices[i];

Indices[i] = temp;

}

/* Select s external points and move their indices to the last s positions of Indices */

for (i_out = pI->n; i_out >= pI->n-s+1; i_out--)

{

i = rand_int(pI->k+1,i_out,pseed);

temp = Indices[i_out];

Indices[i_out] = Indices[i];

Indices[i] = temp;

}

/* Perform s exchanges between the first and the last points of Indices */

for (i_in = 1, i_out = pI->n; i_in <= s; i_in++, i_out--)

swap_points(get_point(Indices[i_in],pI),get_point(Indices[i_out],pI),px,pI);

free(Indices);

5.2.1 Time complexity estimation

The computational complexity of the VNS metaheuristic combines that of the steep-
est ascent heuristic with that of the shaking procedure. The former has already
been estimated as O (tmax(n− k)k), with the modification that tmax is now the
total number of neighbourhood explorations, fixed by the user. Applying the first-
best exploration strategy means that the number of explored solutions should be
≤ (n − k)k, though usually smaller (probably much smaller in the first iterations,
when it is easier to improve the current solution, and nearly equal later when ap-
proaching the local optimum). The latter term is given by the initialisation in
O (n) time of the index vector, followed by the generation of s pseudorandom num-
ber (constant time, though probably not a very small constant) and s swaps, that
take (as discussed in the previous chapter) O (n) time each. Overall, this is O (`ns)
time, where s ≤ min (k, n− k) (as discussed in the following) and ` is the number of
restarts (unknown a priori). However, s and ` tend to be inversely correlated, since
smaller perturbations probably imply shorter paths to the local optimum and more
restarts, whereas larger perturbations imply longer paths to the local optimum and
less restarts. A rough guess is that each shaking application should take a time
comparable to a neighbourhood exploration, so that overall its contribution should
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be negligible with respect to the steepest ascent heuristic, but this needs to be
verified experimentally.

5.2.2 Empirical evaluation

We can now evaluate the performance of the VNS metaheuristic. We have decided
to use the total number of neighbourhood explorations as a termination condition.
This value should be set so as to allow the heuristic to experiment with every
possible working condition. However, we also want to get results in a reasonably
short time. In the previous chapter, we have estimated that the average number of
iterations performed from a starting solution to the corresponding local optimum
ranges between 15 and 30 in our benchmark instances. It will probably be smaller for
starting solutions generated with small perturations from the best known solution.
Since s ≤ k, it should take at most 30 ·400 neighbourhood explorations to reach the
strongest perturbations on the largest instances. Therefore, tmax = 10 000 could be
a good choice, but we will adopt tmax = 1 000 to fit the experiments in the space of
a lesson.

In the first experiments, we will let parameter s autotune, by fixing smin, δs and
smax to their simplest values: smin = 1, δs = 1 and smax = min (k, n− k).

Computational time analysis

The detailed results show that the overall computational time (including the ini-
tialisation constructive procedure, the shaking procedure and the steepest ascent
procedure) ranges from fractions of a second to less than four seconds. This is
even shorter than the exchange heuristic initialised by the try-all heuristic, which
is a quite promising fact, should the results prove at least as good. Let us remind
that the steepest ascent procedure applied to the farthest-point procedure could not
enhance it enough to overcome the advantage provided by the better try-all initial-
isation procedure, even if its computational time was smaller. We can investigate
whether the use of VNS allows exploit the shorter computational time to get better
results.

Figure 5.1 reports the logarithmic scaling diagram for the computational time
of the VNS heuristic on the whole benchmark. The diagram shows a very regular
polynomial increase with size, also thanks to the fixed number of iterations tmax.
The O ((n− k)k) theoretical estimate, with k ∝ n, suggests a quadratic complexity,
which is in extremely good accordance with the linear interpolation:

TA = βnα ⇔ log TA = α log n+ log β

since α ≈ 2.008 and β ≈ 2.6 · 10−6.

Solution quality analysis

Figure 5.2 reports the SQD diagram of the VNS metaheuristic, compared with
that of the steepest ascent heuristic applied to the result of the farthest-point and
of the try-all heuristics: the former allows the comparison with the result obtained
stopping at the first local optimum; the latter allows a comparison with a heuristic
taking a similar computational time. The improvement with respect to the former
is clear (the average gap decreases from 0.93% to 0.33%): it is a strict dominance,
given that they visit the same solutions, and the VNS proceeds when the competitor
just terminates. Also with respect to the try-all initialisation the average gap is
better (0.33% versus 0.35%) and the SQD diagram shows a much larger fraction
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Figure 5.1: Scaling diagram in logarithmic scales for the VNS algorithm on the
benchmark

of very good results, but also a larger fraction of bad results. Notice that the
computational time is not the same: a true comparison should be made in perfectly
equal conditions.

Figure 5.2: Solution Quality Distribution diagram for the VNS metaheuristic com-
pared with the steepest ascent heuristic initialised with the farthest point and the
try-all procedures

The boxplots reported in Figure 5.3 provide the same information: VNS provides
both better and worse results with respect to the steepest ascent initialised by the
try-all heuristic.

In order to have a rough idea of the corresponding computational times, Fig-
ure 5.4 provides the RTD diagram, from which it is apparent that VNS has some
margin of further improvement for the slower runs, that correspond to the largest
instances. On the contrary, it is already slower for the faster runs, that is the smal-
lest instances. Therefore an equal-time comparison is clearly necessary to be fair.
Performing one, however, is complicated when some of the competing algorithms
have an intrinsic termination condition: we should build a time-limited version of
the VNS heuristic, run the steepest ascent heuristic saving its computational time,
and feed it to the VNS heuristic. This is beyond the scope of the course.
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Figure 5.3: Boxplots for the VNS metaheuristic compared with the steepest ascent
heuristic initialised with the farthest point and the try-all procedures

Figure 5.4: Solution Quality Distribution diagrams for the VNS metaheuristic and
the steepest ascent heuristic initialised with the try-all procedure
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5.2.3 Parameter tuning

It is often possible to improve the performance of an algorithm by tuning the values
of its parameters. In the case of the VNS, this corresponds to increasing the smallest
neighbourhood used to restart the search, or decreasing the largest one, or skipping
some intermediate neighbourhoods. The last possibility is useful when the number
of neighbourhoods is huge. In this case, s ranges from 1 to 400, that is quite
large. As we have fixed a rather small total number of neighbourhood explorations
tmax, it is possible (and it can be easily verified printing the value of s at each
shaking operation) that on the larger benchmark instances only small shakings are
performed. In order to test this aspect, we compare some alternative parameter
configurations. The test is very limited, considering the following configurations,
chosen so as to cover rather extreme cases:

• smin = 1 and smax = k: the trivial configuration (probably not fully exploited,
for the insufficient number of iterations);

• smin = 1 and smax = 10: an intensifying configuration, imposing rather small
perturbations;

• smin = 1 and smax = k/2: a configuration avoiding only very large perturb-
ations (this could coincide with the trivial fone if the insufficient number of
neighbourhood explorations forbids to increase s beyond the upper bound);

• smin = k/2 and smax = k: a configuration producing strong perturbations
since the beginning to diversify the search and try to avoid falling back in the
reference solution;

• smin = k and smax = k: a degenerate configuration in which the maximum
possible perturbation is applied (all points must in the best known result are
replaced by new random points);

The number of configurations and the number of iterations for each configuration are
too limited to provide really significant results, but they are a good occasion for some
intuitions and further discussion. A good way to formulate reasonable configurations
is to print the values of s that improve the best known result. Increasing smin

and decreasing smax to approach such values will modify the overall behaviour of
the algorithm, because the same sequence of pseudorandom numbers will imply
completely different choices, but it is probably a good idea: if no improvement is
found out of a certain range of values of s, this probably means that the radius of
the basins of attraction falls in a similar range, and therefore a good perturbation
should be in the same range.

A quick glance at the computational times suggests that they are nearly in-
dependent from the parameters: the variations are usually below 10%, that in a
period of few seconds is probably just due to random fluctuations. The quality of
the results is roughly indicated by Table 5.1 which reports the average gaps with
respect to the best known result. The diversifying configuration ([k/2, k]) is the
best one, followed by the relaxed configuration ([1, k]) and the slightly intensifying
one ([1, k/2]), that are very similar, as expected. The strongly intensifying and the
strongly diversifying configuration appear to be the worst. It can be interesting to
notice that the strongly diversifying configuration ([k, k]) actually proved the best
in one of my personal contributions to the literature, which combined rather short
runs of a TS metaheuristic with a VNS restart mechanism. This is not unreason-
able, given that the TS procedure probably guarantees a good exploration of the
region surrounding the current best known result (better than the steepest ascent
procedure adopted here), so that stronger perturbations in the restart make sense.
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smin smax Average gap
1 k 0.33%
1 10 0.45%
1 k/2 0.34%
k/2 k 0.22%
k k 0.44%

Table 5.1: Average gaps with respect to the best known result of the VNS meta-
heuristic with different tunings of the shaking range [smin, smax]

Figures 5.5 and 5.6 show the SQD and boxplot diagrams of the five configura-
tions, that clearly confirm the dominances suggested by the average gaps. Indeed,
checking the results of the steepest ascent heuristic initialised with the try-all pro-
cedure, the diversifying configuration seems to be comparable even in the upper
part of the diagram.

Figure 5.5: Solution Quality Distribution diagrams for the VNS metaheuristic with
different tunings of the shaking range [smin, smax]

Figure 5.6: Boxplot diagrams for the VNS metaheuristic with different tunings of
the shaking range [smin, smax]

Statistical tests

We can also compare the performance of the five configurations with statistical
tests. Using Wilcoxon’s test poses a methodological problem: the test is designed
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to compare two empirical populations. It is possible to use it on more than two
algorithms, applying it to all pairs or choosing a reference heuristic and comparing
the other ones to it. This, however, requires to handle with care the interpretation
of the results. The p-value obtained, in fact, estimates the probability of observing
the empirical results under the assumption that the two samples compared derive
from the same population, that is, that the two configurations compared are equally
effective. When p is small, this interpretation of the results can be rather safely
rejected, but it must not be considered as straightforwardly false. If the test is
applied nt times, the probability that at least one of the interpretations drawn from
the test is false becomes larger and larger. This means that our conclusions should
be based on stricter requirements. The literature offer several methods to correct the
estimates provided by a pairwise test. The simplest one is the Bonferroni correction,
that is based on Boole’s inequality for the familywise error rate (FWER):

FWER = P

[
nt⋃
i=1

(pi ≤ α)

]
≤

nt∑
i=1

P [(pi ≤ α)]

In other words, the sum of the p-values obtained gives an overestimate of the p-value
for the overall observation. A simple way to impose it every given threshold on the
significancy of the results (for example, the classical 5%) consists in dividing such
a threshold by the number nt of the tests.

For example, let us check the hypothesis that the diversifying configuration is
better than the other four. This corresponds to the four following different pairwise
tests:

1. [k/2, k] versus [1, k]

W+ = 470, W- = 91, N = 33, p <= 0.0007329

2. [k/2, k] versus [1, 10]

W+ = 630, W- = 73, N = 37, p <= 2.743e-005

3. [k/2, k] versus [1, k/2]

W+ = 499, W- = 96, N = 34, p <= 0.0005896

4. [k/2, k] versus [k, k]

W+ = 612, W- = 18, N = 35, p <= 1.197e-006

The hypothesis is consistent with the observations even after applying Bonferroni’s
correction, since the sum of all p-values is 0.2% and each one is smaller than 5%/nt =
1.25% (even a threshold much tighter than 5% would be respected).

Of course, other systems of assumptions, such as a full ordering among the
configurations, could be checked, but they would probably be less interesting: we
are mainly interested in finding the best performing configuration on the given
benchmark.
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5.3 Tabu search

The Tabu Search metaheuristic applies a basic steepest ascent heuristic, but modifies
it introducing a limitation of the neighbourhood that forbids to accept as incum-
bent a solution already visited, but also (in the standard attribute-based version) a
solution similar to the ones already visited. In order to adapt the TS metaheuristic
to the MDP, we will initialise the search with the farthest-point heuristic and adopt
the basic single-swap neighbourhood NS1

as done for the VNS. This should make
the comparison between the two approaches fairer, allowing to understand whether
the problem is better attacked by restarting or prolonging the search after hitting a
locally optimal solution. The general TS scheme can be easily adapted to the MDP
with the usual replacements due to the maximising nature of the problem.

Algorithm TabuSearch
(
I, x(0), tmax, L

)
x := x(0); x∗ := x(0);

Ā := ∅;
For t := 1 to tmax do

x′ := ∅;
For each y ∈ N (x) do

If f (y) > f (x′) then

If Tabu
(
y, Ā

)
= false or f (y) > f (x∗) then x′ := y;

EndIf

EndFor

x := x′;

Ā := Update
(
Ā, x′, L

)
;

If f (x′) > f (x∗) then x∗ := x′;

EndFor

Return (x∗, f (x∗));

First, we must decide whether to apply the basic version of TS or the most
common attribute-based one. In the MDP literature, the best performing algorithm
proposed so far to solve the problem actually uses the basic version. However, this
algorithm introduces several refinements, and we are interested in the MDP mainly
as an example for the application of TS to general Combinatorial Optimization
problems. We will therefore implement an attribute-based TS metaheuristic. It
is rather natural to define a pair of complementary attribute sets, that are the
presence and the absence of given points in the current solution. Setting A = x
and A′ = P \ x means that every time a point is deleted from the solution, it
becomes tabu for a given number Lin of neighbourhood explorations to add it back;
conversely, every time a point is added to the solution, it becomes tabu for a given
number Lout of neighbourhood explorations to delete it.

Procedure tabu search implements both tabu lists on a single integer vector T,
each of whose components reports the last iteration at which the corresponding
point has changed its status: if i currently belongs to x, T[i] is the iteration
at which i has entered the solution; if i currently does not belong to x, T[i] is
the iteration at which i has gone out of the solution. At the beginning, T[i] is
set to -MAX INT for all points, so that the check on the tabu status of any point
states that the point is not tabu, and therefore free for exchanges. Procedure
explore neighbourhood with tabu differs from the explore neighbourhood pro-
cedure implemented in the previous chapter for the steepest ascent heuristic in that
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it takes into account also the tabu status (in fact, it requires the current iteration
index iter, vector T, the tabu tenures Lin and Lout, and the value of the best
known solution w star.f, to apply the aspiration criterium). The update of the
tabu list simply amounts to saving the current iteration index in the two positions
of vector T associated to the points swapped. We should also take into account
the possibility that all moves in the neighbourhood are tabu. In that case, the
neighbourhood exploration procedure should return the solution with the oldest
tabu status. The current implementation simply returns no point and performs no
move, remaining idle until some tabu expires. This is an inefficient implementation,
that shall be corrected in future versions of the algorithm.

create_solution(pI->n,&x_star);

copy_solution(px,&x_star);

T = int_alloc(pI->n+1);

for (i = 1; i <= pI->n; i++)

T[i] = INT_MIN;

for (iter = 1; iter <= max_iter; iter++)

{

explore_neighbourhood_with_tabu(px,pI,visit_strategy,

iter,T,l_in,l_out,x_star.f,

&p_in,&p_out,&delta_f);

if (p_in != NO_POINT)

{

swap_points(p_in,p_out,px,pI);

T[get_index(p_in,pI)] = T[get_index(p_out,pI)] = iter;

if (px->f > x_star.f) copy_solution(px,&x_star);

}

}

free(T);

copy_solution(&x_star,px);

The exploration of the neighbourhood is performed exactly as in the steepest
ascent heuristic, with the addition of a further check. If the currently explored
swap is tabu (and this is checked by function is tabu, then the move is performed
only if it improves upon the best known one, that is if the improvement δf applied
to the current solution value yields a value strictly better than the best known
one (aspiration criterium). In this special case, in fact, the new solution is only
apparently violating a tabu, and is on the contrary providing a precious overall
improvement to the search process. We still apply the first-best exploration strategy,
returning the first improving solution in the neighbourhood, but only if it is nontabu,
or it satisfies the aspiration criterium.

*pdelta_f = INT_MIN;

*pp_in = *pp_out = NO_POINT;

for (p_in = first_point_in(px); !end_point_list(p_in,px); p_in = next_point(p_in,px))

for (p_out = first_point_out(px); !end_point_list(p_out,px); p_out = next_point(p_out,px))

{

delta_f = evaluate_exchange(p_in,p_out,px,pI);

if ( (delta_f > *pdelta_f) &&

(!is_tabu(p_in,p_out,pI,iter,T,l_in,l_out,px->f+delta_f,fstar)) )
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{

*pdelta_f = delta_f;

*pp_in = p_in;

*pp_out = p_out;

if ( (delta_f > 0) && (strcmp(visit_strategy,"-fb") == 0) ) break;

}

}

Finally, the check of the tabu status simply consists in determining whether the
current iteration index has reached or not the value at which the tabu expires. This
must be checked both for the point i that is leaving the solution (and in that case
the tabu tenure is l out) and for the point j that is entering the solution (in that
case the tabu tenure is l in) .

if (f > f_star) /* aspiration criterium */

return false;

else

return ((iter <= T[get_index(p_in,pI)] + l_out) ||

(iter <= T[get_index(p_out,pI)] + l_in));

5.3.1 Time complexity estimation

It is rather obvious that the computational complexity of the TS metaheuristic
coincides with that of the basic steepest ascent heuristic, as all additional operations
require constant time in their respective locations:

• the evaluation of the tabu status adds a constant number of operations to the
evaluation of the cost of each explored solution;

• the update of the tabu list adds a constant number of operations to the exe-
cution of the move, that is the exploration of a neighbourhood;

The allocation, initialization and deallocation of vector T add O(n) time to the over-
all algorithm. Therefore, the overall complexity remains O (tmax(n− k)k), where
the number of neighbourhood explorations tmax is a parameter provided by the user
as the termination condition.

5.3.2 Empirical evaluation

We can now evaluate the performance of the TS metaheuristic. We set the total
number of neighbourhood explorations to tmax = 1 000, as for the VNS metaheur-
istic, in order to allow a meaningful comparison between them, even if a completely
fair comparison would require to give them the same computational time.

Cyclic or erratic behaviours

Contrary to the VNS, where it is usually very easy to determine a default config-
uration for the parameters smin, δs and smax, the most influential parameters of
the TS, that is the tabu tenures need to be tuned with a certain care since the
beginning. Two basic complementary risks must be avoided:

• cyclic behaviours: if the tabu tenure is too short, the search can get stuck in a
cyclic sequence of solutions, because the search is attracted by locally optimal
solutions that have already been visited and the tabu expires before the cycle
starts again;
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• erratic behaviours or empty neighbourhoods: if the tabu tenure is too long, the
search can wander in the solution space avoiding the more promising regions
because these are too close to solutions that have already been visited; the
neighbourhood can even become fully tabu.

Since the number of points out of the solution varies from n−k = 60 to n−k =
900, and the number of points in the solution varies from k = 10 to k = 400, the
tenures should keep below these values, but above a few units, which is still a rather
large range. The tenures could also possibly depend on the size of the instance. It
is also likely that the tenure for reinsertion Lin should be larger than the tenure for
redeletions Lout, because the candidate elements for insertion (the n − k external
ones) are more numerous than the candidate elements for deletion (the k internal
ones). A simple way to verify the occurrence of the cyclic behaviours and (less
evidently) of erratic ones, is to plot the profile of the objective function along the
search.

In order to give a quick idea of how reasonable values are introduced, we will fix
focus on the smallest instance (n0100k010.txt), and investigate different possible
values for Lin while trivially setting Lout = 1, so that the tabu mechanism is mainly
based on the reinsertion of deleted elements. Figure 5.7 reports the profile of the
objective function for the first 100 neighbourhood explorations. The configuration
with Lin = 5 exhibits a clearly periodic profile, suggesting that the tenure is too
short. The one with Lin = 6 appears much better, but long cycles (with a period
of 106 iterations actually arise after a while). The configuration with Lin = 8
hits the best known result (f∗ = 3 561) several times during the whole run. The
configuration with Lin = 30 starts moving erratically in regions of worse quality.
Finally, the configuration with Lin = 100 seems to avoid good solutions and also
shows sequences of iterations in which the value of the objective does not change
because the whole neighbourhood is tabu (Lin = 100 > n− k = 90) and our simple
implementation trivially waits for the tabu to expire.

Figure 5.7: Profile of the objective function for the TS metaheuristic on instance
n0100k010.txt with different values of tenures

(
Lin, Lout

)
Figure 5.8 reports the profile of the objective function for the whole run on

the largest instance (n1000k400.txt). The configurations with the smallest values
of Lin actually prove better, without exhibiting cyclic behaviours. This (absolutely
nonobvious) behaviour is possibly due to the much larger size of the neighbourhood,
that allows the algorithm to choose the incumbent in a larger set, and thus reduces
the risk of repeating the same sequence of moves.
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Figure 5.8: Profile of the objective function for the TS metaheuristic on instance
n1000k400.txt with different values of tenures

(
Lin, Lout

)
Computational time analysis

The overall computational time, including the initialisation procedure is very sim-
ilar to that of the VNS metaheuristic: it ranges from fractions of a second to about
four seconds. It is therefore another interesting candidate to provide an efficient
solving approach. Figure 5.9 reports the logarithmic scaling diagram on the whole
benchmark. The diagram shows a polynomial increase with size, in good accord-
ance with the O ((n− k)k) theoretical estimate, which corresponds to a quadratic
complexity when k ∝ n. In fact, the linear interpolation is:

TA = βnα ⇔ log TA = α log n+ log β

since α ≈ 2.012 and β ≈ 2.7 · 10−6.

Figure 5.9: Scaling diagram in logarithmic scales for the TS algorithm on the
benchmark
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5.3.3 Parameter tuning

We now compare a small number of configurations in which both tenures Lin and
Lout assume different values. For the sake of simplicity, we apply the same values to
all instances of the benchmark, also based on the results of the previous experiments,
which showed that rather short tenures are enough to avoid cyclic behaviours, and
at the same time to allow the search to focus on good quality solutions, both on
the smallest and the largest instance. We consider the six configurations obtained
setting Lin = 5, 6 or 8 and Lout = 1 or 2. This is, of course, only a very simple illus-
trative investigation. Table ?? reports the average gaps over the whole benchmark.
They are quite promising: most of them are smaller than the corresponding values
obtained by the VNS metaheuristic; the larger tenures, in particular, provide the
best gap.

Lin Lout Average gap
5 1 0.31%
6 1 0.26%
8 1 0.19%
5 2 0.17%
6 2 0.18%
8 2 0.14%

Table 5.2: Average gaps with respect to the best known result of the TS metaheur-
istic with different tunings of the tabu tenures Lin and Lout

Figure 5.10 reports the SQD diagram of the six configurations, confirming the
better performance of the configuration with the larger tenures.

Figure 5.10: Solution Quality Distribution diagrams for the TS metaheuristic with
different tunings of the tabu tenures

(
Lin, Lout

)
The corresponding boxplots are reported in Figure 5.11: they seem to contradict

the SQD diagram (Lin = 1 and Lout = 8 look better than Lin = 2 and Lout = 8),
but that mainly depends on the automatic definition of outliers by Excel3 It seems
anyway justified to consider larger tenures as better. Indeed, the experiments should
now include larger values, to determine whether it is possible to further improve
the results, but we stop here.

The application of Wilcoxon’s test to compare
(
Lin, Lout

)
with the other con-

figurations gives the following results:

3There seems to be a formula to label a value as an outlier. I do not know whether this is a
statistic standard or just an Excel convention.
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Figure 5.11: Boxplot diagrams for the TS metaheuristic with different tunings of
the tabu tenures

(
Lin, Lout

)
1. (8, 2) versus (5, 1)

W+ = 432, W- = 64, N = 31, p <= 0.0003233

2. (8, 2) versus (6, 1)

W+ = 494, W- = 101, N = 34, p <= 0.0008056

3. (8, 2) versus (8, 1)

W+ = 261.50, W- = 173.50, N = 29, p <= 0.3469

4. (8, 2) versus (5, 2)

W+ = 313, W- = 152, N = 30, p <= 0.09987

5. (8, 2) versus (6, 2)

W+ = 248, W- = 187, N = 29, p <= 0.5165

which suggests that only the first two comparisons, with configurations having both
tenures shorter, are significant (even applying the Bonferroni correction), whereas
the other comparisons could easily be the result of a random sampling.

5.4 Comparison between VNS and TS

To conclude our experiments, we compare the VNS and the TS metaheuristic,
with their best performing configurations, both with respect to the quality of the
solutions and the computational time. The corresponding SQD and RTD diagrams
are reported in Figures 5.12 and 5.13, and show that the TS metaheuristic is more
effective while taking the same time as the VNS algorithm. The result is confirmed
by the following response of Wilcoxon’s test:
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W+ = 131, W- = 464, N = 34, p <= 0.00454

Figure 5.12: Solution Quality Distribution diagrams for the VNS metaheuristic and
the TS metaheuristic

Figure 5.13: Run Time Distribution diagrams for the VNS metaheuristic and the
TS metaheuristic

It is important not to overestimate the range of these conclusions. They refer
to a not very large benchmark of a specific nature, to a computation consisting
of tmax = 1 000 iterations, to a pair of configurations that have been obtained
with a very short investigation. They are however a preliminary result of a certain
soundness, obtained with an experimental methodology based on the formulation
and verification of hypotheses.
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