
Heuristic Algorithms
Master’s Degree in Computer Science/Mathematics

Roberto Cordone

DI - Università degli Studi di Milano

Schedule: Thursday 14.30 - 16.30 in classroom 201

Friday 14.30 - 16.30 in classroom 100

Office hours: on appointment

E-mail: roberto.cordone@unimi.it

Web page: https://homes.di.unimi.it/cordone/courses/2023-ae/2023-ae.html

Ariel site: https://rcordoneha.ariel.ctu.unimi.it

Lesson 8: Constructive heuristics: nonexact algoritms Milano, A.A. 2023/24
1 / 23

https://homes.di.unimi.it/cordone/courses/2023-ae/2023-ae.html
https://rcordoneha.ariel.ctu.unimi.it

What to do when the axioms are violated

If a search space violates the desired axioms, one can try and change it

For the TSP, an alternative FA includes all paths starting from node 1
Let Nx be the set of nodes visited from x : the acceptable extensions are
all arcs going out of the last node of path x and not closing a subtour

∆+
A (x) = {(h, k) ∈ A : h = Last (x) , k /∈ Nx or k = 1 and Nx = N}

Unfortunately, the axioms are still not all satisfied

• the trivial axiom always holds

• the accessibility axiom holds: removing the last arc yields a path
starting from node 1

• the hereditarity axiom does not hold: not all subsets are paths

• the exchange axiom does not hold

Therefore, it is not even a greedoid

But the algorithm can still be a reasonable heuristic

2 / 23

The Nearest Neighbour heuristic for the TSP

The Nearest Neighbour (NN) heuristic adopts the alternative search space
keeping the objective function as the selection criterium

• Start with an empty set of arcs: x (0) = ∅
that represents a degenerate path going out of node 1

(the optimal solution certainly visits node 1)

• Find the arc of minimum cost going out of the last node of x

(i , j) = arg min
(h,k)∈∆+

A (x)
chk

(the objective function is additive)

• If j 6= 1, go back to point 2; otherwise, terminate
(∆+

A (x) allows the return to node 1 only at the last step)

The algorithm is very intuitive and its complexity is Θ
(
n2
)

It is not exact, but log n-approximated (under the triangle inequality)

3 / 23

The Nearest Neighbour heuristic: example

Consider a complete graph (the arcs are not reported for clarity)

Starting from node 1 Starting from node 2

The optimal solution cannot be found starting from any node

4 / 23

A larger example

5 / 23

A larger example

6 / 23

A larger example

7 / 23

A larger example

8 / 23

Heuristic constructive algorithms: the KP

If the problem does not admit a search space with suitable properties,
one must keep into account the constraints of the problem adopting

1 not only a good definition of FA

2 but also a sophisticated definition of the selection criterium ϕA (i , x)

This allows effective results, even if not provably optimal

In the KP, the drawback derives from the volume of the objects:
promising objects have a large value, but also a small volume

• define the selection criterium as the unitary value ϕA (i , x) =
φi
vi

The resulting algorithm

• can perform very badly

• with a small modification is 2-approximated

9 / 23

Example: the KP

B a b c d e f
φ 7 2 4 5 4 1
v 5 3 2 3 1 1
φ/v 1.40 0.67 2.00 1.67 4 1

V = 8

The algorithm performs the following steps:

1 x := ∅;
2 select i := e and update x := {e};
3 select i := c and update x := {c , e};
4 select i := d and update x := {c , d , e};
5 select i := f and update x := {c , d , e, f }; (object a does not fit)

6 since ∆+
A (x) = ∅, terminate

The value of the solution found is 14,
the optimal solution is x∗ = {a, c , e} and its value is 15

10 / 23

Example: the KP
There are critical cases

B a b
φ 10 90
v 1 10
φ/v 10 9

V = 10

The algorithm performs the following steps:

1 x := ∅;
2 select i := a and update x := {a};
3 since ∆+

A (x) = ∅, terminate

The value of the solution found is 10, the optimum is 90:
there are istances with unlimitedly worse gaps

The reason of the mistake is that

• the first discarded object

• has a large volume, but also a large value

11 / 23

Example: 2-approximated algorithm for the KP

1 Start with an empty subset: x (0) = ∅
2 Find the object i (t) of maximum unitary value in B \ x (t−1):

i (t) := arg max
i∈B\x (t−1)

φi (t)

vi (t)

3 If it respects the capacity, add i (t) to x (t−1): x (t) := x (t−1) ∪ {i (t)}
and go back to point 2

4 Build a solution with the first rejected object: x ′ =
{
i (t)
}

5 Return the better solution between x and x ′: fA = max [f (x) , f (x ′)]

It is easy to prove that
• the sum of the two solution values overestimates the optimum

f (x) + f (x ′) =
t∑

τ=1

φi (τ) ≥ f ∗

• the best of the two solution values is at least half their sum

fA = max [f (x) , f (x ′)] ≥ f (x) + f (x ′)

2
≥ 1

2
f ∗

12 / 23

Pure and adaptive constructive algorithms

A constructive algorithm A is

• pure if the selection criterium ϕA depends only on the new element i

• adaptive if ϕA depends both on i and on the current solution x

Many criteria ϕA (i , x) admit equivalent forms depending only on i

• in the TSP, ϕA ((i , j), x) = f (x ∪ {(i , j)}) is equivalent to cij
• in the KP, ϕA (i , x) = f (x ∪ {i}) is equivalent to φi

So far, we have seen only pure constructive algorithms

An additive selection criterium yields a pure constructive algorithm

13 / 23

Set Covering

Given a binary matrix and a cost vector associated to the columns,
find a minimum cost subset of columns covering all the rows

The objective is additive, but the solutions are not maximal subsets
(actually, the smaller feasible subsets are better)

An adaptive selection criterium ϕA (i , x) is necessary: a pure one (ϕA (i))
could repeatedly choose columns covering the same rows

The more promising ideas are to consider

• the objective function: select columns of low cost

• the constraints: select columns covering many rows

• the current subset x : select columns covering new rows

In summary

• include in ∆+
A (x) only columns covering additional rows not in x

• apply the adaptive selection criterium ϕA (i , x) =
ci

ai (x)
where ai (x) is the number of rows covered by i , but not by x

14 / 23

Set Covering: a positive example

c 3 5 6 2 1 7 1 8

1 0 1 0 0 0 0 1
0 1 0 0 0 1 0 0

A 1 0 0 1 0 0 0 0
1 0 1 0 0 1 0 0
0 0 0 0 1 0 1 1
1 0 0 1 0 1 0 0

The algorithm performs the following steps:

1 x := ∅;
2 select i := 1 (ϕA (i , x) = 3/4) and update x := {1}

and ∆+
A (x) = {2, 5, 6, 7, 8};

3 select i := 5 (ϕA (i , x) = 1) and update x := {1, 5}
and ∆+

A (x) = {2, 6};
4 select i := 2 (ϕA (i , x) = 5) and update x := {1, 2, 5};
5 now all the rows are covered and ∆+

A (x) = ∅, therefore terminate

The value of the solution found is 3 + 5 + 1 = 9 and is the optimum
15 / 23

Set Covering: a negative example
But the algorithm can also fail

c 25 6 8 24 12

1 1 0 0 0
1 1 0 0 0

A 1 1 1 0 0
1 0 1 1 0
1 0 0 1 0
1 0 0 0 1

The algorithm performs the following steps:

1 x := ∅;
2 since c/ai (x) =

[
4.16̄ 2 4 12 12

]
, select i := 2;

3 since c/ai (x) =
[

8.3̄ − 8 12 12
]
, select i := 3;

4 since c/ai (x) = [12.5 − − 24 12], select i := 5;

5 since c/ai (x) = [25 − − 24 −], select i := 4;

6 all the rows are covered, therefore ∆+
A (x) = ∅ and terminate

The solution returned is x = {2, 3, 4, 5} and its value is 50,
whereas the optimal solution x∗ = {1} has value f ∗ = 25

16 / 23

Approximability of the SCP

This algorithm has a nonconstant (logarithmic) approximation ratio

• at each step t, each column i is evaluated with criterium

ϕA

(
i , x (t−1)

)
=

ci

ai
(
x (t−1)

)
• each row j is covered by a certain column (ij) at a certain step (tj)

• start assigning weight θj = 0 to each row j

• when each row j is covered (step tj), set its weight to

θj =
cij

aij
(
x (tj−1)

)
so that the total weight of the rows increases by cij at step tj ;
correspondingly, x includes column ij and its cost increases by cij

• the total cost of x is always equal to the total weight of the rows

fA (x) =
∑
i∈x

ci =
∑
j∈R

θj

17 / 23

Approximability of the SCP

• at step t, there are |R(t)| ≤ |R| − t uncovered rows

• the columns of the optimal solution could cover them all with cost f ∗

⇒ at least one of such columns has unitary cost ≤ f ∗/|R(t)|
• the column i selected has minimum unitary cost ϕA

(
i , x (t−1)

)
,

therefore ≤ f ∗/|R(t)| and the covered rows increase their weight by

θj = ϕA

(
i , x (t−1)

)
≤ f ∗

|R(tj)|
⇒
∑
j∈R

θj ≤
∑
j∈R

f ∗

|R(tj)|

The cost to cover each row j is not larger than the optimum divided
by the number of rows uncovered at the step in which j gets covered

• the integer number |R(t)| strictly decreases at each step

• the sum can be overestimated reducing |R(t)| by 1 at each step

• The approximation ratio is limited by a logarithmic guarantee

fA =
∑
j∈R

θj ≤
∑
j∈R

f ∗

|R(tj)|
≤

1∑
r=|R|

f ∗

r
≤ (ln |R|+ 1) f ∗

18 / 23

Application to the negative example

c 25 6 8 24 12

1 1 0 0 0
1 1 0 0 0

A 1 1 1 0 0
1 0 1 1 0
1 0 0 1 0
1 0 0 0 1

1 since ϕA (i , x) =
[

4.16̄ 2 4 12 12
]
, select i := 2

and set θ1 = θ2 = θ3 = 2, that is ≤ f ∗/|R(0)| = 25/6 = 4.16̄;
now weight θ1 ≤ 25/6, and even more so θ2 ≤ 25/5 and θ3 ≤ 25/4

2 since ϕA (i , x) =
[

8.3̄ − 8 12 12
]
, select i := 3

and set θ4 = 8, that is ≤ f ∗/|R(1)| = 8.3̄

3 since ϕA (i , x) = [12.5 − − 24 12], select i := 5
and set θ6 = 12, that is ≤ f ∗/|R(2)| = 12.5

4 since ϕA (i , x) = [25 − − 24 −], select i := 4
and set θ5 = 24, that is ≤ f ∗/|R(3)| = 25

5 all the rows are covered, therefore ∆+
A (x) = ∅ and the algorithm terminates

Now fA =
∑
j∈R

θj = 50 and the approximation holds: fA ≤ (ln |R|+ 1) f ∗ ≈ 2.79 f ∗

19 / 23

Bin Packing Problem

The BPP requires to divide a set O of voluminous objects into the
minimum number of containers of given capacity drawn from a set C

B = O × C includes the object-container assignments (i , j)

• with exactly one container for each object

• with the total volume in each container not exceeding the capacity

Let us define the search space FA as the set of all partial solutions

The objective function is a bad selection criterium, because it is flat
All the augmented subsets have the same value or increase it by 1

20 / 23

First-Fit heuristic

Consider the object-container pairs lexicographically

• Start with an empty subset: x (0) = ∅
• Select pair (i , j) according to the following criterium:

• i is the first (minimum index) unassigned object
• j is the first container with enough residual capacity for i

(a used container, if possible; an unused one otherwise)

• Add the new assignment to the solution: x (t) := x (t−1) ∪ {(i , j)}

Notice that the choice of (i , j)

• does not minimise f (x ∪ {(i , j)}) (another i could be better)

• is split into two phases (first i , then j)

21 / 23

Properties of the First-Fit heuristic
The solution is not optimal

but it is approximated:
• at least f ∗ ≥

∑
i∈O

vi/V containers are necessary

• the occupied volume is > V /2 for all used containers, possibly
except for the last one (if a second half-empty container existed,
its objects would have been assigned to the first)

• the total volume exceeds that of the fA − 1 “saturated” containers∑
i∈O

vi > (fA − 1)
V

2

which implies (fA − 1) <
2

V

∑
i∈O

vi ≤ 2f ∗ ⇒ fA ≤ 2f ∗

(the analysis can be improved to 1.7)
22 / 23

Decreasing First-Fit heuristic

The approximation ratio α = 2 holds for any permutation of the objects

Intuition would suggest to select first the smallest objects,
in order to keep the objective f (x ∪ {i}) as small as possible,
but this neglects that all objects must be assigned

By contrast, it is better to select the largest object first because

• each object in a container has a volume strictly larger
than the residual capacity of all the previous containers

(otherwise, it would have been assigned to one of them)

• keeping the smallest objects in the end guarantees that
many containers have a small residual capacity

This algorithm has a better approximation ratio: fA ≤
11

9
f ∗ + 1

23 / 23

