Heuristic Algorithms

Master's Degree in Computer Science/Mathematics

Roberto Cordone

DI - Università degli Studi di Milano

Schedule: \quad Thursday 14.30-16.30 in classroom 201
Friday 14.30-16.30 in classroom 100
Office hours: on appointment
E-mail: roberto.cordone@unimi.it
Web page: https://homes.di.unimi.it/cordone/courses/2023-ae/2023-ae.html
Ariel site: https://rcordoneha.ariel.ctu.unimi.it

Combinatorial Optimization

$$
\begin{aligned}
& \text { opt } f(x) \\
& x \in X
\end{aligned}
$$

where $X \subseteq 2^{B}$ and B finite
We will survey a number of problem classes

- set problems
- logic function problems
- numerical matrix problems
- graph problems

Why a problem survey?

Reviewing several problems is useful because

- abstract ideas must be concretely applied to different algorithms for different problems
- the same idea can have different effectiveness on different problems
- some ideas only work on problems with a specific structure
- different problems could have nonapparent relations, which could be exploited to design algorithms

So, a good knowledge of several problems teaches how to

- apply abstract ideas to new problems
- find and exploit relations between known and new problems

Sure, the "Magical Number Seven" risk exists. . .
To control it, we will make some interludes devoted to general remarks

Weighted set problems: Knapsack Problem (KP)

Given

- a set E of elementary objects
- a function $v: E \rightarrow \mathbb{N}$ describing the volume of each object
- a number $V \in \mathbb{N}$ describing the capacity of a knapsack
- a function $\phi: E \rightarrow \mathbb{N}$ describing the value of each object select a subset of objects of maximum value that respects the capacity

The ground set is trivially the set of the objects: $B=E$
The feasible region includes all subsets of objects whose total volume does not exceed the capacity of the knapsack

$$
X=\left\{x \subseteq B: \sum_{j \in x} v_{j} \leq V\right\}
$$

The objective is to maximise the total value of the chosen objects

$$
\max _{x \in X} f(x)=\sum_{j \in x} \phi_{j}
$$

Example

$$
\begin{array}{cc}
x^{\prime}=\{c, d, e\} \in X & x^{\prime \prime}=\{a, c, d\} \notin X \\
f\left(x^{\prime}\right)=13 & f\left(x^{\prime \prime}\right)=16
\end{array}
$$

Set problems in metric spaces:

Maximum Diversity Problem (MDP)

Given

- a set P of points
- a function $d: P \times P \rightarrow \mathbb{N}$ providing the distance between point pairs
- a number $k \in\{1, \ldots,|P|\}$ that is the number of points to select select a subset of k points with the maximum total pairwise distance

The ground set is the set of points: $B=P$
The feasible region includes all subsets of k points

$$
X=\{x \subseteq B:|x|=k\}
$$

The objective is to maximise the sum of all pairwise distances between the selected points

$$
\max _{x \in X} f(x)=\sum_{(i, j): i, j \in x} d_{i j}
$$

Example

Interlude 1: the objective function

The objective function associates integer values to feasible subsets

$$
f: X \rightarrow \mathbb{N}
$$

Computing the objective function can be complex (even exhaustive)
We have seen two simple cases

- the $K P$ has an additive objective function which sums values of an auxiliary function defined on the ground set

$$
\phi: B \rightarrow \mathbb{N} \text { induces } f(x)=\sum_{j \in x} \phi_{j}: X \rightarrow \mathbb{N}
$$

- the MDP has a quadratic objective function

Both are defined not only on X, but on the whole of 2^{B} (is this useful?) Both are easy to compute, but the additive functions $f(x)$ are also fast to recompute if subset x changes slightly: it is enough to

- sum ϕ_{j} for each element j added to x
- subtract ϕ_{j} for each element j removed from x

For quadratic functions, this seems more complex (we will talk about it)

Partitioning set problems: Bin Packing Problem (BPP)

Given

- a set E of elementary objects
- a function $v: E \rightarrow \mathbb{N}$ describing the volume of each object
- a set C of containers
- a number $V \in \mathbb{N}$ that is the volume of the containers divide the objects into the minimum number of containers respecting the capacity

The ground set $B=E \times C$ includes all (object,container) pairs
The feasible region includes all partitions of the objects among the containers not exceeding the capacity of any container

$$
X=\left\{x \subseteq B:\left|x \cap B_{e}\right|=1 \forall e \in E, \sum_{(e, c) \in B^{c}} v_{e} \leq V \forall c \in C\right\}
$$

with $B_{e}=\{(i, j) \in B: i=e\}$ and $B^{c}=\{(i, j) \in B: j=c\}$
The objective is to minimise the number of containers used

$$
\min _{x \in X} f(x)=\left|\left\{c \in C: x \cap B^{c} \neq \emptyset\right\}\right|
$$

Example

$$
\begin{aligned}
& x^{\prime}=\{(a, 1),(b, 1),(c, 2),(d, 2),(e, 2),(f, 3), \\
& \quad(g, 4),(h, 5),(i, 5)\} \in X \\
& f\left(x^{\prime}\right)=5 \\
& x^{\prime \prime}=\{(a, 1),(b, 1),(c, 2),(d, 2),(e, 2),(f, 3), \\
& \quad(g, 4),(h, 1),(i, 4)\} \notin X \\
& f\left(x^{\prime \prime}\right)=4
\end{aligned}
$$

Partitioning set problems:
 Parallel Machine Scheduling Problem (PMSP)

Given

- a set T of tasks
- a function $d: T \rightarrow \mathbb{N}$ describing the time length of each task
- a set M of machines
divide the tasks among the machines with the minimum completion time
The ground set $B=T \times M$ includes all (task, machine) pairs
The feasible region includes all partitions of tasks among machines (the order of the tasks is irrelevant!)

$$
X=\left\{x \subseteq B:\left|x \cap B_{t}\right|=1 \forall t \in T\right\}
$$

The objective is to minimise the maximum sum of time lengths for each machine

$$
\min _{x \in X} f(x)=\max _{m \in M} \sum_{t:(t, m) \in x} d_{t}
$$

Example

$$
\begin{aligned}
T=\{ & T 1, T 2, T 3, T 4, T 5, T 6\} \\
& M=\{M 1, M 2, M 3\}
\end{aligned}
$$

task	$T 1$	$T 2$	$T 3$	$T 4$	$T 5$	$T 6$
d	80	40	20	30	15	80

$$
\begin{aligned}
x^{\prime}=\{ & (T 1, M 1),(T 2, M 2),(T 3, M 2), \\
& (T 4, M 2),(T 5, M 1),(T 6, M 3)\} \in X \\
f\left(x^{\prime}\right)= & 95
\end{aligned}
$$

$$
\begin{aligned}
x^{\prime \prime}=\{ & (T 1, M 1),(T 2, M 1),(T 3, M 2) \\
& (T 4, M 2),(T 5, M 2),(T 6, M 3)\} \in X \\
f\left(x^{\prime \prime}\right)= & 120
\end{aligned}
$$

Interlude 2: the objective function again

The objective function of the $B P P$ and the $P M S P$

- is not additive
- is not trivial to compute (but not hard, as well)

Small changes in the solution have a variable impact on the objective

- equal to the time length of the moved tasks (increase or decrease) (e.g., move $T 5$ on $M 1$ in $x^{\prime \prime}$)
- zero (e.g., move $T 5$ on M3 in $x^{\prime \prime}$)
- intermediate (e.g., move $T 2$ on $M 2$ in $x^{\prime \prime}$)

In fact, the impact of a change to the solution depends

- both on the modified elements
- and on the unmodified elements (contrary to Interlude 1)

The objective function is "flat": several solutions have the same value (this is a problem when comparing different modifications)

Logic function problems: Max-SAT problem

Given a CNF, assign truth values to its logical variables so as to satisfy the maximum weight subset of its logical clauses

- a set V of logical variables x_{j} with values in $\mathbb{B}=\{0,1\}$ (false, true)
- a literal ℓ_{j} is a function consisting of an affirmed or negated variable

$$
\ell_{j}(x) \in\left\{x_{j}, \bar{x}_{j}\right\}
$$

- a logical clause is a disjunction or logical sum (OR) of literals

$$
C_{i}(x)=\ell_{i, 1} \vee \ldots \vee \ell_{i, n_{i}}
$$

- a conjunctive normal form (CNF) is a conjunction or logical product (AND) of logical clauses

$$
\operatorname{CNF}(x)=C_{1} \wedge \ldots \wedge C_{n}
$$

- to satisfy a logical function means to make it assume value 1
- a function w provides the weights of the CNF clauses

Logic function problems: Max-SAT problem

The ground set is the set of all simple truth assignments

$$
B=V \times \mathbb{B}=\left\{\left(x_{1}, 0\right),\left(x_{1}, 1\right), \ldots,\left(x_{n}, 0\right),\left(x_{n}, 1\right)\right\}
$$

The feasible region includes all subsets of simple assignments that are

- complete, that is include at least a literal for each variable
- consistent, that is include at most a literal for each variable

$$
X=\left\{x \subseteq B:\left|x \cap B_{v}\right|=1 \forall v \in V\right\}
$$

with $B_{x_{j}}=\left\{\left(x_{j}, 0\right),\left(x_{j}, 1\right)\right\}$
The objective is to maximise the total weight of the satisfied clauses

$$
\max _{x \in X} f(x)=\sum_{i: C_{i}(x)=1} w_{i}
$$

Example

- Variables

$$
V=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}
$$

- Literals

$$
L=\left\{x_{1}, \bar{x}_{1}, x_{2}, \bar{x}_{2}, x_{3}, \bar{x}_{3}, x_{4}, \bar{x}_{4}\right\}
$$

- Logical clauses

$$
C_{1}=\bar{x}_{1} \vee x_{2} \quad \ldots \quad C_{7}=x_{2}
$$

- Conjunctive normal form

$$
C N F=\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{2} \vee x_{4}\right) \wedge\left(\bar{x}_{2} \vee \bar{x}_{4}\right) \wedge x_{1} \wedge x_{2}
$$

- Weight function (uniform):

$$
w_{i}=1 \quad i=1, \ldots, 7
$$

$x=\left\{\left(x_{1}, 0\right),\left(x_{2}, 0\right),\left(x_{3}, 1\right),\left(x_{4}, 1\right)\right\}$ satisfies $f(x)=5$ clauses out of 7
Complementing a variable does not always change $f(x)$ (x_{1} does, x_{4} not)

Numerical matrix problems: Set Covering ($S C P$)

Given

- a binary matrix $A \in \mathbb{B}^{m, n}$ with row set R and column set C
- column $j \in C$ covers row $i \in R$ when $a_{i j}=1$
- a function c: $C \rightarrow \mathbb{N}$ provides the cost of each column Select a subset of columns covering all rows at minimum cost

The ground set is the set of columns: $B=C$
The feasible region includes all subsets of columns that cover all rows

$$
X=\left\{x \subseteq B: \sum_{j \in x} a_{i j} \geq 1 \forall i \in R\right\}
$$

The objective is to minimise the total cost of the selected columns

$$
\min _{x \in X} f(x)=\sum_{j \in x} c_{j}
$$

Example

$$
\begin{aligned}
& \text { c } \begin{array}{lllllll|}
\hline 4 & 6 & 10 & 14 & 5 & 6 \\
\hline
\end{array} \\
& \text { A } \begin{array}{|llllll|}
\hline 0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 \\
\hline
\end{array} \\
& \text { A } \begin{array}{|llllll|ll}
0 & 1 & 1 & 1 & 1 & 0 & 2 & \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & x^{\prime}=\left\{c_{1}, c_{3}, c_{5}\right\} \in X \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & f\left(x^{\prime}\right)=19 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & \\
1 & 1 & 1 & 0 & 1 & 0 & 3 &
\end{array} \\
& \text { A } \begin{array}{|llllll|ll}
0 & 1 & 1 & 1 & 1 & 0 & 1 & \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & x^{\prime \prime}=\left\{c_{1}, c_{5}, c_{6}\right\} \notin X \\
1 & 1 & 0 & 0 & 0 & 1 & 2 & \\
0 & 0 & 0 & 1 & 1 & 1 & 2 & f\left(x^{\prime \prime}\right)=15 \\
1 & 1 & 1 & 0 & 1 & 0 & 2 &
\end{array}
\end{aligned}
$$

"Set Covering": covering a set (rows) with subsets (columns)

Interlude 3: the feasibility test

Heuristic algorithms often require to solve the following problem Given a subset x, is x feasible or not? In short, $x \in X$?

It is a decision problem
The feasibility test requires to compute from the solution and test

- a single number: the total volume $(K P)$, the cardinality (MDP)
- a single set of numbers: values assigned to each variable (Max-SAT), number of machines for each task (PMSP)
- several sets of numbers: number of containers for each object and total volume of each container (BPP)

The time required can be different if the test is performed

- from scratch on a generic subset x
- on a subset x^{\prime} obtained slightly modifying a feasible solution x

Some modifications can be forbidden a priori to avoid infeasibility (insertions and removals for MDP, PMSP, Max-SAT), while others require an a posteriori test (exchanges)

Numerical matrix problems: Set Packing

Given

- a binary matrix $A \in \mathbb{B}^{m, n}$ with row set R and column set C
- columns j^{\prime} e $j^{\prime \prime} \in C$ conflict with each other when $a_{i j^{\prime}}=a_{i j^{\prime \prime}}=1$
- a function $\phi: C \rightarrow \mathbb{N}$ provides the value of each column Select a subset of nonconflicting columns of maximum value

The ground set is the set of columns: $B=C$
The feasible region includes all subsets of nonconflicting columns

$$
X=\left\{x \subseteq B: \sum_{j \in x} a_{i j} \leq 1 \forall i \in R\right\}
$$

The objective is to maximise the total value of the selected columns

$$
\max _{x \in X} f(x)=\sum_{j \in x} \phi_{j}
$$

Example

$$
\begin{aligned}
& \phi \quad 4 \quad 6 \quad 10 \quad 14 \quad 5 \quad 6 \\
& \text { A } \begin{array}{|llllll|}
\hline 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \mathrm{~A} \begin{array}{|llllll|l}
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 & 0
\end{array} \quad x^{\prime}=\left\{c_{2}, c_{4}\right\} \in X \\
& f\left(x^{\prime}\right)=20 \\
& \text { A } \begin{array}{|llllll|l|}
\hline 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1 & 1 & 1 & 2 \\
1 & 1 & 1 & 0 & 0 & 0 & 1
\end{array} \\
& \begin{array}{l}
x^{\prime \prime}=\left\{c_{1}, c_{5}, c_{6}\right\} \notin X \\
f\left(x^{\prime \prime}\right)=15
\end{array}
\end{aligned}
$$

"Set Packing" : packing disjoint subsets (columns) of a set (rows)

Numerical matrix problems: Set Partitioning (SPP)

Given

- a binary matrix $A \in \mathbb{B}^{m, n}$ with a set of rows R and a set of columns C
- a function c:C $\rightarrow \mathbb{N}$ that provides the cost of each column select a minimum cost subset of nonconflicting columns covering all rows

The ground set is the set of columns: $B=C$
The feasible region includes all subsets of columns that cover all rows and are not conflicting

$$
X=\left\{x \subseteq B: \sum_{j \in x} a_{i j}=1 \forall i \in R\right\}
$$

The objective is to minimise the total cost of the selected columns

$$
\min _{x \in X} f(x)=\sum_{j \in x} c_{j}
$$

Example

$$
\begin{aligned}
& \text { c } \begin{array}{lllllll}
& 4 & 6 & 10 & 14 & 5 & 6
\end{array} \\
& \text { A } \begin{array}{|llllll|}
\hline 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \text { A } \begin{array}{|llllll|ll}
0 & 1 & 0 & 0 & 1 & 0 & 1 & \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & x^{\prime}=\left\{c_{2}, c_{4}, c_{6}\right\} \in X \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & f\left(x^{\prime}\right)=26 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & \\
1 & 1 & 1 & 0 & 0 & 0 & 1 &
\end{array} \\
& \text { A } \begin{array}{|llllll|ll}
0 & 1 & 0 & 0 & 1 & 0 & 1 & \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & x^{\prime \prime}=\left\{c_{1}, c_{5}, c_{6}\right\} \notin X \\
1 & 0 & 0 & 0 & 0 & 1 & 2 & f\left(x^{\prime \prime}\right)=15 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & \\
1 & 1 & 1 & 0 & 0 & 0 & 1 &
\end{array}
\end{aligned}
$$

"Set Partitioning" : partition a set (rows) into subsets (columns)

Graph problems: Travelling Salesman Problem (TSP)

Given

- a directed graph $G=(N, A)$
- a function $c: A \rightarrow \mathbb{N}$ that provides the cost of each arc select a circuit visiting all the nodes of the graph at minimum cost

The ground set is the arc set: $B=A$
The feasible region includes the circuits that visit all nodes in the graph (Hamiltonian circuits)

How to determine whether a subset is a feasible solution?
And a modification of a feasible solution?
Can we rule out some modifications?
The objective is to minimise the total cost of the selected arcs

$$
\min _{x \in X} f(x)=\sum_{j \in x} c_{j}
$$

Example

$$
\begin{aligned}
& x^{\prime}=\{(1,4),(4,5),(5,8),(8,7), \\
&(7,6),(6,2),(2,3),(3,1)\} \in X \\
& f\left(x^{\prime}\right)= 102 \\
& \\
& x^{\prime \prime}=\{(4,5),(5,8),(8,7),(7,4), \\
&(1,2),(2,3),(3,6),(6,1)\} \notin X \\
& f\left(x^{\prime \prime}\right)=106
\end{aligned}
$$

Interlude 4: the search for feasible solutions

Heuristic algorithms often require to solve the following problem
Find a feasible solution $x \in X$
It is a search problem
The search for a feasible solution is trivial or easy for some problems:

- some sets are always feasible, such as $x=\emptyset$ (KP, Set Packing) or $x=B$ (feasible instances of $S C P$)
- random subsets satisfying a constraint, such as $|x|=k$ (MDP)
- random subsets satisfying consistency constraints, such as assigning one task to each machine ($P M S P$), one value to each logic variable (Max-SAT), etc...

Interlude 4: the search for feasible solutions

But it is hard for other problems:

- in the $B P P$ the problem is easy if the number of containers is large (e. g., one container for each object)
- in the SPP no polynomial algorithm is known to solve the problem
- in the TSP the problem is easy for dense graphs (e. g., complete)

One can apply a relaxation, i. e. enlarge the feasible region from X to X^{\prime}

- the objective f must be extended from X to $X^{\prime} \quad$ (see Interlude 1)
- but often $X^{\prime} \backslash X$ includes better solutions (... how about that?)

Graph problems: Vertex Cover (VCP)

Given an undirected graph $G=(V, E)$, select a subset of vertices of minimum cardinality such that each edge of the graph is incident to it

The ground set is the vertex set: $B=V$
The feasible region includes all vertex subsets such that all the edges of the graph are incident to them

$$
X=\{x \subseteq V: x \cap(i, j) \neq \emptyset \forall(i, j) \in E\}
$$

The objective is to minimise the number of selected vertices

$$
\min _{x \in X} f(x)=|x|
$$

Example

$$
\begin{aligned}
& x^{\prime}=\{B, D, E, F, G\} \in X \\
& f\left(x^{\prime}\right)=5 \\
& x^{\prime \prime}=\{A, C, H\} \notin X \\
& f\left(x^{\prime \prime}\right)=3
\end{aligned}
$$

Graph problems: Maximum Clique Problem

Given

- an undirected graph $G=(V, E)$
- a function $w: V \rightarrow \mathbb{N}$ that provides the weight of each vertex select the subset of pairwise adjacent vertices of maximum weight The ground set is the vertex set: $B=V$

The feasible region includes all subsets of pairwise adjacent vertices

$$
X=\{x \subseteq V:(i, j) \in E \forall i \in x, \forall j \in x \backslash\{i\}\}
$$

The objective is to maximise the weight of the selected vertices

$$
\max _{x \in X} f(x)=\sum_{j \in x} w_{j}
$$

Example

Uniform weights: $w_{i}=1$ for each $i \in V$

$$
\begin{aligned}
& x^{\prime}=\{B, C, F, G\} \in X \\
& f\left(x^{\prime}\right)=4
\end{aligned}
$$

$$
x^{\prime \prime}=\{A, D, E\} \in X
$$

$$
f\left(x^{\prime \prime}\right)=3
$$

Graph problems: Maximum Independent Set Problem

Given

- an undirected graph $G=(V, E)$
- a function $w: V \rightarrow \mathbb{N}$ that provides the weight of each vertex select the subset of pairwise nonadjacent vertices of maximum weight

The ground set is the vertex set: $B=V$
The feasible region includes the subsets of pairwise nonadjacent vertices

$$
X=\{x \subseteq B:(i, j) \notin E \forall i \in x, \forall j \in x \backslash\{i\}\}
$$

The objective is to maximise the weight of the selected vertices

$$
\max _{x \in X} f(x)=\sum_{j \in x} w_{j}
$$

Example

$$
\begin{aligned}
& x^{\prime}=\{B, C, F, G\} \in X \\
& f\left(x^{\prime}\right)=4
\end{aligned}
$$

$$
x^{\prime \prime}=\{A, D, E\} \in X
$$

$$
f\left(x^{\prime \prime}\right)=3
$$

Interlude 5: the relations between problems (1)

Each instance of the MCP is equivalent to an instance of the MISP
(1) start from the MCP instance, that is graph $G=(V, E)$
(2) build the complementary graph $\bar{G}=(V,(V \times V) \backslash E)$
(3) find an optimal solution of the MISP on \bar{G}
(4) the corresponding vertices give an optimal solution of the MCP on G (a heuristic MISP solution gives a heuristic MCP solution)

The process can be applied also in the opposite direction

Interlude 5: the relations between problems (2)

The VCP and the SCP are also related, but in a different way; each instance of the VCP can be transformed into an instance of the SCP:

- each edge i corresponds to a row of the covering matrix A
- each vertex j corresponds to a column of A
- if edge i touches vertex j, set $a_{i j}=1$; otherwise $a_{i j}=0$
- an optimal solution of the SCP gives an optimal solution of the VCP (a heuristic SCP solution gives a heuristic VCP solution)

It is not simple to do the reverse

Interlude 5: the relations between problems (3)

The BPP and the PMSP are equivalent, but in a more sophisticated way:

- the tasks correspond to the objects
- the machines correspond to the containers, but
- BPP: minimise the number of containers, given the capacity
- $P M S P$: given the number of machines, minimise the completion time

Start from a BPP instance
(1) make an assumption on the optimal number of containers (e.g., 3)
(2) build the corresponding PMSP instance
(3) compute the optimal completion time (e.g., 95)

- if it exceeds the capacity (e.g., 80), increase the assumption (4 or 5)
- if it does not, decrease the assumption (2 or 1)
(using heuristic PMSP solutions leads to a heuristic BPP solution)

The reverse process is possible
The two problems are equivalent, but each one must be solved several times

Graph problems: Capacitated Min. Spanning Tree Problem

Given

- an undirected graph $G=(V, E)$ with a root vertex $r \in V$
- a function $c: E \rightarrow \mathbb{N}$ that provides the cost of each edge
- a function $w: V \rightarrow \mathbb{N}$ that provides the weight of each vertex
- a number $W \in \mathbb{N}$ that is the subtree appended to the root (branch) select a spanning tree of minimum cost such that each branch respects the capacity

The ground set is the edge set: $B=E$
The feasible region includes all spanning trees such that the weight of the vertices spanned by each branch does not exceed W

The feasibility test requires to visit the subgraph
The objective is to minimise the total cost of the selected edges

$$
\min _{x \in X} f(x)=\sum_{j \in x} c_{j}
$$

Example

Uniform weight ($w_{i}=1$ for each $i \in V$) and capacity: $W=3$

$$
\begin{aligned}
& x^{\prime}=\{(r, 3),(3,2),(3,6),(r, 4) \\
& \\
& (r, 5),(5,7),(5,8)\} \in X \\
& f\left(x^{\prime}\right)=95
\end{aligned}
$$

$$
x^{\prime \prime}=\{(r, 3),(3,2),(3,6),(r, 5)
$$

$$
(5,4),(5,8),(8,7)\} \notin X
$$

$$
f\left(x^{\prime \prime}\right)=87
$$

It is easy to evaluate the objective, less easy the feasibility

Cost of the main operations

The objective function is

- fast to evaluate: sum the edge costs
- fast to update: sum the added costs and subtract the removed ones but it is easy to obtain subtrees that span vertices in a nonoptimal way

The feasibility test is

- not very fast to perform:
- visit to check for connection and acyclicity
- visit to compute the total weight of each subtree
- not very fast to update:
- show that the removed edges break the loops introduced by the added ones
- recompute the weights of the subtrees

This also holds when the graph is complete
What if we described the problem in terms of vertex subsets?

An alternative description

Define a set of branches T (as the containers in the BPP) One for each vertex in $V \backslash\{r\}$: some can be empty

The ground set is the set of the (vertex, branch) pairs: $B=V \times T$
The feasible region includes all partitions of the vertices into connected subsets (visit, trivial on complete graphs) of weight $\leq W$ (as in the BPP)

$$
X=\left\{x \subseteq B:\left|x \cap B_{v}\right|=1 \forall v \in V \backslash\{r\}, \sum_{(i, j) \in B^{t}} w_{i} \leq W \forall t \in T, \ldots\right\}
$$

with $B_{v}=\{(i, j) \in B: i=v\}, B^{t}=\{(i, j) \in B: j=t\}$
The objective is to minimise the sum of the costs of the branches spanning each subset of vertices and appending it to the root

It is a combination of minimum spanning tree problems

Example

The previously considered solutions now have a different representation

$$
\begin{gathered}
x^{\prime}=\{(2, T 1),(3, T 1),(6, T 1),(4, T 2), \\
\\
(5, T 3),(7, T 3),(8, T 3)\} \in X \\
f\left(x^{\prime}\right)=95
\end{gathered}
$$

$$
\begin{aligned}
& x^{\prime \prime}=\{ (2, T 1),(3, T 1),(6, T 1),(4, T 2), \\
&(5, T 2),(7, T 2),(8, T 2)\} \notin X \\
& f\left(x^{\prime \prime}\right)=87
\end{aligned}
$$

The feasibility test only requires to sum the weights, computing the objective requires to solve a MST problem

Cost of the main operations

The objective function is

- slow to evaluate: compute a MST for each subset
- slow to update: recompute the MST for each modified subset
but the subtrees are optimal by construction
If the graph is complete, the feasibility test is
- fast to perform:
- sum the weights of the vertices for each subtree
- fast to update:
- sum the added weights and subtract the removed ones

Advantages and disadvantages switched places

Graph problems: Vehicle Routing Problem (VRP)

Given

- a directed graph $G=(N, A)$ with a depot node $d \in N$
- a function $c: A \rightarrow \mathbb{N}$ that provides the cost of each arc
- a function $w: N \rightarrow \mathbb{N}$ that provides the weight of each node
- a number $W \in \mathbb{N}$ that is the capacity of each circuit select a set of circuits of minimum cost such that each one visits the depot and respects the capacity
The ground set could be
- the arc set: $B=A$
- the set of all (node, circuit) pairs: $B=N \times C$

The feasible region could include

- all arc subsets that cover all nodes with circuits visiting the depot and whose weight does not exceed W (again the visit of a graph)
- all partitions of the nodes into subsets of weight non larger than W and admitting a spanning circuit
($\mathcal{N} \mathcal{P}$-hard problem!)
The objective is to minimise the total cost of the selected arcs

$$
\min _{x \in X} f(x)=\sum_{j \in x} c_{j}
$$

Example

Uniform weight ($w_{i}=1$ for each $i \in N$) and capacity: $W=4$
The solutions could be described as

- arc subsets

$$
\begin{gathered}
x=\{(d, 2),(2,3),(3,6),(6, d),(d, 4) \\
(4,5),(5,8),(8,7),(7, d)\} \in X
\end{gathered}
$$

- node partitions

$$
\begin{gathered}
x=\{(2, C 1),(3, C 1),(6, C 1),(4, C 2) \\
\\
(5, C 2),(7, C 2),(8, C 2)\} \in X
\end{gathered}
$$

$$
f(x)=137
$$

Interlude 6: combining alternative representations

The CMSTP and the VRP share an interesting complication: different definitions of the ground set B are possible and natural

- the description as a set of edges/arcs looks preferable to manage the objective
- the description as a set of pairs (vertex,tree)/(node/circuit) looks better to generate optimal solutions and to deal with feasibility

Which description should be adopted?

- the one that makes easier the most frequent operations
- both, if they are used much more frequently than updated, so that the burden of keeping them up-to-date and consistent is acceptable

Homework

Answer all the fundamental questions on all the considered problems
(1) Objective function:
a) What is the cost of computing $f(x)$ given x ?
b) Is $f(x)$ additive, quadratic, etc. .. ?
a) What is the cost of computing $f\left(x^{\prime}\right)$ given $f(x)$ and a "small" transformation $x \rightarrow x^{\prime}$?
c) Is $f(x)$ "flat"?
(2) Feasibility:
a) What is the cost of testing whether subset x is a feasible solution?
b) What is the cost of testing whether subset x^{\prime} is a feasible solution given a feasible solution x and a "small" transformation $x \rightarrow x^{\prime}$?
c) Are some transformations intrinsically feasible (or unfeasible)?
d) Is it easy to find a feasible solution?

Is there a subset that is always feasible?
(3) Relations between problems:
a) Are there trasformations from/to the problem to/from other ones?
(4) Ground sets:
a) Are there alternative definitions of the ground set?
b) What are their relative advantages and disadvantages?

