
Heuristic Algorithms
Master’s Degree in Computer Science/Mathematics

Roberto Cordone

DI - Università degli Studi di Milano

Schedule: Thursday 14.30 - 16.30 in classroom 201

Friday 14.30 - 16.30 in classroom 100

Office hours: on appointment

E-mail: roberto.cordone@unimi.it

Web page: https://homes.di.unimi.it/cordone/courses/2023-ae/2023-ae.html

Ariel site: https://rcordoneha.ariel.ctu.unimi.it

Lesson 18: VND and DLS Milano, A.A. 2023/24
1 / 14

https://homes.di.unimi.it/cordone/courses/2023-ae/2023-ae.html
https://rcordoneha.ariel.ctu.unimi.it

Extending the local search without worsening

Instead of repeating the local search, extend it beyond the local optimum

To avoid worsening solutions, the selection step must be modified

x̃ := arg min
x′∈N(x)

f (x ′)

and two main strategies allow to do that

• the Variable Neighbourhood Descent (VND)
changes the neighbourhood N
• it guarantees an evolution with no cycles (the objective improves)
• it terminates when all neighbourhoods have been exploited

• the Dynamic Local Search (DLS) changes the objective function f
(x̃ is better than x for the new objective, possibly worse for the old)
• it can be trapped in loops (the new objective changes over time)
• it can proceed indefinitely

2 / 14

Variable Neighbourhood Descent (VND)
The Variable Neighbourhood Descent of Hansen and Mladenović (1997)
exploits the fact that a solution is locally optimal for a specific neighbourhood

• a local optimum can be improved using a different neighbourhood

Given a family of neighbourhoods N1, . . . ,Nstot

1 set s := 1

2 apply a steepest descent exchange heuristic
and find a local optimum x̄ with respect to Ns

3 flag all neighbourhoods for which x̄ is locally optimal and update s

4 if x̄ is a local optimum for all Ns , terminate; otherwise, go back to point 2

Algorithm VariableNeighbourhoodDescent(I , x (0))

flags := false ∀k;

x̄ := x (0); x∗ := x (0); s := 1;

While ∃s : flags = false do

x̄ := SteepestDescent(x̄, s); { possibly truncated }
flags := true;

If f (x̄) < f (x∗)

then x∗ := x̄ ; flags′ := false ∀s′ 6= s;

s := Update(s);

EndWhile;

Return (x∗, f (x∗));

3 / 14

Anticipated termination of Steepest Descent

Using many neighbourhoods means that some might be

• rather large

• slow to explore

In order to increase the efficiency of the method one can

• adopt a first-best strategy in the larger neighbourhoods

• terminate the Steepest Descent before reaching a local optimum
(possibly even after a single step)

Larger neighbourhoods aim to move out of the basins of attraction
of smaller neighbourhoods

4 / 14

VND and VNS

There is of course a strict relation between VND and VNS
(in fact, they were proposed in the same paper)

The fundamental differences are that in the VND

• at each step the current solution is the best known one

• the neighbourhoods are explored,
instead of being used to extract random solutions

They are never huge

• the neighbourhoods do not necessarily form a hierarchy

The update of s is not always an increment

• when a local optimum for each Ns has been reached, terminate

VND is deterministic and would not find anything else

5 / 14

Neighbourhood update strategies for the VND

There are two main classes of VND methods

• methods with heterogeneous neighbourhoods
• exploit the potential of topologically different neighbourhoods

(e.g., exchange vertices instead of edges)

Consequently, s periodically scans the values from 1 to stot

(possibly randomly permuting the sequence at each repetition)

• methods with hierarchical neighbourhoods (N1 ⊂ . . . ⊂ Nstot)
• fully exploit the small and fast neighbourhoods
• resort to the large and slow ones only to get out of local optima

(usually terminating SteepestDescent prematurely)

Consequently, the update of s works as in the VNS
• when no improvements can be found in Ns , increase s
• when improvements can be found in Ns , decrease s back to 1

Terminate when the current solution is a local optimum for all Ns

• in the heterogeneous case, terminate when all fail

• in the hierarchical case, terminate when the largest fails

6 / 14

Example: the CMSTP
This instance of CMSTP has n = 9 vertices, uniform weights (wv = 1),
capacity W = 5 and the reported costs (the missing edges have ce � 3)

Consider neighbourhood NS1 (single-edge swaps) for the first solution:

• no edge in the right branch can be deleted
because the left branch has zero residual capacity
and a direct connection to the root would increase the cost

• deleting any edge in the left branch increases the total cost

The solution is a local optimum for NS1

Neighbourhood NT1 (single-vertex transfers) has an improving solution,
obtained moving vertex 5 from the left branch to the right one

7 / 14

Dynamic Local Search (DLS)

The Dynamic Local Search is also known as Guided Local Search

Its approach is complementary to VND

• it keeps the starting neighbourhood

• it modifies the objective function

It is often used when the objective is useless because it has wide plateaus

The basic idea is to

• define a penalty function w : X → N
• build an auxiliary function f̃ (f (x) ,w (x))

which combines the objective function f with the penalty w

• apply a steepest descent exchange heuristic to optimise f̃

• at each iteration update the penalty w based on the results

The penalty is adaptive in order to move away from recent local optima
but this introduces the risk of cycling

8 / 14

General scheme of the DLS

Algorithm DynamicLocalSearch(I , x (0))

w := StartingPenalty(I);

x̄ := x (0); x∗ := x (0);

While Stop() = false do

(x̄ , xf) := SteepestDescent(x̄ , f ,w); { possibly truncated }
If f (xf) < f (x∗) then x∗ := xf ;

w := UpdatePenalty(w , x̄ , x∗);

EndWhile;

Return (x∗, f (x∗));

Notice that the steepest descent heuristic

• optimises a combination f̃ of f and w

• returns two solutions:

1 a final solution x̄ , locally optimal with respect to f̃ , to update w
2 a solution xf , that is the best it has found with respect to f

9 / 14

Variants
The penalty can be applied (for example)

• additively to the elements of the solution:

f̃ (x) = f (x) +
∑
i∈x

wi

• multiplicatively to components of the objective f (x) =
∑
j

φj (x):

f̃ (x) =
∑
j

wj φj (x)

The penalty can be updated

• at each single neighbourhood exploration

• when a local optimum for f̃ is reached

• when the best known solution x∗ is unchanged for a long time

The penalty can be modified with

• random updates: “noisy” perturbation of the costs

• memory-based updates, favouring the most frequent elements
(intensification) or the less frequent ones (diversification)

10 / 14

Example: DLS for the MCP
Given a undirected graph, find a maximum cardinality clique
• the exchange heuristic is a VND using the neighbourhoods

1 NA1 (vertex addition): the solution always improves,
but the neighbourhood is very small and often empty

2 NS1 (exchange of an internal vertex with an external one):
the neighbourhood is larger, but forms a plateau (uniform objective)

• the objective provides no useful direction in either neighbourhood

• associate to each vertex i a penalty wi initially equal to zero

• the exchange heuristic minimises the total penalty
(within the neighbourhood!)

• update the penalty

1 when the exploration of NS1 terminates:
the penalty of the current clique vertices increases by 1

2 after a given number of explorations:
all the nonzero penalties decrease by 1

The rationale of the method consists in aiming to

• expel the internal vertices (diversification)

• in particular, the oldest internal vertices (memory)

11 / 14

Example: DLS for the MCP

Start from x (0) = {B,C ,D}, with w = [0 1 1 1 0 0 0 0 0]

1 w({B,C ,E}) = w({A,B,D}) = 2, but {A,B,D} wins lexicographically:
x (1) = {A,B,D} with w = [1 2 1 2 0 0 0 0 0]

2 x (2) = {B,C ,D} with w = [1 3 2 3 0 0 0 0 0] is the only neighbour

3 w({B,C ,E}) = 5 < 7 = w({A,B,D}):
x (3) = {B,C ,E} with w = [1 4 3 3 1 0 0 0 0]

4 w({C ,E ,F}) = 4 < 10 = w({B,C ,D}):
x (4) = {C ,E ,F} with w = [1 4 4 3 2 1 0 0 0]

5 w({E ,F ,G}) = 3 < 11 = w({B,C ,E}):
x (5) = {E ,F ,G} with w = [1 4 4 3 3 2 1 0 0]

6 w({F ,G ,H}) = w({F ,G , I}) = 3 < 9 = w({C ,E ,F}):
x (6) = {F ,G ,H} with w = [1 4 4 3 3 3 2 1 0]

Now the neighbourhood NA1 is not empty: x (7) = {F ,G ,H, I}
12 / 14

Example: DLS for the MAX-SAT

Given m logical disjunctions depending on n logical variables, find
a truth assignment satisfying the maximum number of clauses

• neighbourhood NF1 (1-flip) is generated complementing a variable

• associate to each logical clause a penalty wj initially equal to 1
(each component is a satisfied formula)

• the exchange heuristic maximizes the weight of satisfied clauses
thus modifying their number with the multiplicative penalty

• the penalty is updated

1 increasing the weight of unsatisfied clauses to favour them

wj := αus wj for each j ∈ U (x) (with αus > 1)

when a local optimum is reached
2 reducing the penalty towards 1

wj := (1− ρ) wj + ρ · 1 for each j ∈ C (with ρ ∈ (0, 1))

with a certain probability or after a certain number of updates

13 / 14

Example: DLS for the MAX-SAT

The rationale of the method consists in aiming to

• satisfy the currently unsatisfied clauses (diversification)

• in particular, those which have been unsatisfied for longer time and
more recently (memory)

The parameters tune intensification and diversification

• small values of αus and ρ preserve the current penalty
(intensification)

• large values of αus push away from the current solution
(diversification)

• large values of ρ lead push towards the local optimum of the current
attraction basin (a different kind of intensification)

14 / 14

