Heuristic Algorithms Master's Degree in Computer Science/Mathematics

Roberto Cordone

DI - Università degli Studi di Milano

Schedule:	Thursday 14.30 - 10.30 in classroom 201
	Friday 14.30 - 16.30 in classroom 100
Office hours:	on appointment
E-mail:	roberto.cordone@unimi.it
Web page:	https://homes.di.unimi.it/cordone/courses/2023-ae/2023-ae.html
Ariel site:	https://rcordoneha.ariel.ctu.unimi.it

001

Lesson 17: Multi-start, ILS and VNS

Milano, A.A. 2023/24

Overcoming local optima

The steepest descent exchange heuristics only provide local optima

In order to improve, one can

- repeat the search (How to avoid following the same path?)
- extend the search (How to avoid falling in the same optimum?)

In the constructive algorithms only repetition was possible

The constructive metaheuristics exploit

- randomisation
- memory

to operate on $\Delta_{A}^{+}(x)$ and $\varphi_{A}(i,x)$

The exchange metaheuristics exploit them to operate on

- 1 the starting solution $x^{(0)}$ (multi-start, *ILS*, *VNS*)
- 2 the neighbourhood N(x)(VND)
- **3** the selection criterium $\varphi(x, A, D)$ (*DLS/GLS*)
- 4 the selection rule $\arg \min(SA, TS)$

Termination condition

A search that repeats or extends beyond a local optimum can ideally be infinite

In pratice, one uses termination conditions that can be "absolute"

- a given total number of explorations of the neighbourhood or a given total number of repetitions of the local search
- 2) a given total execution time
- 3 a given value of the objective
- or "relative" to the profile of f^*
 - a given number of explorations of the neighbourhood or repetitions after the last improvement of f*
 - 2 a given execution time after the last improvement
 - a given minimum value of the ratio between improvement of the objective and number of explorations/repetitions or execution time (e.g.: f* improves less than 1% in the last 1 000 explorations)

Fair comparisons require absolute conditions

Modify the starting solution

It is possible to create different starting solutions

- generating them at random
 - with uniform probability
 - with biased distributions (based on the data, possibly on memory)
- applying different constructive algorithms
 - heuristics
 - metaheuristics (with randomisation and/or memory)
- applying the exchange algorithm to modify the solutions visited (therefore with memory, and usually also randomisation)

Modify the starting solution: random generation

The advantages of random generation are

- conceptual simplicity
- quickness for the problems in which it is easy to guarantee feasibility
- control on the probability distribution in X based on
 - element cost (e.g., favour the cheapest elements)
 - element frequency during the past search, to favour the most frequent elements (intensification) or the less frequent ones (diversification)

This combines randomisation and memory

• asymptotic convergence to the optimum (in infinite time)

The disadvantages of random generation are

- scarce quality of the starting solutions (not the final ones!)
- long times before reaching the local optimum This depends on the complexity of the exchange algorithm
- inefficiency when deciding feasibility is $\mathcal{NP}\text{-}\mathsf{complete}$

Modify the starting solution: constructive procedures

Multi-start methods are the classical approach

- design several constructive heuristics
- each constructive heuristic generates a starting solution
- each starting solution is improved by the exchange heuristic

The disadvantages are

- **1** scarce control: the generated solutions tend to be similar
- 2 impossibility to proceed indefinitely: the number of repetitions is fixed
- 3 high design effort: several different algorithms must be designed
- 4 no guarantee of convergence, not even in infinite time

Consequently, constructive metaheuristics are preferred nowadays *GRASP* and Ant System include by definition an exchange procedure

Influence of the starting solution

If the exchange heuristic is

- good, the starting solution has a short-lived influence: a random or heuristic generation of x⁽⁰⁾ are very similar
- bad, the starting solution has a long-lived influence: a good heuristic to generate $x^{(0)}$ is useful

This exchange heuristic is not very good $_{\sim \circ \sim}$

The idea is to exploit the information on previously visited solutions

- save reference solutions, such as the best local optimum found so far and possibly other local optima
- generate the new starting solution modifying the reference ones

The advantages of this approach are

- control: the modification can be reduced or increased ad libitum
- good quality: the starting solution is very good
- conceptual simplicity: just design a modification
- implementation simplicity: the modification can be performed with the operations definining the neighbourhood
- asymptotic convergence to the optimum under suitable conditions

Iterated Local Search (ILS)

The Iterated Local Search (*ILS*), proposed by Lourenço, Martin and Stützle (2003) requires

- a steepest descent exchange heuristic to produce local optima
- a perturbation procedure to generate the starting solutions
- an acceptance condition to decide whether to change the reference solution *x*
- a termination condition

 $\begin{aligned} & Algorithm \ \text{IteratedLocalSearch}(I, x^{(0)}) \\ & x := \text{SteepestDescent}(x^{(0)}); \ x^* := x; \\ & \text{For } I := 1 \ to \ \ell \ do \\ & x' := \text{Perturbate}(x); \\ & x' := \text{SteepestDescent}(x'); \\ & \text{If } \text{Accept}(x', x^*) \ then \ x := x'; \\ & \text{If } f(x') < f(x^*) \ then \ x^* := x'; \\ & \text{EndFor;} \\ & \text{Return} \ (x^*, f(x^*)); \end{aligned}$

Iterated Local Search (ILS)

The idea is that

- the exchange heuristic quickly explores an attraction basin, terminating into a local optimum
- the perturbation procedure moves to another attraction basin
- the acceptance condition evaluates if the new local optimum is a promising starting point for the following perturbation

Example: *ILS* for the *TSP*

A classical application of ILS to the TSP uses

- exchange heuristic: steepest descent with neighbourhood $N_{\mathcal{R}_2}$
- perturbation procedure: a *double-bridge* move that is particular kind of 4-exchange

acceptance condition: the best known solution improves

 $f(x') < f(x^*)$

The reference solution is the best known one $(x = x^*)$

<ロト < 部 > < 言 > < 言 > こ そ の Q (や 11/19

Perturbation procedure

Let ${\mathcal O}$ be the operation set that defines neighbourhood ${\it N}_{{\mathcal O}}$

The perturbation procedure performs a random operation o

with o ∈ O' ⊈ O, to avoid that the exchange heuristic drive solution x' back to the starting local optimum x

Two typical definitions of \mathcal{O}' are

- sequences of k > 1 operations of O (generating a random sequence is cheap)
- conceptually different operations

 (e.g., vertex exchanges instead of edge exchanges)

The main difficulty of ILS is in tuning the perturbation: if it is

- too strong, it turns the search into a random restart
- too weak, it guides the search back to the starting local optimum
 - wasting time
 - possibly losing the asymptotic convergence

Ideally one would like to enter any basin and get out of any basin

Acceptance condition

Algorithm IteratedLocalSearch $(I, x^{(0)})$ x :=SteepestDescent $(x^{(0)})$; $x^* := x$; For I := 1 to ℓ do x' :=Perturbate(x); x' :=SteepestDescent(x'); If Accept (x', x^*) then x := x'; If $f(x') < f(x^*)$ then $x^* := x'$; EndWhile; Return $(x^*, f(x^*))$;

The acceptance condition balances intensification and diversification

accepting only improving solutions favours intensification

 $Accept(x', x^*) := (f(x') < f(x^*))$

The reference solution is always the best found: $x = x^*$

accepting any solution favours diversification

 $Accept(x', x^*) := true$

The reference solution is always the last optimum found: x = x'

Acceptance condition

Intermediate strategies can be defined based on $\delta f = f(x') - f(x^*)$

- if $\delta f < 0$, always accept x'
- if $\delta f \ge 0$, accept x' with probability $\pi(\delta f)$, where $\pi(\cdot)$ is a nonincreasing function

The most typical cases are:

- constant probability: $\pi(\delta f) = \bar{\pi} \in (0; 1)$ for each $\delta f \ge 0$
- monotonically decreasing probability with $\pi(0) = 1$ and $\lim_{\delta f \to +\infty} \pi(\delta) = 0$

Memory can also be used, accepting x' more easily if many iterations have elapsed since the last improvement of $x_{x}^{*} \in \mathbb{R}^{+}$

Variable Neighbourhood Search (VNS)

A method very similar to *ILS* is the *Variable Neighbourhood Search* proposed by Hansen and Mladenović (1997)

The main differences between ILS and VNS are the use of

- the strict acceptance condition: $f(x') < f(x^*)$
- an adaptive perturbation mechanism instead of the fixed one

VNS often introduces also neighbourhood modifications (later on this)

The perturbation mechanism is based on a hierarchy of neighbourhoods, that is a family of neighbourhoods with an increasing parametric size s

 $N_1 \subset N_2 \subset \ldots \subset N_s \subset \ldots N_{s_{max}}$

Typically one uses the parameterised neighbourhoods

• N_{H_s} , based on the Hamming distance between subsets

• $N_{\mathcal{O}_s}$, based on the sequences of operations from a basic set \mathcal{O} and extracts $x^{(0)}$ randomly from a neighbourhood of the hierarchy

Adaptive perturbation mechanism

It is called *variable neighbourhood* because the neighbourhood used to extract $x^{(0)}$ varies based on the results of the exchange heuristic

- if a better solution is found, use the smallest neighbourhood, to generate a starting solution very close to x^{*} (intensification)
- if a worse solution is found, use a slightly larger neighbourhood, to generate a starting solution slightly farther from x* (diversification)

The method has three parameters

- **1** s_{min} identifies the smallest neighbourhood to generate new solutions
- **2** *s*_{max} identifies the largest neighbourhood to generate new solutions
- **3** δs is the increase of s between two subsequent attempts

The exchange heuristic adopts a small neighbourhood to be efficient

 $(N_1, or anyway N_s with s \leq s_{\min})$

General scheme of the VNS

$$\begin{split} & \textit{Algorithm} \, \text{VariableNeighbourhoodSearch}(I, x^{(0)}, s_{\min}, s_{\max}, \delta s) \\ & x := \text{SteepestDescent}(x^{(0)}); \, x^* := x; \\ & s := s_{\min}; \\ & \textit{For } I := 1 \, to \, \ell \, do \\ & x' := \text{Shaking}(x^*, s); \\ & x' := \text{SteepestDescent}(x'); \\ & \textit{If } f(x') < f(x^*) \\ & then \, x^* := x'; \, s := s_{\min}; \\ & \textit{else } s := s + \delta s; \\ & \textit{If } s > s_{\max} \, then \, s := s_{\min}; \\ & \textit{EndWhile}; \\ & \textit{Return} \, (x^*, f(x^*)); \end{split}$$

- the reference solution x' is always the best known solution x*
- the starting solution is obtained extracting it at random from the current neighbourhood of the reference solution $N_s(x^*)$
- the exchange heuristic produces a local optimum with respect to the basic neighbourhood ${\it N}$
- if the best known solution improves, the current neighbourhood becomes $N_{s_{\min}}$
- otherwise, move to a larger neighbourhood $N_{s+\delta s}$, never exceeding $N_{s_{max}}$

The value of s_{\min} must be

- large enough to get out of the current attraction basin
- small enough to avoid jumping over the adjacent attraction basins In general, one sets $s_{min} = 1$, and increases it if experimentally profitable

The value of s_{max} must be

- large enough to reach any useful attraction basin
- small enough to avoid reaching useless regions of the solution space Example: the diameter of the search space for the basic neighbourhood: $\min(k, n k)$ for the *MDP*; *n* for the *TSP* and *MAX-SAT*, etc...

The value of δs must be

- large enough to reach s_{max} in a reasonable time
- small enough to allow each reasonable value of s

In general, one sets $\delta s = 1$, unless $s_{max} - s_{min}$ is too large

In order to favour diversification, it is possible to accept x' when

 $f(x') < f(x^*) + \alpha d_H(x', x^*)$

where

- $d_H(x', x^*)$ is the Hamming distance fra x' and x^*
- $\alpha > 0$ is a suitable parameter

This allows to accept worsening solutions as long as they are far away

- $\alpha \approx 0$ tends to accept only improving solutions
- $\alpha \gg 0$ tends to accept any solution

Of course, the random strategies seen for the ILS can also be adopted