Heuristic Algorithms

Master's Degree in Computer Science/Mathematics

Roberto Cordone

DI - Università degli Studi di Milano

Schedule: \quad Thursday 14.30-16.30 in classroom 201
Friday 14.30-16.30 in classroom 100
Office hours: on appointment
E-mail: roberto.cordone@unimi.it
Web page: https://homes.di.unimi.it/cordone/courses/2023-ae/2023-ae.html
Ariel site: https://rcordoneha.ariel.ctu.unimi.it

Constructive metaheuristics

The constructive algorithms have strong limitations on many problems What can be done, without abandoning the general scheme?

Iterate the scheme to generate many (potentially) different solutions

- the efficiency decreases: the computational times are summed
- the effectiveness increases: the best solution is returned

The trade-off must be carefully tuned
The iterated scheme can apply

- multi-start, that is different algorithm at each iteration $I=1, \ldots, \ell$ (this requires to define multiple $\mathcal{F}_{A_{l}}$ and $\varphi_{A_{l}}$)
but it is more flexible to apply metaheuristics, that exploit
- randomisation (operations based on a random seed), as in the case of semigreedy algorithms, GRASP and Ant System (partly, ART)
- memory (operations based on the solutions of previous iterations), as in the case of ART, cost perturbation and Ant System

The iterated scheme can ideally proceed for an infinite time
In pratice, one uses termination conditions that can be "absolute"
(1) a given total number of iterations of the basic scheme
(2) a given total execution time
(3) a given target value of the objective
or "relative" to the profile of f^{*}
(1) a given number of iterations of the basic scheme without improving f^{*}
(2) a given execution time without improving f^{*}
(3) a given minimum ratio between the improvement of f^{*} and the number of iterations of the basic scheme or the execution time (e.g.: f^{*} improves less than 1% in the last 1000 iterations)

Fair comparisons require absolute conditions

Multi-start

Multi-start (or restart) is a classical, very simple and natural approach:

- define different search spaces $\mathcal{F}_{A^{[n]}}$ and selection criteria $\varphi_{A^{[n]}}(i, x)$
- apply each resulting algorithm $A^{[/]}$to obtain $x^{[/]}$
- return the best solution $x=\arg \min _{I=1, \ldots, \ell} f\left(x^{[/]}\right)$

A typical case is to tune $\varphi_{A}(i, x)$ with numerical parameters μ
The construction graph can model this situation

- including all nodes and arcs admitted by at least one algorithm $A^{[/]}$:

$$
\mathcal{F}_{A}=\bigcup_{I=1}^{\ell} \mathcal{F}_{A^{[l]}}
$$

- setting arc weights depending on $I: \varphi_{A}(i, x, l)=\varphi_{A^{[l]}}(i, x)$
- setting an infinite arc weight for the arcs that are forbidden in a specific algorithm $A^{[l]}: \varphi_{A}(i, x, I)=+\infty$

Example

A whole family of heuristics for the TSP can be obtained setting:

- insertion criterium:

$$
i_{k}^{*}=\arg \min _{i \in\{1, \ldots,|x|\}} \gamma_{i, k}=\mu_{1}\left(c_{s_{i}, k}+c_{k, s_{i+1}}\right)+\left(1-\mu_{1}\right)\left(-c_{s_{i}, s_{i+1}}\right)
$$

where $\mu_{1} \in[0 ; 1]$ tunes the relative strength of the

- increase in cost due to the added node k
- decrease in cost due to the removed edge (s_{i}, s_{i+1})
- selection criterium:

$$
k^{*}=\arg \min _{k \in N \backslash N_{x}} \varphi_{A}(k, x)=\mu_{2} \gamma_{i_{k}^{*}, k}+\mu_{3} d(x, k)+\left(1-\mu_{2}-\mu_{3}\right)(-d(x, k))
$$

where $\mu_{2}, \mu_{3} \in[0 ; 1]$ tune the relative strength (and sign) of the

- increase in cost due to the added node k
- distance of the added node k from the current circuit x
to get $C I$ for $\mu=(1 / 2,1,0), N /$ for $\mu=(1 / 2,0,1), F I$ for $\mu=(1 / 2,0,0)$

Constructive metaheuristics

The main constructive metaheuristics are
(1) Adaptive Research Technique (ART) or Tabu Greedy:
forbid some moves based on the solutions of the previous iterations

$$
\min _{i \in \Delta_{A^{[/]}}^{+}(x)} \varphi_{A}(i, x)
$$

with $\Delta_{A^{[l]}}^{+}(x)=\left\{i \in B \backslash x: x \cup\{i\} \in \mathcal{F}^{[/]}\left(x_{A}^{[1]}, \ldots, x_{A}^{[I-1]}\right) \subseteq \mathcal{F}\right\}$
This is much less popular than the other two
(2) semigreedy and GRASP: use a randomised selection criterium

$$
\min _{i: x \cup\{i\} \in \mathcal{F}} \varphi_{A}^{[/]}\left(i, x, \omega^{[/]}\right)
$$

(3) Ant System (AS): use a randomised selection criterium depending on the solutions of the previous iterations

$$
\min _{i: x \cup\{i\} \in \mathcal{F}} \varphi_{A}^{[]]}\left(i, x, \omega^{[l]}, x_{A}^{[1]}, \ldots, x_{A}^{[/-1]}\right)
$$

New information on the arcs of the construction graph guides the search The $A R T$ uses memory, the GRASP randomisation, the $A S$ both

Adaptive Research Technique

It was proposed by Patterson et al. (1998) for the CMSTP
When deceivingly good elements are included in the first steps the final solution can be quite bad
Aiming to avoid that

- the roll-out approach makes a look-ahead on each possible element (but a single step can be insufficient to identify the misleading ones)
- the $A R T$ forbids some elements to drive subset x on the right path in the search space
(how to identify the misleading elements?)
The prohibitions are temporary, with an expiration time of L iterations; otherwise, building feasible solutions would become impossible

Adaptive Research Technique

Define a basic constructive heuristic A
Let T_{i} be the starting iteration of the prohibition for each element $i \in B$ and x^{*} be the best solution found

Set $T_{i}=-\infty$ for all $i \in B$ to indicate that no element is forbidden At each iteration $I \in\{1, \ldots, \ell\}$
(1) apply heuristic A forbidding all elements i such that $I \leq T_{i}+L$ (all prohibitions older than L iterations automatically expire); let $x^{[/]}$be the resulting solution
(2) if $x^{[/]}$is better than x^{*}, set $x^{*}:=x^{[l]}$ and save $T_{i}-\mid$ for all $i \in B$
(3) decide which elements to forbid and set $T_{i}=/$ for them: each element is forbidden with probability π
(4) make minor tweaks to L, π or T_{i}

At the end, return x^{*}

Example: ART for the SCP

c \begin{tabular}{ccccc|}
\hline 25 \& 6 \& 8 \& 24 \& 12

\hline

\hline 1 \& 1 \& 0 \& 0 \& 0

1 \& 1 \& 0 \& 0 \& 0

1 \& 1 \& 1 \& 0 \& 0

1 \& 0 \& 1 \& 1 \& 0

1 \& 0 \& 0 \& 1 \& 0

1 \& 0 \& 0 \& 0 \& 1

\hline
\end{tabular}

Let $L=2, \pi=0.15$, pseudorandom numbers $0.1,0.9,0.4,0.5,0.1,0.2, \ldots$
(1) the basic heuristic finds solution $x^{[1]}=\{2,3,5,4\}$ of cost $f\left(x^{[1]}\right)=50$; forbid column 2 (because $0.1 \leq \pi<0.9,0.4$ and 0.5)
(2) the basic heuristic finds solution $x^{[2]}=\{3,1\}$ (2 is forbidden)
of cost $f\left(x^{[2]}\right)=33$; forbid column 3 (because $0.1 \leq \pi<0.2$)
(3) the basic heuristic finds solution $x^{[3]}=\{1\}$ (3 and 2 are forbidden) of cost $f\left(x^{[2]}\right)=25$, that is optimal
(4)...

Parameter tuning

The $A R T$ has three basic parameters

- the total number of iterations ℓ (tuned mainly by the available time)
- the length L of the prohibition
- the probability π of the prohibition

How to assign effective values to the parameters?
The experimental comparison of different values is necessary but complex
(1) it requires long experimental campaigns, because the number of configurations grows combinatorially with

- the number of parameters
- the number of tested values for each parameter
(the more sensitive the result, the more values must be tested)
(2) it risks overfitting, that is labelling as absolutely good values which are good only on the benchmark instances considered

The excess of parameters is an undesirable aspect, and often reveals an insufficient study of the problem and of the algorithm

More on this point later

Diversification and intensification

Diversification aims to obtain different solutions at every iteration The ART achieves it forbidding elements of the previous solutions An excessive diversification can hinder the discovery of the optimum

Intensification aims to focus the search on the more promising subsets Diversification and intensification play complementary roles

Their relative strength can be tuned through the parameters based on

- problem data: assign
- a smaller probability π_{i} to be forbidden
- a shorter expiration time L_{i} of the prohibition
to promising elements (e.g., cheaper ones)
- memory:
- assign a smaller π_{i} or $L_{i}\left(i\right.$ is never forbidden when $\pi_{i}=0$ or $\left.L_{i}=0\right)$ to promising elements (e. g., appearing in the best known solutions)
- periodically restart the algorithm with the $T_{i}-I$ values associated with the best known solution, instead of $T_{i}=-\infty$

Semi-greedy heuristics

A nonexact constructive algorithm has at least one step t which builds a subset $x^{(t)}$ not included in any optimal solution

Since the element selected is the best according to the selection criterium

$$
i^{*}=\arg \min _{i \in \Delta_{A}^{+}(x)} \varphi_{A}(i, x)
$$

necessarily $\varphi_{A}(i, x)$ is incorrect, but probably not completely wrong
The semi-greedy algorithm (Hart and Shogan, 1987) assumes that elements that lead to the optimum are very good for $\varphi_{A}(i, x)$, even if not strictly the best

How to know which one?
If it is not possible to refine $\varphi_{A}(i, x)$

- define a suitable probability distribution on $\Delta_{A}^{+}(x)$ favouring the elements with the best values of $\varphi_{A}(i, x)$
- select $i^{*}(\omega)$ according to the distribution function

Semi-greedy heuristics

Since the set of alternative choices is finite, this means to assign

- probability $\pi_{A}(i, x)$ to $\operatorname{arc}(x, x \cup\{i\})$ of the construction graph (with a sum equal to 1 for the outgoing arcs of each node)

$$
\sum_{i \in \Delta_{A}^{+}(x)} \pi_{A}(i, x)=1 \quad \text { for all } x \in \mathcal{F}_{A}: \Delta_{A}^{+}(x) \neq \emptyset
$$

- higher probabilities to the better elements for the selection criterium

$$
\varphi_{A}(i, x) \leq \varphi_{A}(j, x) \Leftrightarrow \pi_{A}(i, x) \geq \pi_{A}(j, x)
$$

for each $i, j \in \Delta_{A}^{+}(x), x \in \mathcal{F}_{A}$
This heuristic approach has important properties

- it can reach an optimal solution if there is a path from \emptyset to X^{*}
(this is a basic condition)
- it can be reapplied several times obtaining different solutions and the probability to reach the optimum grows gradually (each iteration decreases the probability of missing an optimal path)

Convergence to the optimum

The probability of

- following a path γ is the product of the probabilities on the arcs

$$
\prod_{(y, y \cup\{i\} \in \gamma)} \pi_{A}(i, y)
$$

- obtaining a solution x is the sum of those of the paths Γ_{x} reaching x

$$
\sum_{\gamma \in \Gamma_{x}} \prod_{(y, y \cup\{i\} \in \gamma)} \pi_{A}(i, y)
$$

This implies that the probability to reach the optimum:
(1) is nonzero if and only if there exists a path of nonzero probability from \emptyset to X^{*}
(2) increases as $\ell \rightarrow+\infty$
(the probability of not reaching it decreases gradually)
It tends to 1 for probabilistically approximatively complete algorithms

Convergence to the optimum

In this context, a random walk is a constructive metaheuristic in which all the arcs going out of the same node have equal probability

- it finds a path to the optimum with probability 1 (if one exists)
- the time required can be extremely long

The exhaustive algorithm is exact and requires finite time

A deterministic constructive heuristic sets all probabilities to zero except for those on the arcs of a single path

- it finds the optimum only if it enjoys specific properties
- it finds the optimum in a single run

Randomised heuristics that favour promising arcs and penalise the others

- accelerate the average convergence time
- decrease the guarantee of convergence in the worst case

There is a trade-off between expected and worst result
Arcs with zero probability can block the path to the optimum Arcs with probability converging to zero reduce the probability to find it

Semi-greedy and GRASP

GRASP, that is Greedy randomised Adaptive Search Procedure (Feo and Resende, 1989) is a sophisticated variant of the semi-greedy heuristic

- Greedy indicates that it uses a constructive basic heuristic
- Randomised indicates that the basic heuristic makes random steps
- Adaptive indicates that the heuristic uses an adaptive selection criterium $\varphi_{A}(i, x)$, depending also on x (not strictly necessary)
- Search indicates that it alternates the constructive heuristic and an exchange heuristic (differently from the semi-greedy approach)

The use of auxiliary exchange heuristics allows strongly better results
This aspect will be investigated in the following lessons

What probability function?

Several functions $\pi_{A}(i, x)$ are monotonous with respect to $\varphi_{A}(i, x)$

$$
\varphi_{A}(i, x) \leq \varphi_{A}(j, x) \Leftrightarrow \pi_{A}(i, x) \geq \pi_{A}(j, x)
$$

- uniform probability: each arc going out of x has the same $\pi_{A}(i, x)$; the algorithm performs a random path in \mathcal{F}_{A} (random walk)
- Heuristic-Biased Stochastic Sampling (HBSS):
- sort the arcs going out of x by nonincreasing values of $\varphi_{A}(i, x)$
- assign a decreasing probability according to the position in the order based on a simple scheme (linear, exponential, ecc. . .)
- Restricted Candidate List ($R C L$):
- sort the arcs going out of x by nonincreasing values of $\varphi_{A}(i, x)$
- insert the best arcs in a list (How many?)
- assign uniform probability to the arcs of the list, zero to the others

The most common strategy is the $R C L$, even if the zero probability arcs potentially cancel the global convergence to the optimum

Common probability functions

Suppose that at the current step $\left|\Delta_{A}^{+}(x)\right|=10$ elements can be added

Probability distributions

Definition of the RCL

Two main strategies are used to define the $R C L$

- cardinality: the RCL includes the best μ elements of $\Delta_{A}^{+}(x)$, where $\mu \in\left\{1, \ldots,\left|\Delta_{A}^{+}(x)\right|\right\}$ is a parameter fixed by the user
- $\mu=1$ yields the constructive basic heuristic
- $\mu=|B|$ (i, e., $\left|\Delta_{A}^{+}(x)\right|$ for each x) yields the random walk
- value: the RCL includes all the elements of $\Delta_{A}^{+}(x)$ whose value is between $\varphi_{\min }$ and $(1-\mu) \varphi_{\min }+\mu \varphi_{\max }$ where

$$
\varphi_{\min }(x)=\min _{i \in \Delta_{A}^{+}(x)} \varphi_{A}(i, x) \quad \varphi_{\max }(x)=\max _{i \in \Delta_{A}^{+}(x)} \varphi_{A}(i, x)
$$

and $\mu \in[0 ; 1]$ is a parameter fixed by the user

- $\mu=0$ yields the constructive basic heuristic
- $\mu=1$ yields the random walk

General scheme of GRASP

Algorithm GRASP(I)
$x^{*}:=\emptyset ; f^{*}:=+\infty ; \quad$ \{Best solution found so far \}
For $I=1$ to ℓ do
\{Constructive heuristic with random steps \}
$x:=\emptyset$;
While $\Delta_{A}^{+}(x) \neq \emptyset$ do

$$
\begin{aligned}
& \varphi_{i}:=\varphi_{A}(i, x) \text { for each } i \in \Delta_{A}^{+}(x) \\
& \pi:=\text { AssignProbabilities }\left(\Delta_{A}^{+}(x), \varphi, \mu\right) ; \\
& i:=\operatorname{RandomExtract}\left(\Delta_{A}^{+}(x), \pi\right) ; \\
& x:=x \cup\{i\}
\end{aligned}
$$

EndWhile;
$x:=\operatorname{Search}(x) ; \quad\{$ Exchange heuristic $\}$
If $x \in X$ and $f(x)<f^{*}$ then $x^{*}:=x ; f^{*}:=f(x)$;
EndFor;
Return (x^{*}, f^{*});

Example: GRASP for the SCP

c	25	6	8	24	12
A	1	1	0	0	0
	1	1	0	0	0
	1	1	1	0	0
	1	0	1	1	0
	1	0	0	1	0
	1	0	0	0	1

Let $\mu=2$ and the pseudorandom sequence be: $0.6,0.8, \ldots$
(1) start with the empty subset: $x^{(0)}=\emptyset$
(2) build the RCL with columns $2\left(\varphi_{2}=2\right)$ and $3\left(\varphi_{3}=4\right)$; select column 3 (because $0.6>1 / 2$);
(3) build the RCL with columns $2\left(\varphi_{2}=3\right)$ and $1\left(\varphi_{3}=6.25\right)$;
select column 1 (because $0.8>1 / 2$);
(4) the solution obtained is $x=\{3,1\}$ of cost $f(x)=33$

With $\mu=2$, the optimal solution cannot be obtained; with $\mu=3$ it can
The optimum is found with $\mu=2$ if a destructive phase is applied

Reactive parameter tuning

Once again there are parameters to tune:

- the number of iterations ℓ
- the value μ determining the size of the $R C L$

An idea to exploit memory is to learn from the previous results
(1) select m configurations of parameters μ_{1}, \ldots, μ_{m} and set $\ell_{r}=\ell / m$
(2) run each configuration μ_{r} for ℓ_{r} iterations

3 evaluate the mean $\bar{f}\left(\mu_{r}\right)$ of the results obtained with μ_{r}
(4) update the number of iterations ℓ_{r} for each μ_{r} based on $\bar{f}\left(\mu_{r}\right)$

$$
\ell_{r}=\frac{\frac{1}{\bar{f}\left(\mu_{r}\right)}}{\sum_{s=1}^{m} \frac{1}{\bar{f}\left(\mu_{s}\right)}} \ell \quad \text { for } r=1, \ldots, m
$$

increasing it for the more effective configurations
(5) repeat the whole process, going back to point 2 , for R times

Other schemes use scores based on the number of best known results

Cost perturbation methods

Instead of forbidding/forcing some choices, or modifying their probability, it is possible to modify the appeal of the available choices
Given a basic constructive heuristic A, at each step of iteration /

- tune the selection criterium $\varphi_{A}(i, x)$ with a factor $\tau_{A}^{[1]}(i, x)$

$$
\psi_{A}^{[/]}(i, x)=\frac{\varphi_{A}(i, x)}{\tau_{A}^{[/]}(i, x)}
$$

- update $\tau_{A}^{[/]}(i, x)$ based on the previous solutions $x^{[1]}, \ldots, x^{[/-1]}$

The elements with a better $\varphi_{A}(i, x)$ tend to be favoured, but $\tau_{A}^{[1]}(i, x)$ tunes this effect, promoting

- intensification if $\tau_{A}^{[l]}(i, x)$ increases for the most frequent elements; this favours solutions similar to the previous ones
- diversification if $\tau_{A}^{[/]}(i, x)$ decreases for the most frequent elements; this favours solutions different from the previous ones

Ant Colony Optimization

It was devised by Dorigo, Maniezzo and Colorni in 1991 drawing inspiration from the social behaviour of ants

Stigmergy $=$ indirect communication among different agents who are influenced by the results of the actions of all agents

Each agent is an application of the basic constructive heuristic

- it leaves a trail on the data depending on the solution generated
- it performs choices influenced by the trails left by the other agents

The choices of the agent have also a random component

As in the semi-greedy heuristic

- a basic constructive heuristic A is given
- each step performs a partially random choice

Differently from the semi-greedy heuristic

- each iteration / runs h times heuristic A (population)
- all the choices of $\Delta_{A}^{+}(x)$ are feasible (there is no $R C L$)
- the probability $\pi_{A}(i, x)$ depends on
(1) the selection criterium $\varphi_{A}(i, x)$
(2) auxiliary information $\tau_{A}(i, x)$ denoted as trail produced in previous iterations (sometimes by other agents in the same iteration)

The trail is uniform at first $\left(\tau_{A}(i, x)=\tau_{0}\right)$, and later tuned

- increasing it to favour promising choices
- decreasing it to avoid repetitive choices

For the sake of simplicity, the trail $\tau_{A}(i, x)$ is not associated to each arc ($x, x \cup\{i\}$), but is the same for blocks of arcs (e.g., depending only on i)

Random choice

Instead of selecting the best element according to criterium $\varphi_{A}(i, x)$, i is extracted from $\Delta_{A}^{+}(x)$ with probability

$$
\pi_{A}(i, x)=\frac{\tau_{A}(i, x)^{\mu_{\tau}} \eta_{A}(i, x)^{\mu_{\eta}}}{\sum_{j \in \Delta_{A}^{+}(x)} \tau_{A}(j, x)^{\mu_{\tau}} \eta_{A}(j, x)^{\mu_{\eta}}}
$$

where

- the denominator normalizes the probability
- the visibility is the auxiliary function

$$
\eta_{A}(i, x)= \begin{cases}\varphi_{A}(i, x) & \text { for maximisation problems } \\ \frac{1}{\varphi_{A}(i, x)} & \text { for minimisation problems }\end{cases}
$$

The promising choices have larger visibility

- the parameters μ_{τ} and μ_{η} tune the weights of the two terms

Balancing given and learned information

The original Ant System tunes the probabilities

$$
\pi_{A}(i, x)=\frac{\tau_{A}(i, x)^{\mu_{\tau}} \eta_{A}(i, x)^{\mu_{\eta}}}{\sum_{j \in \Delta_{A}^{+}(x)} \tau_{A}(j, x)^{\mu_{\tau}} \eta_{A}(j, x)^{\mu_{\eta}}}
$$

with parameters μ_{η} and μ_{τ} that control the amount of randomness

- $\mu_{\eta} \approx 0$ and $\mu_{\tau} \approx 0$ push towards randomness
- large values of μ_{η} and μ_{τ} push towards determinism (favour arg $\max _{i \in \Delta^{+}(x)} \tau_{A}(i, x)^{\mu_{\tau}} \eta_{A}(i, x)^{\mu_{\eta}}$)
and the relative weight of the data and of memory
- $\mu_{\eta} \gg \mu_{\tau}$ favours the data, simulating the basic constructive heuristic which makes sense when the known solutions are not very significant
- $\mu_{\eta} \ll \mu_{\tau}$ favours memory, keeping close to the previous solutions which makes sense when the known solutions are very significant

$$
\left(\text { assuming } \tau_{A}(i, x)>1 \text { and } \eta_{A}(i, x)>1\right)
$$

Balancing given and learned information

The Ant Colony System variant splits the selection into two phases
(1) decide the selection procedure

- with probability q, to choose i deterministically
- with probability $(1-q)$, choose i stochastically
where parameter q tunes the randomness
- $q \approx 0$ favours random choices
- $q \approx 1$ favours deterministic choices
(2) apply the selection procedure
- the deterministic one selects the best element

$$
i^{*}=\arg \max _{i \in \Delta^{+}(x)} \tau_{A}(i, x) \eta_{A}(i, x)^{\mu_{\eta}}
$$

- the stochastic one select a random element with probabilities

$$
\pi_{A}(i, x)=\frac{\tau_{A}(i, x) \eta_{A}(i, x)^{\mu_{\eta}}}{\sum_{j \in \Delta_{A}^{+}(x)} \tau_{A}(j, x) \eta_{A}(j, x)^{\mu_{\eta}}}
$$

where parameter μ_{η} tunes the relative weight of data and memory

- $\mu_{\eta} \gg 1$ favours the data
- $\mu_{\eta} \ll 1$ favours memory

$$
\text { (setting } \mu_{\tau}=1 \text { as a form of normalisation) }
$$

Trail update

At each iteration ℓ
(1) run h istances of the basic heuristic A
(2) select a subset $\tilde{X}^{[/]}$of the solutions obtained, in order to favour their elements in the following iterations
(3) update the trail according to the formula

$$
\tau_{A}(i, x):=(1-\rho) \tau_{A}(i, x)+\rho \sum_{y \in \tilde{X}[!: i \in y} F_{A}(y)
$$

where

- $\rho \in[0 ; 1]$ is an oblivion parameter
- $F_{A}(y)$ is a fitness function expressing the quality of solution y (such that $F>\tau$: e.g., $F(y)=Q / f(y)$ for a suitable constant Q)

The purpose of the update is to
(1) increase the trail on the elements of specific solutions $\left(y \in \tilde{X}^{[J]}\right)$
(2) decrease the trail on the other elements

$$
\tau_{A}(i, x):=(1-\rho) \tau_{A}(i, x)+\rho \sum_{y \in \tilde{X} \mathbb{M}_{:}: i \in y} F_{A}(y)
$$

The oblivion parameter $\rho \in[0 ; 1]$ tunes the behaviour of the algorithm:

- diversification: a high oblivion ($\rho \approx 1$) cancels the current trail based on the intuition that
- the solutions obtained are not trustworthy
- different solutions should be explored
- intensification: a low oblivion ($\rho \approx 0$) preserves the current trail based on the intuition that
- the solutions obtained are trustworthy
- similar solutions should be explored
$\tilde{X}^{[/]}$collects the solutions around which the search will be intensified
- the classical Ant System considers all the solutions of iteration / - 1
- the elitist methods consider the best known solutions
- the best solution of iteration $/-1$
- the best solution of all iterations <1

The elitist methods

- find better results in shorter time
- require additional mechanisms to avoid premature convergence

Some variants of the Ant System

- $\mathcal{M A X}-\mathcal{M I N}$ Ant System: imposes on the trail a limited range of values $\left[\tau_{\text {min }} ; \tau_{\text {max }}\right]$, experimentally tuned
- HyperCube Ant Colony Optimization (HC-ACO): normalizes the trail between 0 and 1
- Ant Colony System: updates the trail on two levels
- the global update (already seen) modifies it at each iteration ℓ

The purpose is to intensify the search

- the local update updates the trail at each application g of the basic heuristic in order to discourage identical choices in the following

$$
\tau_{A}(i, x):=(1-\rho) \tau_{A}(i, x) \quad \text { for each } i \in x_{A}^{[I, g]}
$$

The purpose is to diversify the search

General scheme of the Ant System

Algorithm AntSystem(I)
$x^{*}:=\emptyset ; f^{*}:=+\infty$;
\{ Best solution found so far \}
$\tau_{A}:=\tau_{0} ;$
For $I=1$ to ℓ do
$\tilde{X}^{[/]}:=\emptyset ;$
For $g=1$ to h do
$x:=A\left(I, \tau_{A}\right) ; \quad\{$ Basic heuristic with random steps and memory \}
$x:=\operatorname{Search}(x)$;
\{ Exchange heuristic \}
$\tau_{A}:=$ LocalUpdate $\left(\tau_{A}, x\right)$;
If $f(x)<f^{*}$ then $x^{*}:=x ; f^{*}:=f(x)$;
$\tilde{X}^{[/]}:=$Update $\left(\tilde{X}^{[/]}, x\right)$;
EndFor;
$\tau_{A}:=$ GlobalUpdate $\left(\tau_{A}, \tilde{X}^{[/]}\right) ; \quad\{$ Global update of the trail $\}$
EndFor;
Return $\left(x^{*}, f^{*}\right)$;

Convergence to the optimum

Some variants of the Ant System converge to the optimum with probability 1 (Gutjahr, 2002)

The analysis is based on the construction graph

- the trail $\tau_{A}(i, x)$ is laid down on the $\operatorname{arcs}(x, x \cup\{i\})$
- no information from the data is used, that is $\eta_{A}(i, x) \equiv 1$ (this strange assumption simplifies the computation, but is not necessary)
- $\tau^{[l]}$ is the trail function at the beginning of iteration /
- $\gamma^{[l]}$ is the best path on the graph at the end of iteration $/$,
- $\left(\tau^{[l]}, \gamma^{[l-1]}\right)$ is the state of a nonhomogeneous Markov process:
- the probability of each state depends only on the previous iteration
- the process is nonhomogeneous because the dependency varies with /

The proof concludes that for $\ell \rightarrow+\infty$, with probability 1
(1) the best path found γ is one of the optimal paths in \mathcal{F}
(2) the trail τ tends to a maximum along γ, to zero on the other arcs provided that a suitable parameter tuning is adopted

First variant with global convergence

The trail is updated with a variable coefficient of oblivion
$\tau^{[l]}(i, x):= \begin{cases}\left(1-\rho^{[l-1]}\right) \tau^{[l-1]}(i, x)+\rho^{[l-1]} \frac{1}{\left|\gamma^{[l-1]}\right|} & \text { if }(x, x \cup\{i\}) \in \gamma^{[l-1]} \\ \left(1-\rho^{[l-1]}\right) \tau^{[l-1]}(i, x) & \text { otherwise }\end{cases}$
where $\gamma^{[I-1]}$ is the best path found in the graph up to iteration $I-1$ and $\left|\gamma^{[l-1]}\right|$ is the number of its arcs
(to normalise the trail)
If the oblivion decreases slowly enough

$$
\rho^{[l]} \leq 1-\frac{\log I}{\log (I+1)} \quad \text { and } \quad \sum_{l=0}^{+\infty} \rho^{[l]}=+\infty
$$

then with probability 1 the state converges to $\left(\tau^{*}, \gamma^{*}\right)$, where

- γ^{*} is an optimal path in the construction graph
- $\tau^{*}(i, x)=\frac{1}{\left|\gamma^{*}\right|}$ for $(x, x \cup\{i\}) \in \gamma^{*}, 0$ otherwise

Second variant with global convergence

Alternatively, if the oblivion ρ remains constant, but the trail is forced a slowly decreasing minimum threshold

$$
\tau(i, x) \geq \frac{c_{l}}{\log (I+1)} \text { and } \lim _{I \rightarrow+\infty} c_{l} \in(0 ; 1)
$$

then with probability 1 the state converges to $\left(\tau^{*}, \gamma^{*}\right)$
Here the oblivion is restricted by the minimum threshold
In pratice, all algorithms proposed so far in the literature

- associate the trail to groups of arcs $(x, x \cup\{i\})$ (e.g., to element i)
- use constant values for parameters ρ and $\tau_{\text {min }}$ therefore do not guarantee convergence

The trail τ, and therefore π, can tend to zero on every optimal path

