
Università degli Studi di Milano

Heuristic algorithms

(laboratory sessions)

Roberto Cordone

– Academic year 2020/21 –

2

Contents

4 Exchange heuristics 5

4.1 Introduction . 5

4.2 The steepest ascent heuristic . 6

4.2.1 Time complexity estimation 8

4.2.2 Empirical evaluation . 8

4.2.3 Constant-time neighbour evaluation 10

4.2.4 Comparison of initialisation procedures 12

4.2.5 Neighbourhood tuning: global-best versus first-best 13

3

4 Contents

Chapter 4

Exchange heuristics

4.1 Introduction

This chapter discusses the application of exchange heuristics to the Maximum Di-
versity Problem (MDP). Exchange heuristic start from a given feasible solution x(0)

(typically obtained with a constructive heuristic, or metaheuristic, or a random gen-
eration process) and try to improve the current solution x iteratively by adding a
suitable subset A and deleting a suitable subset D of elements of the ground set. Of
course, A consists of external elements (A ⊆ B \x) and D of internal ones (D ⊆ x).
The possible pairs of subsets are determined by a rule that takes the form of a
neighbourhood function N : X → 2X , associating each feasible solution x ∈ X with
a subset of feasible neighbour solutions N (x). The choice of the incumbent, that is
the neighbour solution that replaces the current one, is done optimising a suitable
selection criterium, that nearly always is the objective function value.

In the following, we will consider some alternative initialisation procedures
(namely, the farthest point and the try-all constructive heuristics and a purely
random generation). We will also adopt the most natural neighbourhood for the
MDP, that is the single-swap neighbourhood NS1 , which includes all the subsets
obtained from x deleting a single element i and adding a single element j:

NS1
(x) = {x′ = x \ {i} ∪ {j} with i ∈ x, j ∈ P \ x}

Notice that NS1
(x) = NH2

(x), that is, it coincides with the collection of feasible
subsets having Hamming distance equal to 2 from x. However, the collection of
all subsets at Hamming distance equal to 2 also includes the ones obtained adding
or deleting two points, which are unfeasible. The single-swap neighbourhood, on
the contrary, automatically satisfies the cardinality constraint that characterises
the MDP, and this implies the strong advantage that the feasibility of the subset
obtained with any swap operation is guaranteed a priori and needs not be verified.
The exploration of the neighbourhood, therefore, simply consists in the computation
of the objective function for each neighbour solution.

Thanks to the cardinality constraint, and to the lack of other complicating
constraints, neighbourhood NS1

always includes exactly k (n− k) solutions, and
this induces a strong relation between the number of neighbourhood explorations
and the computational time (at least, if the neighbourhood is fully explored).

Finally, concerning the selection criterium, we will adopt the objective func-
tion, thus implementing the basic exchange heuristic known as steepest ascent (for
maximisation problems as the MDP). We will discuss its theoretical and empirical
computational complexity, and we will improve it with a standard trick to allow

5

6 4 Exchange heuristics

the evaluation of quadratic objective functions in cardinality-constrained problems.
We will compare the results of the different initialisation procedures and we will
tune the size of the neighbourhood with the adoption of the first-best exploration
strategy as opposed to the global-best one.

The main function, then, allows to choose from the command line which of the
three initialization procedures to apply (with option -gp for the farthest-point, -ga
for the try-all heuristic and -r followed by a negative integer seed for the random
initialisation), and which of the two neighbourhood exploration strategies to apply
(with option -gb for the global-best and -fb for the first-best strategy). The steepest
ascent heuristics also returns the number of neighbourhood explorations performed,
because we are going to investigate the influence of the exploration stategy on this
value and its relation with the computational time. Apart from printing the number
of iterations, all other operations are the same introduced for the previous heuristics.

parse_command_line(argc,argv,data_file,init_algo,visit_strategy,&seed);

load_data(data_file,&I);

create_solution(I.n,&x);

start = clock();

if (strcmp(init_algo, "-gf") == 0)

greedy_farthest(&I, &x);

else if (strcmp(init_algo, "-ga") == 0)

greedy_tryall(&I, &x);

else if (strcmp(init_algo, "-r") == 0)

generate_random_solution(&I, &x, &seed);

steepest_ascent(&I,&x,visit_strategy,&niter);

end = clock();

tempo = (double) (end - start) / CLOCKS_PER_SEC;

printf("%s ",data_file);

printf("%10.6f ",tempo);

printf("%8d ",niter);

print_sorted_solution(&x,I.n);

printf("\n");

destroy_solution(&x);

destroy_data(&I);

4.2 The steepest ascent heuristic

The steepest ascent heuristic chooses the following solution from the neighbourhood
of the current one by optimising a selection criterium φ (x, i, j) that is simply the
value of the objective function f (x ∪ {i} \ {j}) or, to be more precise, half of its
variation:

δf (x, i, j) =
1

2
(f (x ∪ {i} \ {j})− f (x)) =

∑
k∈x

djk −
∑
k∈x

dik − dij

This implies the following adaptation to the MDP of the general scheme:

4.2 The steepest ascent heuristic 7

Algorithm SteepestAscentMDP
(
I, x(0)

)
x := x(0);

Stop := false;

While Stop = false do

x̃ := arg max
i∈x,j∈P\x

(∑
k∈x

djk −
∑
k∈x

dik − dij
)

;

If f (x̃) ≤ f (x) then Stop := true; else x := x̃;

EndWhile;

Return (x, f (x));

The implementation of this algorithm is nearly straightforward. The main dif-
ference is that, for the sake of efficiency, the procedure explore neighbourhood

that selects the incumbent returns a pair of points (i∗, j∗) to be exchanged, and
the resulting variation of the objective, instead of a whole solution x̃. Therefore,
if the incumbent improves the current solution (that is, the variation is negative),
the update operation x := x̃ is obtained performing the exchange suggested with
procedure swap points.

*pniter = 0;

do

{

explore_neighbourhood(px,pI,visit_strategy,&p_in,&p_out,&delta_f);

if (delta_f > 0)

{

(*pniter)++;

swap_points(p_in,p_out,px,pI);

}

} while (delta_f > 0);

It could be remarked that swapping points j and i is equivalent to deleting point
j and adding point i, so that we do not actually need an additional procedure.
However, implementing this procedure separately has the advantage to avoid any
instruction that is useless when the two operations must be performed together (to
give a trivial example, the cardinality of the solution remains unvaried, instead of
being decremented and incremented).

The exploration of the neighbourhood trivially consists in two nested loops, as
j scans the current solution x and i scans its complement, taking advantage of the
corresponding lists. For each pair of solutions, the procedure estimates the variation
of the objective function δf (x, i, j) calling a suitable procedure evaluate exchange

and saves the best exchange and the corresponding variation of the objective.

*pdelta_f = INT_MIN;

*pp_in = *pp_out = NO_POINT;

for (p_in = first_point_in(px); !end_point_list(p_in,px); p_in = next_point(p_in,px))

for (p_out = first_point_out(px); !end_point_list(p_out,px); p_out = next_point(p_out,px))

{

delta_f = evaluate_exchange(p_in,p_out,px,pI);

if (delta_f > *pdelta_f)

{

*pdelta_f = delta_f;

*pp_in = p_in;

*pp_out = p_out;

8 4 Exchange heuristics

}

}

The procedure that evaluates each single exchange does not physically perform
it. Do not perform moves only to evaluate them is a specific application of a gen-
eral fundamental principle in the design of heuristic algorithms: avoid all useless
operations. It simply computes∑

k∈x

djk −
∑
k∈x

dik − dij

as follows1.

delta = 0;

delta = dist_from_x(p_out,px,pI);

delta -= dist_from_x(p_in,px,pI);

delta -= pI->d[get_index(p_in,pI)][get_index(p_out,pI)];

return delta;

4.2.1 Time complexity estimation

The computational complexity of the steepest ascent heuristic derives from three
main sources:

1. the number of neighbourhood explorations tmax performed to reach the local
optimum in which the search terminates;

2. the number of neighbour solutions (or, in general, subsets) whose objective
value (and, in general, feasibility) is evaluated;

3. the computational time required to evaluate the objective value (and, in gen-
eral, the feasibility) of each neighbour solution (or subset).

The first term is in general unknown and hard to estimate (unless for upper es-
timates such as the total number of feasible solutions, that are very loose). For
the single-swap neighbourhood NS1

, the number of neighbour solutions is exactly
k (n− k). The feasibility is automatically guaranteed, and the evaluation of the
objective requires to compute the distance of two points from the current solution,
that is O (k) time. The resulting overall estimate is O

(
tmax (n− k) k2

)
.

4.2.2 Empirical evaluation

We can now evaluate the performance of the steepest ascent heuristic with the
global-best strategy.

Computational time analysis

From the detailed results, we can remark that the overall computational time (in-
cluding both the initialisation constructive procedure and the following exchange

1This is just a detail, but it is probably better to add and remove dij rather than checking at
every step whether k = j or not.

4.2 The steepest ascent heuristic 9

procedure) ranges from fractions of a second to a couple of minutes. This is two or-
ders of magnitude larger than the time required for the constructive heuristic alone
(up to half a second), and therefore mostly depends on the exchange phase. It is
comparable to the try-all heuristic only for the smaller instances, and one order of
magnitude smaller for the larger ones (in fact, the try-all heuristic repeats the basic
constructive heuristic n times, with n ranging from 100 to 1 000). The exchange
heuristic is therefore less efficient than the constructive (and destructive) ones, but
more efficient than the try-all heuristic.

Figure 4.1 reports the semilogarithmic scaling diagram for the computational
time of the steepest ascent heuristic on the whole benchmark. The diagram shows
the expected polynomial increase with size. The O

(
tmaxnk

2
)

theoretical estimate,

with k ∝ n, suggests an overall O
(
tmaxn

3
)

complexity. The linear interpolation:

TA = βnα ⇔ log TA = α log n+ log β

suggests that α ≈ 4.3 and β ≈ 5.75 · 10−12. If we assume a cubic complexity for the
neighbourhood exploration, this would imply that tmax increases slightly more than
linearly with n. To test more precisely this conclusion we can compute and plot
the ratio T/tmax of the total time T on the number of neighbourhood explorations
tmax (see the yellow graph in Figure 4.1) and make an interpolation on it. Since
α ≈ 2.7 and β ≈ 3.6 · 10−9, it seems that the cubic estimate for the time required
to explore a single neighbourhood is excessive, and that tmax is more than linear in
n, though not quadratic. One can also notice that the first diagram is much more
irregular than the first one, meaning that tmax is not strictly dependent on n. Of
course, we could also directly interpolate tmax as a function of size: a quick look
at the detailed results for each fixed value of n suggests that tmax indeed strongly
depends on k, increasing more than linearly: it becomes about 10 times larger as k
goes from 0.1n to 0.4n.

Figure 4.1: Scaling diagram in logarithmic scales for the steepest ascent algorithm
on the benchmark

Solution quality analysis

Figure 4.2 reports the SQD diagram, compared with that of the initialisation
farthest-point procedure. Of course, the former strictly dominates the latter, as
it receives the solution in input and proceeds by improving it with local search.
What is interesting is the amount of the improvement, that is strong, but not huge:
the average gap δ decreases from 1.52% to 0.97%. This suggests that the MDP has
many local optima of various quality and with small basins of attraction. In fact,
the try-all heuristic still performs better than the steepest ascent. Of course, as it

10 4 Exchange heuristics

takes much more time, we can’t say that the latter is dominated. However, it is
still impossible to dismiss the try-all heuristic as a viable approach. One can notice
that the steepest ascent heuristic has a larger probability of finding very small gaps
(below 0.3%), though not of finding the best known result. This suggests a region of
stronger stability, possibly corresponding to the capacity of improving good initial
results.

Figure 4.2: Solution Quality Distribution diagram for the steepest ascent and the
farthest point heuristics

The boxplots reported in Figure 4.3 provide the same information.

Figure 4.3: Boxplots for the steepest ascent and the farthest point heuristics

We do not apply statistical tests to this comparison, because by definition the
dominance of steepest ascent with respect to the farthest point heuristic is strict
and the tests would not add anything to this fundamental information.

4.2.3 Constant-time neighbour evaluation

From theory we know that the variation of a quadratic objective function implied by
a simple swap of elements can be estimated in constant time exploiting the formula

δf (x, i, j) =
1

2
(f (x ∪ {i} \ {j})− f (x)) =

∑
k∈x

djk −
∑
k∈x

dik − dij

4.2 The steepest ascent heuristic 11

by saving in a suitable vector Di the total distance of each point i ∈ P from the
current solution x, both for internal and external points. In fact, given this vector

δf (x, i, j) =
1

2
(f (x ∪ {i} \ {j})− f (x)) = Dj −Di − dij

can be computed in two operations. Of course, whenever the current solution x
changes into x′ = x \ {i} ∪ {j}, the vector D must be updated. This takes time
O (n) applying the following formula

Dk := Dk − dik + djk for all k ∈ P

Overall, this reduces the time to explore a single neighbourhood fromO
(
(n− k) k2

)
to O ((n− k) k), at the cost of adding an O (n) term, that is dominated.

From the implementation point of view, we need to decide where to store vec-
tor D. The most natural approaches are either to keep it explicitly as a variable in
procedure steepest ascent or to “hide” it in solution x. In the former case, we
will have to pass it as an argument to procedure explore neighbourhood. In the
latter case, we will have to update all the functions that manipulate objects of type
solution t. The choice mainly depends on whether we think that the vector will
be used outside of the exchange heuristic or not. As we are going to use it also in
the exchange metaheuristics, we will adopt this approach. Moreover, it make sense
to go back to constructive heuristics and metaheuristics and evaluate whether the
computational trick would provide an advantage also in those algorithms. Indeed,
the O

(
nk2

)
complexity of the constructive heuristics depends on applying k times

the basic constructive step, in which for all external points (hence, the O (n) term)
the distance from the current solution is estimated in time O (k). The introduction
of vector D would remove that term, and therefore the total time to O (nk) at the
cost of an additional O (n) term, that is dominated. All the required work auxiliary
work has been done in library solution2, that we will use in the following instead
of solution. This will also require to modify accordingly the inclusion directive in
file local search.h.

Adding vector D to the solution t data structure under the form of a dynamic
integer vector (int *) requires to update the creation, destruction, copy and check
procedures, as well as the manipulation procedures (add point, delete point and
swap points). After this update, it is possible to implement the evaluation of the
exchange simply as follows.

delta = px->D[get_index(p_out,pI)];

delta -= px->D[get_index(p_in,pI)];

delta -= pI->d[get_index(p_in,pI)][get_index(p_out,pI)];

return delta;

On the other hand, the swap points procedure must also update the elements of
vector D (in O (n) time), but it can save O (k) time for the update of the objective
value.

Solving again the whole benchmark leads to exactly the same results as above,
as expected. The computational time is however much smaller: in Figure 4.4,
the logarithmic scale clearly shows a decrease in the slope, corresponding to a
reduction of the exponent in the polynomial dependence of the computational time
on the number of points2. Just to have an intuitive idea of the improvement, the

2Actually, α decreases from 4.3 to 2.9 for the overall time and from 2.7 to 1.3 for the time
per iteration, which seems rather too much, but I have had no time to check the numbers and to
investigate the reason of this behaviour.

12 4 Exchange heuristics

computational times now range from fractions of a second to 1 second, instead of
two minutes. This impressive result derives from having reduced the theoretical
worst-case complexity from O

(
tmaxnk

2
)

to O (tmaxnk). The time is not strictly
reduced by a factor of k (from 10 to 400 in the benchmark) because the contribution
of secondary terms previously overwelmed by the evaluation of the value for the
neighbour solutions now can becomes perceivable.

Figure 4.4: Scaling diagram in logarithmic scales for the steepest ascent algorithm
with the constant-time or the linear-time evaluation of neighbours

4.2.4 Comparison of initialisation procedures

We now investigate whether the initial solution x(0) exerts a long-term influence
on the quality of the final solution returned by the exchange heuristic; in other
words, whether good starting solutions tend to fall into the basin of attraction of
good local optima. This would recommend the adoption of a good constructive
procedure, provided that its computational time is not excessive. To investigate
also this aspect, we consider a third variant in which the initial solution is obtained
with the “try-all” heuristic3.

Figure 4.5 shows the three SQD diagrams for the initial solutions and for the
final ones. The diagrams are in semilogarithmic scale because the gaps are widely
distributed (part of the diagrams is missing because zero values cannot be repres-
ented on a logarithmic axis). This allows to appreciate the relative improvement
obtained by the exchange procedure with respect to each different starting point
This is particularly strong in the case of the random initialisation, whereas it be-
comes smaller for the constructive initialisations. In particular, it can be noticed
that the worse starting solutions are only slightly improved (in the case of the try-all
heuristic, the second-worse solution is not improved, so that the diagram appears
to reach the upper bound nearly for the same gap). It is however clear that better
starting solutions tend to be associated with better final solutions: the exchange
heuristic is not strong enough to overcome the initial advantage.

Of course, the computational times are also relevant for the choice. Notice
that we can apply the try-all heuristic only because the constant-time evaluation

3It is clear that this heuristic could be fully exploited by running an exchange procedure on
each of the starting solutions it provides, but we are now focusing on the improvement power of
a single run of an exchange heuristic. Applying the exchange heuristic to each solution generated
by the “try-all” heuristic would be more on the line of a multi-start exchange metaheuristic. The
same can be said about the classical GRASP mechanism that applied an exchange procedure to
each solution generated by the semigreedy algorithm.

4.2 The steepest ascent heuristic 13

Figure 4.5: Comparison of different initialisation procedures

procedure can be extended to the constructive phase, so that this heuristic no
longer takes several minutes to provide the starting solution for the larger instances.
Indeed, its overall time requirement (constructive and improvement phase) ranges
from fractions of a second to about 5 seconds, as opposed to about 1 second for
the farthest point initialisation and 1.6 seconds for the random initialisation. The
try-all initialisation is slower due to the more refined constructive phase; in fact,
the number of neighbourhood explorations before reaching the local optimum is
on average 15. The random initialisation has an extremely fast initialisation, but
an average of 100 iterations. That implies the final longer time with respect to
the farthest point heuristic, which only makes 25 iterations before hitting the local
optimum.

Figure 4.6 provides the RTD diagrams on the benchmark. We remind that such
a diagram makes little sense for benchmarks collecting instances of different size,
but it allows meaningful comparisons between different algorithms.

Figure 4.6: Comparison of the overall running time of the exchange heuristic for
different initialisation procedures

This suggests that a random initialisation is not a good idea (at least for the
steepest ascent heuristic), whereas it is still open whether the farthest point or the
try-all initialisation (or other non fully random ones) could be more effective.

4.2.5 Neighbourhood tuning: global-best versus first-best

Finally, we experiment with the idea of tuning the exploration of the neighbourhood,
that is terminating it as soon as an improving solution is found with respect to
the current one. This is known as first-best strategy, as opposed to the classical

14 4 Exchange heuristics

global-best strategy that visits the whole neighbourhood and returns the overall
best solution it contains. The rationale is to accept a smaller improvement in each
step of the search, in exchange for a much smaller computational time, that allows
to perform many more steps, possibly getting earlier to the same local optimum.
It must be noticed that, changing the rule that determines the following visited
solution in general also changes the basins of attraction, and therefore the final
local optimum reached. This could be worse or better than in the global-best case.
To make things even more complex, the local optimum returned also depends on the
order in which each neighbourhood is visited, a fact that could be perhaps exploited
somehow (possibly, starting with the most promising elements based on the distance
D from x), with a possible increase of the computational cost. We are not going
to explore this line of research: the neighbourhood will be explored scanning x and
P \ x with the corresponding lists, exactly as in the global-best strategy.

In order to impose the first-best strategy, an extremely simple modification must
be made to the neighbourhood exploration procedure: as soon as an exchange with
a positive effect is found, the procedure terminates returning that exchange.

*pdelta_f = INT_MIN;

*pp_in = *pp_out = NO_POINT;

for (p_in = first_point_in(px); !end_point_list(p_in,px); p_in = next_point(p_in,px))

for (p_out = first_point_out(px); !end_point_list(p_out,px); p_out = next_point(p_out,px))

{

delta_f = evaluate_exchange(p_in,p_out,px,pI);

if (delta_f > *pdelta_f)

{

*pdelta_f = delta_f;

*pp_in = p_in;

*pp_out = p_out;

if ((delta_f > 0) && (strcmp(visit_strategy,"-fb") == 0)) break;

}

}

For the sake of simplicity, we apply the farthest-point initialisation heuristic.
The detailed results show that the number of iterations tends to be larger with
respect to the global-best strategy, as expected, but the difference is not strong
(30 versus 25 on average). In fact, the computational time is shorter, and the
results comparable. Figure 4.7 shows that the two algorithms have rather similar
performance with respect to the solution quality (perhaps, the first-best strategy is
slightly better).

Figure 4.8, however, shows that the first-best strategy is clearly faster. This
could be enough to suggest to adopt it instead of the classical global-best strategy.

In order to further support this choice, we can compare the two sets of results
with Wilcoxon’s test. The results concerning the solution quality are:

W+ = 168, W- = 297, N = 30, p <= 0.188

and suggest that, while there is a slight predominance of the first-best strategy with
respect to the global-best, it would not be unlikely that such a predominance be
due only to a random extraction (the p-value is 18.8%, that is quite large).

On the other hand, the results for the computational time are:

W+ = 677.50, W- = 25.50, N = 37, p <= 9.094e-007

4.2 The steepest ascent heuristic 15

Figure 4.7: Comparison of the solution quality of the exchange heuristic with the
global-best and first-best neighbourhood exploration strategies

Figure 4.8: Comparison of the computational time of the exchange heuristic with
the global-best and first-best neighbourhood exploration strategies

16 4 Exchange heuristics

and indeed suggest that the global-best strategy takes a longer time, even if the
first-best strategy requires more neighbourhood explorations (the p-value is ap-
proximately 10−6).

	Exchange heuristics
	Introduction
	The steepest ascent heuristic
	Time complexity estimation
	Empirical evaluation
	Constant-time neighbour evaluation
	Comparison of initialisation procedures
	Neighbourhood tuning: global-best versus first-best

