
Heuristic Algorithms
Master’s Degree in Computer Science/Mathematics

Roberto Cordone

DI - Università degli Studi di Milano

Schedule: Thursday 14.30 - 16.30 in classroom 201

Friday 14.30 - 16.30 in classroom 100

Office hours: on appointment

E-mail: roberto.cordone@unimi.it

Web page: https://homes.di.unimi.it/cordone/courses/2023-ae/2023-ae.html

Ariel site: https://rcordoneha.ariel.ctu.unimi.it

Lesson 17: Multi-start, ILS and VNS Milano, A.A. 2023/24
1 / 19

https://homes.di.unimi.it/cordone/courses/2023-ae/2023-ae.html
https://rcordoneha.ariel.ctu.unimi.it


Overcoming local optima

The steepest descent exchange heuristics only provide local optima

In order to improve, one can

• repeat the search (How to avoid following the same path?)

• extend the search (How to avoid falling in the same optimum?)

In the constructive algorithms only repetition was possible

The constructive metaheuristics exploit

• randomisation

• memory

to operate on ∆+
A (x) and ϕA (i , x)

The exchange metaheuristics exploit them to operate on

1 the starting solution x (0) (multi-start, ILS, VNS)

2 the neighbourhood N (x) (VND)

3 the selection criterium ϕ (x ,A,D) (DLS/GLS)

4 the selection rule arg min (SA, TS)

2 / 19



Termination condition

A search that repeats or extends beyond a local optimum can ideally be infinite

In pratice, one uses termination conditions that can be “absolute”

1 a given total number of explorations of the neighbourhood or
a given total number of repetitions of the local search

2 a given total execution time

3 a given value of the objective

or “relative” to the profile of f ∗

1 a given number of explorations of the neighbourhood or
repetitions after the last improvement of f ∗

2 a given execution time after the last improvement

3 a given minimum value of the ratio between improvement of the objective
and number of explorations/repetitions or execution time
(e.g.: f ∗ improves less than 1% in the last 1 000 explorations)

Fair comparisons require absolute conditions

3 / 19



Modify the starting solution

It is possible to create different starting solutions

• generating them at random
• with uniform probability
• with biased distributions (based on the data, possibly on memory)

• applying different constructive algorithms
• heuristics
• metaheuristics (with randomisation and/or memory)

• applying the exchange algorithm to modify the solutions visited
(therefore with memory, and usually also randomisation)

4 / 19



Modify the starting solution: random generation

The advantages of random generation are

• conceptual simplicity

• quickness for the problems in which it is easy to guarantee feasibility

• control on the probability distribution in X based on
• element cost (e.g., favour the cheapest elements)
• element frequency during the past search,

to favour the most frequent elements (intensification)
or the less frequent ones (diversification)

This combines randomisation and memory

• asymptotic convergence to the optimum (in infinite time)

The disadvantages of random generation are

• scarce quality of the starting solutions (not the final ones!)

• long times before reaching the local optimum
This depends on the complexity of the exchange algorithm

• inefficiency when deciding feasibility is NP-complete

5 / 19



Modify the starting solution: constructive procedures

Multi-start methods are the classical approach

• design several constructive heuristics

• each constructive heuristic generates a starting solution

• each starting solution is improved by the exchange heuristic

The disadvantages are

1 scarce control: the generated solutions tend to be similar

2 impossibility to proceed indefinitely: the number of repetitions is
fixed

3 high design effort: several different algorithms must be designed

4 no guarantee of convergence, not even in infinite time

Consequently, constructive metaheuristics are preferred nowadays

GRASP and Ant System include by definition an exchange procedure

6 / 19



Influence of the starting solution
If the exchange heuristic is

• good, the starting solution has a short-lived influence:
a random or heuristic generation of x (0) are very similar

• bad, the starting solution has a long-lived influence:
a good heuristic to generate x (0) is useful

This exchange heuristic is not very good
7 / 19



Modify the starting solution exploiting the previous ones

The idea is to exploit the information on previously visited solutions

• save reference solutions, such as the best local optimum found so far
and possibly other local optima

• generate the new starting solution modifying the reference ones

The advantages of this approach are

• control: the modification can be reduced or increased ad libitum

• good quality: the starting solution is very good

• conceptual simplicity: just design a modification

• implementation simplicity: the modification can be performed with
the operations definining the neighbourhood

• asymptotic convergence to the optimum under suitable conditions

8 / 19



Iterated Local Search (ILS)

The Iterated Local Search (ILS), proposed by Lourenço, Martin and
Stützle (2003) requires

• a steepest descent exchange heuristic to produce local optima

• a perturbation procedure to generate the starting solutions

• an acceptance condition to decide whether to change the reference
solution x

• a termination condition

Algorithm IteratedLocalSearch
(
I , x(0)

)
x := SteepestDescent

(
x(0)

)
; x∗ := x ;

For l := 1 to ` do

x ′ := Perturbate(x);

x ′ := SteepestDescent(x ′);

If Accept(x ′, x∗) then x := x ′;

If f (x ′) < f (x∗) then x∗ := x ′;

EndFor;

Return (x∗, f (x∗));

9 / 19



Iterated Local Search (ILS)
The idea is that

• the exchange heuristic quickly explores an attraction basin,
terminating into a local optimum

• the perturbation procedure moves to another attraction basin

• the acceptance condition evaluates if the new local optimum is a
promising starting point for the following perturbation

10 / 19



Example: ILS for the TSP

A classical application of ILS to the TSP uses

• exchange heuristic: steepest descent with neighbourhood NR2

• perturbation procedure: a double-bridge move
that is particular kind of 4-exchange

• acceptance condition: the best known solution improves

f (x ′) < f (x∗)

The reference solution is the best known one (x = x∗)

11 / 19



Perturbation procedure

Let O be the operation set that defines neighbourhood NO

The perturbation procedure performs a random operation o

• with o ∈ O′ * O, to avoid that the exchange heuristic
drive solution x ′ back to the starting local optimum x

Two typical definitions of O′ are

• sequences of k > 1 operations of O
(generating a random sequence is cheap)

• conceptually different operations
(e.g., vertex exchanges instead of edge exchanges)

The main difficulty of ILS is in tuning the perturbation: if it is

• too strong, it turns the search into a random restart

• too weak, it guides the search back to the starting local optimum
• wasting time
• possibly losing the asymptotic convergence

Ideally one would like to enter any basin and get out of any basin

12 / 19



Acceptance condition

Algorithm IteratedLocalSearch
(
I , x(0)

)
x := SteepestDescent

(
x(0)

)
; x∗ := x ;

For l := 1 to ` do

x ′ := Perturbate(x);

x ′ := SteepestDescent(x ′);

If Accept(x ′, x∗) then x := x ′;

If f (x ′) < f (x∗) then x∗ := x ′;

EndWhile;

Return (x∗, f (x∗));

The acceptance condition balances intensification and diversification

• accepting only improving solutions favours intensification

Accept(x ′, x∗) := (f (x ′) < f (x∗))

The reference solution is always the best found: x = x∗

• accepting any solution favours diversification

Accept(x ′, x∗) := true

The reference solution is always the last optimum found: x = x ′

13 / 19



Acceptance condition
Intermediate strategies can be defined based on δf = f (x ′)− f (x∗)
• if δf < 0, always accept x ′

• if δf ≥ 0, accept x ′ with probability π (δf ),
where π (·) is a nonincreasing function

The most typical cases are:
• constant probability: π (δf ) = π̄ ∈ (0; 1) for each δf ≥ 0
• monotonically decreasing probability with π (0) = 1 and

lim
δf→+∞

π (δ) = 0

Memory can also be used, accepting x ′ more easily
if many iterations have elapsed since the last improvement of x∗

14 / 19



Variable Neighbourhood Search (VNS)

A method very similar to ILS is the Variable Neighbourhood Search
proposed by Hansen and Mladenović (1997)

The main differences between ILS and VNS are the use of

• the strict acceptance condition: f (x ′) < f (x∗)

• an adaptive perturbation mechanism instead of the fixed one

VNS often introduces also neighbourhood modifications (later on this)

The perturbation mechanism is based on a hierarchy of neighbourhoods,
that is a family of neighbourhoods with an increasing parametric size s

N1 ⊂ N2 ⊂ . . . ⊂ Ns ⊂ . . .Nsmax

Typically one uses the parameterised neighbourhoods

• NHs , based on the Hamming distance between subsets

• NOs , based on the sequences of operations from a basic set O
and extracts x (0) randomly from a neighbourhood of the hierarchy

15 / 19



Adaptive perturbation mechanism

It is called variable neighbourhood because the neighbourhood used to
extract x (0) varies based on the results of the exchange heuristic

• if a better solution is found, use the smallest neighbourhood, to
generate a starting solution very close to x∗ (intensification)

• if a worse solution is found, use a slightly larger neighbourhood, to
generate a starting solution slightly farther from x∗ (diversification)

The method has three parameters

1 smin identifies the smallest neighbourhood to generate new solutions

2 smax identifies the largest neighbourhood to generate new solutions

3 δs is the increase of s between two subsequent attempts

The exchange heuristic adopts a small neighbourhood to be efficient

(N1, or anyway Ns with s ≤ smin)

16 / 19



General scheme of the VNS

Algorithm VariableNeighbourhoodSearch(I , x (0), smin, smax, δs)

x := SteepestDescent(x (0)); x∗ := x ;

s := smin;

For l := 1 to ` do

x′ := Shaking(x∗, s);

x′ := SteepestDescent
(
x′
)

;

If f
(
x′
)
< f (x∗)

then x∗ := x′; s := smin;

else s := s + δs;

If s > smax then s := smin;

EndWhile;

Return (x∗, f (x∗));

• the reference solution x ′ is always the best known solution x∗

• the starting solution is obtained extracting it at random from the current
neighbourhood of the reference solution Ns (x∗)

• the exchange heuristic produces a local optimum with respect to the basic
neighbourhood N

• if the best known solution improves, the current neighbourhood becomes Nsmin

• otherwise, move to a larger neighbourhood Ns+δs , never exceeding Nsmax

17 / 19



Tuning of the shaking parameters

The value of smin must be

• large enough to get out of the current attraction basin

• small enough to avoid jumping over the adjacent attraction basins

In general, one sets smin = 1, and increases it if experimentally profitable

The value of smax must be

• large enough to reach any useful attraction basin

• small enough to avoid reaching useless regions of the solution space

Example: the diameter of the search space for the basic neighbourhood:
min (k, n − k) for the MDP; n for the TSP and MAX-SAT, etc. . .

The value of δs must be

• large enough to reach smax in a reasonable time

• small enough to allow each reasonable value of s

In general, one sets δs = 1, unless smax − smin is too large

18 / 19



Skewed VNS

In order to favour diversification, it is possible to accept x ′ when

f (x ′) < f (x∗) + α dH (x ′, x∗)

where

• dH (x ′, x∗) is the Hamming distance fra x ′ and x∗

• α > 0 is a suitable parameter

This allows to accept worsening solutions as long as they are far away

• α ≈ 0 tends to accept only improving solutions

• α� 0 tends to accept any solution

Of course, the random strategies seen for the ILS can also be adopted

19 / 19


