
Heuristic Algorithms
Master’s Degree in Computer Science/Mathematics

Roberto Cordone

DI - Università degli Studi di Milano

Schedule: Thursday 14.30 - 16.30 in classroom 201

Friday 14.30 - 16.30 in classroom 100

Office hours: on appointment

E-mail: roberto.cordone@unimi.it

Web page: https://homes.di.unimi.it/cordone/courses/2023-ae/2023-ae.html

Ariel site: https://rcordoneha.ariel.ctu.unimi.it

Lesson 19: SA and TS Milano, A.A. 2023/24
1 / 30

https://homes.di.unimi.it/cordone/courses/2023-ae/2023-ae.html
https://rcordoneha.ariel.ctu.unimi.it

Extending the local search with worsenings

If the neighbourhood and objective remain the same,
the rule of acceptance must change: instead of

x ′ := arg min
x∈N(x)

f (x)

select a nonminimal (possibly, even nonimproving) solution

The main problem is the risk of cyclically visiting the same solutions

The two main strategies that allow to control this risk are

• Simulated Annealing (SA), which uses randomisation
to make repetitions unlikely

• Tabu Search (TS), which uses memory to forbid repetitions

2 / 30

Annealing
The SA derives from Metropolis’ algorithm (1953), which aims to
simulate the “annealing” process of metals:
• bring the metal to a temperature close to fusion,

so that its particles distribute at random
• cool the metal very slowly, so that the energy decreases,

but in a time sufficiently long to converge to thermal equilibrium

The aim of the process is to obtain
• a very regular and defectless crystal lattice, that corresponds to the

base state (minimum energy configuration)
• a material with useful physical properties

3 / 30

Simulation and optimisation

The situation has similarities with Combinatorial optimisation problems

• the states of the physical system correspond to the solutions

• the energy corresponds to the objective function

• the base state corresponds to the globally optimal solutions (minima)

• the state transitions correspond to local search moves

• the temperature corresponds to a numerical parameter

This suggests to use Metropolis’ algorithm for optimisation

According to thermodynamics at the thermal equilibrium
the probability of observing each state i depends on its energy Ei

π′T (i) =
e
−Ei
k T∑

j∈S
e
−Ej
k T

where S is the state set, T the temperature and k Boltzmann’s constant

It is a dynamic equilibrium, with ongoing state transitions in all directions

4 / 30

Metropolis’ algorithm

Metropolis’ algorithm generates a random sequence of states

• the current state i has energy Ei

• the algorithm perturbs i , generating a state j with energy Ej

• the current state moves from i to j with probability

πT (i , j) =

{
1 if Ej < Ei

e
Ei−Ej
k T = π′(j)

π′(i) if Ej ≥ Ei

that is the transition is

• deterministic if improving (because that is the final purpose)

• based on the conditional probability if worsening

Simulated Annealing applies exactly the same principle

5 / 30

General scheme of Simulated Annealing

Algorithm SimulatedAnnealing
(
I , x (0),T [0]

)
x := x (0); x∗ := x (0); T := T [0];

While Stop() = false do

x ′ := RandomExtract(N, x); { random uniform extraction }

If f (x ′) < f (x) or U [0; 1] ≤ e
f (x)−f (x′)

T then x := x ′;

If f (x ′) < f (x∗) then x∗ := x ′;

T := Update(T);

EndWhile;

Return (x∗, f (x∗));

As the neighbourhood is used to generate a solution (not fully explored),
it is possible to worsen even if improving solutions exist

A precomputed table of values for e
δf
T can improve the efficiency

Several update schemes can be designed for the “temperature” T

6 / 30

Acceptance criterium
T rules the probability to accept worsenings

πT (x , x ′) =

{
1 if f (x ′) < f (x)

e
f (x)−f (x′)

T if f (x ′) ≥ f (x)

• T � 0 diversifies because nearly all solutions are accepted:
in the extreme case, it is a random walk

• T ≈ 0 intensifies nearly all worsening solutions are rejected:
in the extreme case, it is a steepest descent

Notice the similarity with the ILS
7 / 30

Asymptotic convergence to the optimum

Due to the acceptance rule, the current solution x is a random variable:
its “state probability” π′ (x) combines on all possible predecessors x (t−1)

• the “state probability” π′
(
x (t−1)

)
of the predecessor

• the probability to choose the move from x (t−1) to x , that is uniform

• the probability to accept the move, that is

πT
(
x (t−1), x

)
=

{
1 if f (x) < f

(
x (t−1)

)
e

f (x(t−1))−f (x)
T if f (x) ≥ f

(
x (t−1)

)
As it depends only on the previous step, the solution is a Markov chain

For fixed temperature T , the transition probabilities are stationary:
it is a homogeneous Markov chain

If the search graph for neighbourhood N is connected, the probability to
reach each state is > 0: it is an irreducible Markov chain

Under these assumptions, the state probability converges
to a stationary distribution independent from the starting state

8 / 30

Asymptotic convergence to the optimum

The stationary distribution favours “good” solutions with the same law
imposed by thermodynamics on physical systems at thermal equilibrium

πT (x) =
e
−f (x)

T∑
x∈X

e
−f (x)

T

for each x ∈ X

where X is the feasible region and T the “temperature” parameter

The distribution converges to a limit distribution as T → 0

π (x) = lim
T→0

πT (x) =

1

|X ∗|
for x ∈ X ∗

0 for x ∈ X \ X ∗

which corresponds to a certain convergence to a globally optimal solution

9 / 30

Asymptotic convergence to the optimum

This result however holds at the equilibrium, in infinite time

In practice, low values of T imply

• a high probability to visit a global optimum, but also

• a slow convergence to the optimum (many exchanges are rejected)

In a finite time, the result obtained with low T can be far from optimal

Hence, T starts high and is progressively updated decreasing over time

The starting value T [0] should be

• high enough to allow to reach any solution quickly

• small enough to discourage visiting very bad solutions

A classical tuning for T [0] is to

• sample the first neighbourhood N
(
x (0)
)

• set a parameter β ∈ (0, 1)

• set T [0] to accept on average a fraction β of the sampled solutions

10 / 30

Temperature update
The temperature is updated by subsequent phases (r = 0, . . . ,m)
• each phase applies a constant value T [r] for `[r] iterations
• T [r] decreases exponentially from phase to phase

T [r] := αT [r−1] = αrT [0] with α ∈ (0, 1)

• `[r] increases from phase to phase (often linearly)
with values related to the diameter of the search graph
(therefore to the size of the instance)

Since T is variable, the Markov chain x is not homogeneous, but
• if T decreases slowly enough, it converges to the global optimum
• good parameters to tune the decrease depend on the instance

(namely, on f (x̃)− f (x∗), where f (x̃) is the second best value of f)

But the best parameter values are not known a priori

Adaptive SA variants tune the temperature T based on the results
• set T to a value such that a given fraction of N (x) is accepted
• increase T if the solution has not improved for a certain time

(diversification); otherwise decrease it (intensification)
11 / 30

Tabu Search

The Tabu Search (TS) has been proposed by Glover (1986)

It keeps the basic selection rule of steepest descent

x ′ := arg min
x∈N(x)

f (x)

without the termination condition

But this implies cycling!

The TS imposes a tabu to forbid the solutions already visited

x ′ := arg min
x∈N(x)\XV

f (x)

where XV is the set of the already visited solutions

A simple idea, but how to manage the tabu efficiently and effectively?

12 / 30

Exchange heuristics with tabu

An exchange heuristic that explores a neighbourhood imposing a tabu on
the already visited solutions requires to:

1 evaluate the feasibility of each subset produced by the exchanges
(unless guaranteed a priori)

2 evaluate the cost of each feasible solution

3 evaluate the tabu status of each feasible promising solution

in order to select the feasible best nontabu solution

An elementary way to implement the evaluation of the tabu is

• save the visited solutions in a suitable structure (tabu list)

• check each explored solution making a query on the tabu list

13 / 30

Potential inefficiency of the tabu mechanism

This elementary evaluation of the tabu however is very inefficient

• the comparison of the solutions at step t requires time O (t)
(reducible with hash tables or search trees)

• the number of solutions visited grows indefinitely over time

• the memory occupation grows indefinitely over time

The Cancellation Sequence Method and the Reverse Elimination Method
tackle these problems, exploiting the fact that in general

• the solutions visited form a chain with small variations

• few solutions visited are neighbours of the current one

The idea is to focus on variations

• save move lists, instead of solutions

• evaluate the overall performed variations, instead of the single moves

• find the solutions which have undergone small overall variations
(recent ones or submitted to variations subsequently reversed)

14 / 30

Potential ineffectiveness of the tabu mechanism

Other subtle phenomena influence the effectiveness of the method

Forbidding the solutions visited can have two different negative effects:

• it can disconnect the search graph,
creating impassable “iron curtains” that block the search

(the prohibition should not be permanent)

• it can slow down the exit from attraction basins,
creating a “gradual filling” effect that slows down the search

(the prohibition should be extended)

The two phenomena suggest apparently opposite remedies

How to combine them?

15 / 30

Example
A very degenerate example is provided by the following problem

• the ground set B = {1, . . . , n} includes the first n natural numbers
• all subsets are feasible: X = 2B

• the objective combines a nearly uniform additive term φi = 1 + εi
(0 < ε� 1) and (only if x = x∗) a strong negative term

f (x) =

∑
i∈x

(1 + εi) for x 6= x∗

−1 for x = x∗

where x∗ is suitably chosen in X

Using the neighbourhood of all solutions at Hamming distance ≤ 1

NH1 (x) =
{
x ′ ∈ 2B : dH (x , x ′) ≤ 1

}
the problem has

• a global optimum x∗, with f (x∗) = −1,
whose attraction basin includes the n solutions x with dH (x , x∗) ≤ 1

• a local optimum x̄ = ∅ with f (x̄) = 0,
whose attraction basin includes the other 2n − n solutions

16 / 30

Example

Starting from x (0) = x̄ = ∅ and forbidding all the solutions visited:

• visit methodically most of 2B , with f and d(x , x̄) going up and down

• for 4 ≤ n ≤ 14 the search graph is disconnected and the search is
stuck (1011 can’t be reached), but all solutions are at least explored

• for n ≥ 15, the search is stuck and some unvisited solutions are not
explored, possibly missing the optimum

t f x d(x, x̄)
1 0 0000 0
2 1+ε 1000 1
3 2+3ε 1100 2
4 1+2ε 0100 1
5 2+5ε 0110 2
6 1+3ε 0010 1
7 2+4ε 1010 2
8 3+6ε 1110 3
9 4+10ε 1111 4

10 3+9ε 0111 3
11 2+7ε 0011 2
12 1+4ε 0001 1
13 2+5ε 1001 2
14 3+7ε 1101 3
15 2+6ε 0101 2

17 / 30

Example
The objective function profile confirms the limitations of the method

The solution x repeatedly gets far from x (0) = x̄ and close to it

• it visits nearly the whole attraction basin of x̄

• in the end, it does not get out of it, but gets stuck in a solution
whose neighbourhood is fully tabu

• if it removes the oldest tabu, the exploration goes around and the
risk of looping gets back

18 / 30

Attribute-based tabu
Some simple devices can be adopted in order to control these problems

Forbidding only the visited solution slows down the search

1 forbid all solutions that share “attributes” with the visited ones,
instead of forbidding only the visited solutions
• define a set A of attributes
• define for each solution x ∈ X a subset of attributes Ax ⊆ A
• declare a subset of tabu attributes Ā ⊆ A (empty at first)
• forbid all the solutions with tabu attributes

x is tabu ⇔ Ax ∩ Ā 6= ∅

• move from the current solution x to x ′ such that Ax′ ∩ Ā = ∅
and add to Ā the attributes possessed by x and not by x ′

Ā := Ā ∪ (Ax \ Ax′)

(in this way, x becomes tabu)

This allows to

• avoid also solutions similar to the visited ones

• get more quickly far away from visited local optima
19 / 30

Tabu attributes

The concept of “attribute” is intentionally generic; the simpler ones are

• inclusion of an element in the solution (A = B and Ax = x):
when the move from x to x ′ expels an element i from the solution,
the tabu forbids the reinsertion of i in the solution
• x has the attribute “presence of i” and x ′ hasn’t got it
• the attribute “presence of i” enters Ā
• every solution including i becomes tabu

• exclusion of an element from the solution (A = B and Ax = B \ x):
when the move from x to x ′ inserts an element i into the solution,
the tabu forbids the removal of i from the solution
• x has the attribute “absence of i” and x ′ hasn’t got it
• the attribute “absence of i” enters Ā
• every solution devoid of i becomes tabu

Different attribute sets can be combined, each with its tenure and list
(e.g., after replacing i with j , forbid both to remove j and to insert i)

20 / 30

Example

21 / 30

Tabu attributes

Other (less frequent) examples of attributes

• the value of the objective function: forbid solutions of a given value,
previously assumed by the objective

• the value of an auxiliary function

Complex attributes can be obtained combining simple attributes

• the coexistence in the solution of two elements (or their separation)

• or, if a move replaces element i with element j ,
the tabu can forbid the removal of j to include i ,
but allow the simple removal of j and the simple inclusion of i

22 / 30

Temporary tabu and aspiration criterium

Some simple devices can be adopted in order to control these problems

The tabu mechanism creates regions hard or impossible to reach

2 give a limited length L (tabu tenure) to the prohibition
• the tabu solutions become feasible again after a while
• the same solutions can be revisited

(but, if Ā is different, the future evolution will be different)

Tuning the tabu tenure is fundamental for the effectiveness of TS

The tabu could forbid a global optimum similar to a visited solution

3 introduce an aspiration criterium: a tabu solution better than the
best known one is anyway accepted

(of course, there is no risk of looping)

There are looser aspiration criteria, but they are not commonly used

The tabu could forbid all neighbour solutions

4 if all neighbour solutions are tabu, accept the one with the oldest
tabu (it can be interpreted as another aspiration criterium)

23 / 30

Efficient evaluation of the tabu status
The evaluation of the tabu status must be efficient and avoid scanning
the whole solution (as for feasibility and cost)

• the attributes are associated to moves, not to solutions: do not
check whether the solution includes i , but whether the move adds i

Let Ti be the iteration when attribute i ∈ A became tabu (−∞ if i /∈ Ā)

To evaluate the tabu status in constant time simply check

t ≤ Ti + L

If the tabu is on insertions (A = x), at iteration t

• forbid the moves that add i ∈ B \ x when t ≤ T in
i + Lin

• update T in
i := t for each i removed (i ∈ x \ x ′)

If the tabu is on deletions (A = B \ x), at iteration t

• forbid the moves that delete i ∈ x when t ≤ T out
i + Lout

• update T out
i := t for each i added (i ∈ x ′ \ x)

As either i ∈ x or i ∈ B \ x , a single vector T is enough for both checks

More sophisticated attributes require more complex structures
24 / 30

General scheme of the TS

Algorithm TabuSearch
(
I , x(0), L

)
x := x(0); x∗ := x(0);

Ā := ∅;
While Stop() = false do

f ′ := +∞;

For each y ∈ N (x) do

If f (y) < f ′ then

If Tabu
(
y , Ā

)
= false or f (y) < f (x∗) then x ′ := y ; f ′ := f (y);

EndIf

EndFor

Ā := Update
(
Ā, x ′, L

)
;

If f (x ′) < f (x∗) then x∗ := x ′;

EndWhile

Return (x∗, f (x∗));

25 / 30

Example: the TSP

Consider the neighbourhood NR2 generated by 2-opt exchanges and
use as attributes both the presence and the absence of arcs in the solution

• at first set Tij = −∞ for each arc (i , j) ∈ A

• at each step t, explore the n(n − 1)/2 pairs of removable arcs and the
corresponding pairs of arcs which would replace them

• the move (i , j), which replaces (si , si+1) and (sj , sj+1) with (si , sj) and
(si+1, sj+1), is tabu at step t if one of the following conditions holds:

1 t ≤ Tsi ,si+1 + Lout

2 t ≤ Tsj ,sj+1 + Lout

3 t ≤ Tsi ,sj + Lin

4 t ≤ Tsj+1,si+1 + Lin

So, at first all moves are legal

• selected move (i∗, j∗), update the auxiliary structures setting

1 Tsi∗ ,si∗+1
:= t

2 Tsj∗ ,sj∗+1
:= t

3 Tsi∗ ,sj∗ := t
4 Tsj∗+1,si∗+1

:= t

As n arcs are in and n(n− 2) out of the solution, it is better to set Lout � Lin

26 / 30

Example: the Max-SAT

Consider the neighbourhood NF1 , which includes the solutions obtained
complementing the value of a variable (all n solutions are feasible)

Since |x | = |B \ x | for each x ∈ X

• the tabu tenure for additions and deletions can be the same

• it is sufficient to forbid the change of value of a variable
and the attribute is the variable

The algorithm proceeds as follows

• at first, set Ti = −∞ for each variable i = 1, . . . , n

• at each step t, explore the n solutions obtained complementing each
variable

• the move i , which assigns xi := x̄i , is tabu at step t if t ≤ Ti + L
(at first all moves are nontabu)

• perform move i∗ and set Ti∗ := t

27 / 30

Example: the KP

The neighbourhood NH1 includes all solutions at Hamming distance ≤ 1

Use the object as an attribute, with equal tenures Lin = Lout = 3:
vector T saves the iteration of the last move performed on each i ∈ B

t = 0 t = 1 T = [−∞ −∞ −∞ −∞]

t = 2 T = [−∞ −∞ 1 −∞] t = 3 T = [−∞ 2 1 −∞]

28 / 30

Tuning the tabu tenure
The value of the tabu tenure L is a crucial parameter
• too large tenures can conceal the global optimum and

in the worst case block the search
• too small tenures can hold the exploration back in useless regions

and in the worst case produce cyclic behaviours

The most effective value of L is in general
• related to the size of the instance
• slowly growing with size (many authors suggest L ∈ O

(√
|A|
)
)

• but nearly constant on medium ranges of size

Cycles can be broken extracting L at random in a range [Lmin; Lmax]

Adaptive mechanisms update L based on the results of the search within
a given range [Lmin; Lmax]
• decrease L when the current solution x improves: the search is

probably approaching a new local optimum and we want to favour it
(intensification)

• increase L when the current solution x worsens: the search is
probably leaving a known local optimum and we want to speed up
(diversification)

29 / 30

Variants

Other adaptive strategies work in the long term:

• reactive Tabu Search:
• use efficient structures to save the solutions visited (hash table)
• detect cyclic behaviours (frequent repetitions)
• move the range [Lmin; Lmax] upwards if the solutions repeat too often

• frequency-based Tabu Search:
• save the frequency of each attribute in the solution in structures

similar to the ones used for the tenure (e.g., Fi for each i ∈ B)
• if an attribute appears very often

• favour the moves introducing it modifying f as in the DLS
• forbid the moves introducing it, or discourage them by modifying f

• Exploring Tabu Search: reinitialize the search from solutions of good
quality which have been explored, but not used as current solution

(i. e., the “second-best solutions” of some neighbourhood)

• Granular Tabu Search: enlarge or reduce the neighbourhood
progressively

30 / 30

