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Abstract

By utilizing information from multiple runs of an interchange heuristic we construct a new solution that is generally
better than the best local optimum previously found. This new, two stage, approach to combinatorial optimization is
demonstrated in the context of the p-median problem. Two layers of optimization are superimposed. The first layer is a
conventional heuristic the second is a heuristic or exact procedure which draws on the concentrated solution set generated by
the initial heuristic. The intention is to provide an alternative heuristic procedure which, when dealing with large problems,
has a higher probability of producing optimal solutions than existing methods. The procedure is fairly general and appears to
be applicable to combinatorial problems in a number of contexts.
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1. Introduction

Many heuristics employ an interchange principle
together with steepest descent and produce, or can
produce, myriad locally optimal solutions to a given
problem. Specific instances of the metaheuristics
Simulated Annealing, Tabu Search, Genetic Algo-
rithms and Neural Networks all share this character-
istic (Pirlot, 1992) as do simpler vertex substitution
bheuristics (Cornuejols et al., 1977). Each run of any
of these heuristics results in not just a functional
value but the basis of the solution as given by the
assignment characteristics of the nodes of the net-
work or vertices of the graph.

* Cormesponding author.

Multiple-random trials of interchange heuristics
have been used for a generation now in the context
of facility siting as well as other problem areas.
Solution methods choose the solution with the mini-
mum functional value from among all the local
optima generated and report this as the ‘“best found’’
solution. In facility siting problems, each solution
from an interchange heuristic which differs in func-
tional value from others must also have differences
in the set of facilities composing the solution set. It
is generally true that solutions whose functional val-
ues differ little also are derived from largely identi-
cal solution sets.

The present study demonstrates how advantage
can be taken of these characteristics to build, in a
first stage, a Concentration Set (CS) which has a
high probability of containing, within its limited
membership, the facilities which comprise the still
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smaller set of the optimal solution to the original
problem. In a second stage the best solution of this
subproblem, (that restricted to the CS) is found. The
selection of the members of the CS is at the heart of
the heuristic proposed here; and since the selection is
done heuristically, we call the methodology Heuristic
Concentration (HC).

The contribution of this work is not a faster
algorithm for the p-median or, for that matter, for
any combinatorial problem. Like the metaheuristics
of simulated annealing, tabu search and genetic algo-
rithms, the methodology presented here is designed
to escape the traps of local optima which tend to be
found by some base heuristic technique. No claim is
made for an increased efficiency, which we take to
mean speed of convergence. A claim is made, how-
ever, for increased effectiveness; by this we mean
that decidedly improved solutions are the norm.

Section 2 defines the location-allocation model,
the p-median, used in this empirical demonstration
of HC. Section 3 introduces the specific interchange
heuristic used here for the concentration step, the
method of Teitz and Bart (1968), an example of a
Vertex Substitution Heuristic (VSH). Section 4 dis-
cusses the 90 network problems, created by varying
parameters, for computational experience. In Section
5 some summary and descriptive statistics are pre-
sented which illustrate characteristics of the CS and
why certain parameters obtain the settings we assign.
Section 6 presents two alternative mathematical pro-
grammes which are used to operate on the CS as
well as a final heuristic step. Finally, Section 7
indicates the level of success, some provisos, and
suggests directions which further research can fol-
low. We now turn our attention specifically to loca-
tion studies on a network to demonstrate and clarify
this introduction.

2. The p-median problem

The p-median problem is probably the most com-
mon and most studied problem in location decision
analysis. For this reason we choose it to demonstrate
HC. The p-median problem is to find some number
( p) medians in a graph or network which, as a set,
minimize the weighted distance from all the nodes

(n) of the network or vertices of the graph when
each node or vertex is assigned (exclusively) to its
closest median. For convenience we utilize the loca-
tion-allocation terminology and call the p medians
“‘facilities’’ and the n nodes or vertices ‘‘demand
nodes’’.

Hakimi (1964,1965) has proven that there exists
an optimal solution for any network or graph in
which the locations of the facilities coincide with the
locations of p selected demand nodes. Balinski
(1965) described the plant location problem, a close
relative of the p-median, and stated a crucial con-
straint ((3), below). It was however ReVelle and
Swain (1970) who introduced the integer linear pro-
gramming (ILP) formulation for the p-median prob-
lem into the literature. The problem may be stated
as:

Minimize
n n
Z= Z Zaiduxu (D
i=1 j=1
Subject to:
n
Y X,;=1, foralli (2)
j=1
X;;—X;20, foralli,j, i#j (3)
n
Z X,=p (4)
j=1
X,;=0or1, foralli,j (5)
Where:

d;; = the distance i to j;
a; = the weight associated with demand node i;
i = the index of demand nodes;
Jj = the index of potential facility sites;
;j=1 if the ith demand node assigns to the jth
facility and O otherwise.
In order to solve this as a linear programme
constraint (5) must be relaxed to

X;;20, foralli,j. (6)

This is an example of an integer-friendly pro-
gramme (ReVelle, 1993); experience has shown that
in over 95 percent of problems the relaxed version
terminates fully integer (Morris, 1978). If, however,
a particular instance yields a fractional solution the
fractions can be resolved quickly by branch and
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bound; branching on the fractional X ’s (Rosing et
al., 1979c¢).

This programme can be solved optimally but the
size of its matrix increases as a function of n?. As a
result, large problems outstrip the potential of opti-
mal methods and generally require heuristics. While
a number of different heuristic methods have been
applied (see Densham and Rushton, 1992b) the most
commonly used heuristic is still that of Teitz and
Bart (1968).

3. Interchange in location-allocation

The Teitz and Bart (1968) heuristic for the p-
median problem is the prototype VSH. As such it is
widely available and much studied. For this reason,
and in the absence of evidence that any other consis-
tently returns better solutions (see Densham and
Rushton, 1992b, Table 2, p. 326) we choose it for
this demonstration. Alternative heuristics are faster,
such as that of Densham and Rushton (1992b) but
we choose for generality of result over batch com-
puter time.

Like any classical interchange heuristic the Teitz
and Bart heuristic is started by supplying either a set
deliberately chosen or a set of random nodes (a
‘“current solution’’). Each potential facility site (node
where a facility could be sited) not in the current
solution is substituted for the one facility in the
current solution which is under consideration. If a
substitution makes an improvement, the current solu-
tion is updated and testing that same facility contin-
ues. When one member of the current solution has
been tested against all potential sites (and perhaps
substituted one or more times) that one facility is in
the best possible position given the positions of all
others at the time of its testing. Once all potential
facility sites have been tested to become a replace-
ment for each and every facility in the current solu-
tion, one iteration is finished. The current solution
then has each facility in the best place it could be
given the positions of the other facilities at the time
it was being tested. Additional iterations may further
improve the solution.

When one full iteration is completed without any
substitutions, the algorithm terminates with the best
solution that can be reached by one-at-a-time ex-

changes from the initial set of facilities supplied.
This condition is termed a stable partitioning pattern
(SPP). Attainment of such a pattern satisfies the
stopping rule of any one-at-a-time VSH. The term
SPP is preferred here to local or suboptimal solution
since termination of the algorithm is dependent upon
the stopping rule of the heuristic and totally unre-
lated to the gradient of the objective function. We
do, however, differentiate between globally optimal
SPPs and nonoptimal SPPs because for the former an
additional characteristic obtains; that is, that no
change of strategy or stopping rule could improve it
— there is no better.

Leaving aside papers which deal with applica-
tions, studies of the Teitz and Bart heuristic have
concentrated upon speeding up the heuristic
(Densham and Rushton, 1992a,b) on extending it to
other problems (Church and ReVelle, 1976; Hills-
man, 1984; Hodgson et al., forthcoming) or improv-
ing the search strategy (Goodchild and Noronha,
1983; Densham and Rushton, 1992b). Other studies
have deait with the number of trials necessary to
reach a reliable solution (Rosing and Van Dijk,
1993) and judging the robustness of the heuristic
(Rosing et al., 1979a,b; Rosing, forthcoming). These
studies concentrate on the algorithm, on the search
strategy, or on functional value(s) but all ignore the
actual nodes selected to be facilities in the SPPs
found. The present study differs by concentrating on
the lists of facilities associated with these different
SPPs.

4. The example problems

For each problem in this study 200 different
random starts were used and the objective value and
the solution set (the list of selected facilities at
termination) corresponding to each start recorded. A
series of ninety problems were solved optimally and
heuristically. The optimal solutions were used as
reference points for judgement of the 18 000 heuris-
tic solutions.

All combinations of n = 100, 125, 150, ..., 300
(the number of demand nodes) and p =35, 10, 15,
..., 50 (the number of facilities) define the instances
solved, creating a sort of ‘‘crosstable’” (see Table 1
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as an example of the organization) of parameter
variation. Three hundred random coordinate pairs
were generated and the Euclidian internode distances
calculated. Equal weights (a; = 1) were applied. Fur-
ther details can be found in Rosing (forthcoming).
The work presented in that study showed that the
solution quality of the VSH described above de-
grades as either n or p or both increase, at least in
random networks with no spatial structure. It was
this finding that directed attention to attempting to
find an improved (in the sense of more likely to be
optimal) heuristic method, particularly for larger
problems. The generality of that empirical study and
of this one in the presence of a clear spatial structure
is, at this time, unknown; though we hypothesis that
the behaviour will be similar.

5. Stage one: finding the CS

In each problem each SPP differs from each other
SPP in having at least two nodes chosen as facilities
which are not so chosen in the other SPP. In addition
each nonoptimal pattern differs from the globally
optimal solution in having at least two nodes which
are not in the optimal solution. If this condition were
not true, the inferior SPP would iterate to the supe-
rior. It is also likely, due to the search strategy, that
SPPs which are similar in functional value are also
similar in much of the membership of their solution
sets, i.e. that they have few differences in chosen
facilities. Based upon similarity of nodes in nonopti-
mal solutions we propose to find the CS by a direct
comparison and tabulation of nodes occurring in a
selection of these solutions. We have tried other,
more complex, systems of analysis of the nonoptimal
solutions, to a limited extent, but failed, in general,
to obtain a better result.

5.1. Stable partitioning patterns

The total number of partitioning patterns is upper
bounded by:

(Z)__-H;ln_—!-p_)! (7

which is the number of different ways of drawing p
items from a population of size n; and thus the

number of potential starting positions for the VSH.
Some number of these will also be sets of facilities
corresponding to SPPs. Since our 200 different start-
ing node lists, for each problem, are randomly drawn
they are, in each case, a sample of the large number
of partitioning patterns available. It follows that the
SPPs actually found are also a sample of the SPPs
available. It seems reasonable then to suppose that
the number of available SPPs grows as a function of
n and p (see also: Rosing, forthcoming) just as the
total number of partitioning patterns does (up to
p=n/2). Certainly the computational experience
acquired from this study shows that 1). the number
of SPPs found increases and 2). the difference be-
tween their functional values decreases as a function
of n and p. The number of different SPPs found in
the 90 cases correlate with the percent of runs of the
heuristic terminating with the optimal solution at
r= —0.75 (r* = 0.56) with an F statistic of 110.27,
significant at 0.001. This provides a strong indication
that the failure to find the optimal or a truly “‘good”’
solution in cases involving a large n and p are a
function of the increase in the availability of SPPs
from which to choose.

Consider, for simplicity, a minimal, two-node,
difference between the optimal SPP and the next best
SPP. The two suboptimally located facilities consti-
tuting the difference must be close together (in a
relative sense) since they must distort the assignment
of one another’s demand nodes causing this pattern
to be different from that of the optimal solution’s
pair (which must also be close together) assignments.
If they are not close together other, optimally lo-
cated, facilities and their respective partitions would
be between them and they could not affect one
another — which they must do to be suboptimally
located.

Each of these partially nonoptimal lists of facili-
ties can be thought of as an information source, each
providing information about the structure of a por-
tion the network and the optimal solution. The hope
is that they provide information about different por-
tions of the network. The quality of this information
is inspected in the following section.

5.2. The differences between ‘‘good’’ facility lists

To facilitate this work each list of 200 heuristic
solutions was sorted into ascending order by func-
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tional value. This places the optimal, and any equal
optima at the top of the list of heuristic solutions. In
addition equal nonoptimal SPPs are grouped together
and the groups of individual SPPs are listed in
increasing order of functional value; those closest, in
functional value, to the optimal at the top of the list.
The assumption is that the lists of chosen facilities in
the nonoptimal SPPs with smallest functional values
will be those most similar to the optimal list ie.
convey the most information about it.

In Table 1 some statistics about the differences in
facility lists, optimal and first- and second-best SPPs
are summarized. On the lower line of each cell,
labelled ‘“%in sub’’, is shown the percent of identi-
cal nodes in the facility list of the two best, but not
optimal, patterns. The best, as judged by functional
value, nonoptimal SPP is shown on the left of each
cell and the second best, which must differ from
each the best and the optimal each by at least two
nodes, on the right. For example, in the cell for
n =150, p = 40 the entry in the lower left, 95.0%,
means that 38 facilities of the minimum functional

value nonoptimal SPP and the optimal solution are
identical, the minimum necessary difference. The
entry in the lower right, 92.5%, means that 37 of the
members of the facility list of the second best nonop-
timal SPP are identical to the facility list of the
optimal. The 100.0% on the top line (labelled ‘% in
opt.””) of the cell 150/40 indicates that all the
facilities in the global optimum are contained in the
union of the lists of facilities of the two best SPPs.

En passant, it is interesting to note that the solu-
tion set of the second best SPP, judged by functional
value, can, and often does, match the solution set of
the optimal better than does the solution set of the
best nonoptimal. See for example the cell corre-
sponding to n = 275, p = 40. Here 80.0% (32 nodes)
of the nodes in the solution set of the best is identical
to the optimal solution set while 87.5% (35 nodes) of
the nodes in the solution set of the second best are
identical. In the table as a whole the best nonoptimal
is best match 37 times, the second best is best match
21 times and the number of nodes of the best and
second best matching an optimal is equal 32 times.

Table 1
Percent of identical nodes in optimal solution and best two nonoptimal SPPs
P n 100 125 150 175 200 225 250 275 300
50 %in opt 98.0 100.0 90.0 98.0 98.0 96.0 100.0 94.0 96.0
%in sub 96.0 960 960 860 800 840 960 960 960 960 940 940940 940 940 90.0 92.0 88.0
45 %in opt 100.0 100.0 97.8 93.3 97.8 95.6 97.8 97.8 91.1
%insub 956 956 97.8 867 889 867 889 91.1 956 91.1 1933 933 956 867 933 933 844 844
40  %in opt 92.5 92.5 100.0 925 100. 0 97.5 100.0 97.5 92.5
%insub 87.5 80.0 87.5 925 950 925 900 850 ]925 90.0 825 9.0 950 80.0 800 875 850 875
35 %in opt 97.1 97.1 97.1 943 94.3 100.0 88.6 94.3 97.1
%insub 88.6 943 943 914 914 886 91.4 914 [829 886 914 914 B83.6 829 943 829 80.0 914
30 %in opt 96.7 93.3 93.3 96.7 93.3 93.3 100.0 93.3 100.0
%in sub 900 933 900. 933 1900 867 933 933 933 833 767 90.0 933 933 90.0 767 867 93.3
25  %in opt 100.0 96.0 100.0 100.0 100.0 88.0 100.0 96.0 92.0
%insub 92.0 920 83.0 88.0 88.0 880 920 830 920 920 800 880 920 920 880 880 B80.0 920
20 %in opt 80.0 100.0 85.0 100.0 100.0 85.0 85.0 90.0 100.0
%in sub 80.0 75.0 850 85.0 800 800 90.0 850 9.0 9.0 800 800 650 850 9.0 850 90.0 90.0
15  %in opt 86.7 93.3 86.7 80.0 86.7 86.7 86.7 93.3 86.7
%insub 867 733 80.0 733 867 80.0 800 533 867 600 867 600 667 533 867 800 80.0 800
10 %in opt 100.0 90.0 80.0 80.0 80.0 80.0 70.0 60.0 90.0
%in sub 80.0 80.0 70.0 60.0 70.0 80.0 80.0 500 80.0 700 800 60.0 700 400 60.0 40.0 60.0 70.0
5  %in opt 20.0 40.0 40.0 40.0 60.0 0.0 40.0 60.0 0.0
%insub 0.0 200 200 20.0 200 200 400 400 200 600 00 00 400 40.0 600 200 00 0.
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This raises questions, which go beyond the scope of
this paper (see however Section 7, end), concerning
judging similarity of solution sets by means of simi-
larity of functional value. This en passant comment
does not, however, invalidate the general observation
that a group of the best are more similar to the
optimal than a group of inferior solutions when
quality is judged by functional value.

Above and to the left of the dark line in Table 1,
marking off 21 cells from the other 69, certain
difficulties were encountered in tabulating. This was
because the p/n ratio in this part of the table is so
high that there are many equal optimal SPPs and
equal nonoptimal SPPs as well. The rule followed is
the percent referring to the optimal is for that one
equal optimal that best matched the two nonoptimal
SPPs selected. For each of the two best nonoptimal
SPPs, all nodes in all equal nonoptima, were counted
when matching. Below and to the right of the dark
line no equal optimal solutions were encountered.

One optimal solution in each of the 90 problems
comes from the ILP. In addition other equal optima
have been found, in some cases, by the VSH. Since
our process of finding solutions, eg. running the
heuristic, is not exhaustive but rather a sample; it is
possible that another, not found, optimal solution
exists which is more similar than that referred to by
the percent on the top line of each cell. These
percents on the top line are then a lower bound on
the similarity of the nonoptimal SPPs we found and
the optimal. It is also quite possible that there are
other nonoptimal SPPs whose solution sets are more
similar to the optimal than those found.

From the evidence presented in Table 1 it should
be apparent that the majority of the nodes selected to
be facilities in ‘‘good’’ SPPs are common to the
optimal solution; furthermore, as noted above, non-
common facilities must, in each nonoptimal, affect a
relatively small portion of the network. Conditions
causing the operation of the heuristic’s stopping rule
are relatively rare, small scale and restricted in spa-
tial occurrence in any one instance. Since each sub-
optimal SPP must differ from each other optimal or
nonoptimal SPP by at least two nodes various
““good’’ solutions with differing functional values
would appear, in most cases, to tend to ‘‘get stuck’’
in different portions of the network while attaining
optimal positioning in most of the network.

Inspection of Table 1 reveals, however, that simi-
larity in solutions deteriorates with decreasing values
of p. Remembering that (Section 5.1) low p prob-
lems are those most likely to reach optimality with
the original heuristic mitigates this difficulty. Even
though these low p cases are most probably already
optimally solved, the relationship of the optimal SPP
and good nonoptimal SPPs in these cases must be
examined.

In the p=35 case the ‘‘best’’ nonoptimal must
have at least 40% dissimilarity (two nodes) from the
optimal; the same is true of the ‘‘second best’’. With
low values of p however a nonoptimal placement of
two nodes is more likely to result in a largely or
completely different set of facilities. With higher
values of p the effect of nonoptimal placements is
more local; there is more ‘‘inertia’’ in the pattern of
the optimal solution. But with a small p sudden,
nearly complete, shifts in the full facility choice are
the rule rather than the exception.

5.3. The number of nonoptimal solutions which must
be inspected

In this section we attempt to answer the question
of how many nonoptimal SPPs must be inspected to
ensure at least one optimal solution is contained in
the CS and the amount of information (number of
potential facility nodes) this results in. This is done
by crosschecking all known optimal solutions with
the nonoptimal SPPs until all nodes in at least one
optimal solution set have been found and placed into
the CS. Table 2 displays the results.

To construct this table the optimal solution from
the ILP is read in and matched with the list of
heuristic solutions (which is in ascending order by
functional value). Any equal optima from the list of
heuristic solutions are also recorded, each separately.
The nonoptimal SPPs are now considered one by one
and a list of all nodes chosen as facilities in the
nonoptimal SPPs considered is made up. The exami-
nation of heuristic solutions stops when all nodes
chosen as facilities in at least one equal optimal
solution have been found in nonoptimal SPPs. The
top line (labelled ‘‘#non-opts™”) of each of the 90
cells of Table 2 shows the number of ‘‘good’” (in
terms of functional value) nonoptimal SPPs which
must be inspected before matching is complete. This
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number, m, is the number of solutions to be in-
spected in that case to ensure that all nodes in the
optimal solution are contained in the CS.

A ““*” in the cell indicates this is not possible;
i.e. the optimal solution contains at least one node
not appearing in any nonoptimal SPP found. The
number on the top line of those cells is then the
number of nonoptimal SPPs found which have dif-
ferent functional values. Stating this in another way;
it is the size of the sample of nonoptimal SPPs found
when all equal, in functional value, nonoptimal SPPs
are considered to be the same.

The bottom line (labelled “‘#nodes’’) of each of
the 90 cells shows (on the left) the total number of
nodes, selected to be facilities, in all m nonoptimal
SPPs investigated. The number on the right on the
bottom line is the number of nodes which appear in
at least one but less than m solutions. The size of the
CS, formed by the union of the m solutions sets, is
the sum of these two numbers.

Considering the body of Table 2, the row for
p =5 indicates that, as was to be expected, heuristic
concentration does not work for smaller values of p.
Every cell has a *“*’’ and the top number is there-
fore the total number of nonoptimal SPPs which
were found in 200 trials. This effect extends itself to
p =10 (two cells with *“**’s) and p = 15 (one cell
with a *** **). The good news is that this appears, as
one would suspect, to be a direct function of p
irrespective of n. For moderate or large values of p
the number of nonoptimal SPPs required is generally
very small.

Table 2 also has a marginal column and row
labelled in each case ‘‘central tendency.”” Since for
p=>5, 10, and 15 the numbers in the cells with
““**’s represent something rather different from the
rest, cells with *“* *’s are excluded in caiculations for
the marginal cells. The bottom line of each marginal
cell gives, on the left, the average size of the CS.
Examination of the marginal row shows that the size
of the CS is unrelated to n. The marginal column
however shows, again as one would expect, a close
relationship between p and the size of the CS. The
marginal column also shows (bottom line, right) the
average number of nodes per facility required. Al-
though this number begins, for p = 10, at nearly 2.5
it rapidly decreases and stabilizes at about 1.3. In
other words for a moderate or large value of p

approximately 30% more nodes are needed in the CS
than the number of facilities required to be in the
solution set.

On the top line of each marginal cell the left
number is the arithmetic mean of the number of
nonoptimal solutions examined (‘*‘*’’ marked cells
excluded) and the right number the median value. No
median and very few arithmetic means exceed five.
This indicates that in the majority of cases examin-
ing five nonoptimal solutions will provide a CS
containing an optimal set of facilities.

6. Stage two: selection from the CS

The CS constitutes our restricted set of potential
facility sites. We chose, in this example, to employ
an optimal method to select the best solution set
from the CS — an ILP. The mathematical pro-
gramme to choose the optimal (in terms of this
restricted problem) solution from the potential facili-
ties in CS is then:

Minimize
n
Z= Z Z a;d; X;; (®)
i=1 jeCs
Subject to:
Y X,;=1, foralli (9
jecCs
X;;—X;;=0, foralli,forall j€CS,i#j (10)
Z ij=P (”)
jecCs
X;;=0,1, forall jeCS (12)

Where variables are as defined above and CS = the
concentration set.

The parameter m is the number of good solutions,
with different functional values, taken in order from
the top of the list (ranked in ascending order by
functional value) to be inspected to define the CS.
Since different solution sets may have identical func-
tional values the number of solutions inspected in a
particular problem may actually be greater. For this
demonstration the value for m is chosen to be five.
This should give the authors an ego-satisfying suc-
cess rate and yet leave some failures which can be
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usefully examined. Looking again at Table 2, any
problem represented by a cell in which the number
on the top line is a five or smaller we can expect to
be solved optimally. Equally for any cell witha “** "’
we can expect failure. Interesting cells will be those
with values of m greater than five. Three sorts of
results can be expected for instances which do not
reach optimality (remember, in this demonstration
the optimal is known). 1). The ILP described above,
which uses the CS as its base, will terminate with the
best solution from the 200 trials of the heuristic with
the same or different solution set. 2). The (known)
optimal or an equal-optimal solution to the original
unrestricted problem will be found. 3). A local opti-
mal will be found which is better than any SPP
found while running the heuristic.

The size of the CS, in cases where the number on
the top line of a cell of Table 2 is five, is the sum of
the two numbers on the lower line of that cell. If the
number on the top line is less than five the CS will
contain the number of nodes indicated by this sum or
slightly more; if it is more than five the CS contains
the number of nodes denoted by the sum or slightly
less. The ILP tableau will have n X this sum (size of
the CS) columns and (n — 1) X size of CS +n +2
rows. A comparatively small programme.

A second, even smaller, mathematical programme
can be constructed. For this programme an additional
assumption has to be made; to wit, that the nodes
which appear in the solution set of all examined
heuristic solutions to be facilities really are facilities
while other nodes which appear as members of the
solution set in only some of the examined heuristics
may be or may not be facilities. The former would
represent those portions of the network which are
relatively uncomplicated and where ‘‘traps’’ do not
exist but rather the heuristic always iterates directly,
in this portion of the network, to the optimal posi-
tion. The latter would represent difficult portions of
the network where nonoptimal pairs, triplets, what-
ever, are more likely to be chosen.

To implement this, the set CS must be partitioned
into two new sets, namely CS_, CS open, for those
members of the set CS which appear in all examined
solutions (corresponding to the lower left hand num-
ber of each cell, Table 2) and CS;, CS free, for those
members of CS which appear in at least one but not
all solutions (corresponding to the lower right hand

number of each cell, Table 2). Since each demand
node not in the set CS must assign to the closest
chosen facility site constraints and variables are
needed only for that one member of CS, which is
closest to the particular demand node and only for
those members of the set CS; which are closer than
that one member of CS. This second programme is
then:

Minimize
n
Z= Z Z aidinij (13)
i=1 jeRr,
Subject to:
Y Xx,;=1, foralli#jeCS, (14)
JER;
X;;=1, forall j€CS, (15)
X;;—X;;20, foralli,forall JER,, i+ (16)
E ij=P (17)
jeCS
X;=0,1, forall j€ CS; (18)

Where variables are as defined above and
ri={jlmin(d,; ;ccs,)}. forallijeCs, (19)
R,={jer}u{jecsdd;<ad,).

foralli# je CS, (20)

As Eq. (19) states for each i the set r, contains the
one member of the set CS_ which is closest to it. The
meaning of Eq. (20) is then that for each i the set R,
contains that one member of r; and any members of
the set CS; which are closer than r;. One of these
potential facilities must serve i in the best solution.
Members of the set CS, are not allowed to assign
away but must be facilities (constraint (15)). Mem-
bers of the set CS, may assign away or may be
facilities Egs. (contraints (14) and (16)). Nodes not
in either of these sets must assign to one member of
either CS, or CS; (constraint (14)). The formulations
are both very integer friendly (ReVelle, 1993). Eleven
of the 90 problems terminated fractionally; but only
one required more than seven nodes to resolve (it
required ten).

The particular size of the tableau of this second
programme will depend upon the number of mem-
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Table 3

Tableau size, problem n= 300, p =50

Model Rows Columns  Iterations CPU

seconds

Fully specified 90002 90000 9997 2726.8
p-median

CS(m=25) 19139 18900 907 422

CS, and CS; 798 560 263 0.7
(m=15)

bers of CS,, CS; and the geometric arrangement of
them and of the demand nodes. Table 3 gives the
actual sizes of the tableau and solution statistics for:
the fully specified p-median, the programme involv-
ing set CS, and the programme with CS  and CS;
for one instance: n = 300, p = 50. The small size of
the latter programme (CS_, CS;) makes it extremely
attractive — if it is successful. The CPU times and
the number of iterations are for CPLEX, 1989-1994,
3.0 running on a Sun Sparcserver 20 with 96
megabytes of CPU under SunOS 4.1.2_Ul. These
statistics are indicative of the possibility of solving
much much larger problems than can be attempted
with the standard p-median ILP formulation (1)-(5).

While the emphasise of this work is effectiveness

not efficiency the CPU time is indicated in Table 3.
The appropriate question is however not the LP time
but “*At what total cost are better solutions found?”’
The answer is that the cost is in the noise. If a (large)
number of runs of the base heuristic were to be made
in any case and the best of these runs reported as the
solution, the cost of applying the HC metaheuristic is
the cost of assembling the CS and solving the rela-
tively small (see Table 3) integer linear programme
as a relaxed linear programme. The times for assem-
bly of the CS and solution by LP of the reduced
problem are minor compared to the time spent run-
ning the base heuristic.

In cases where the solution of this programme
(8)—(12) or (13)-(18) is better than the best nonopti-
mal SPP from the heuristic but less than the global
optimal of the original ILP the solution set (chosen
from the CS) may not be stable in the sense of a
VSH. Re-applying an interchange heuristic to this
solution may result in further improvement. This is
done by submitting the fixed solution set chosen
from the CS to the interchange heuristic and allow-
ing it full freedom to move facilities. In all cases
where one facility from the CS is nonoptimal opti-
mality will always be reached by this step. In cases
where two or more are nonoptimal it may be reached.

Table 4

The results of HC for the ninety problems

p\n 100 125 150 175 200 225 250 275 300

p

50 aEn EER EHAR sSan | NN ] [ R 0| ERE | I B aEEn
45 mEn nEu nEE [k} | EEn S ExE [ R 4 | EEE
40 [ B 4 ] L I 0] EEn aman [ B 4 | mEn [ B 4 | BxE B
35 aEn | 1 ] [ X B EEaN | k.4 | mEn | B ¢4 ] RN [ B ¢ |
30 sEEn S BAR EEn | X B | EEN | R 4 ] EEn [ N ]
25 BEN mEn | A N ] EER | Io] | aEn [ & 4 ] EEn [ B N |
20 aEn [ J B aEn aEn EERN nES EER ERE | .4 ]
15 * aEn aEn EEa S EEn EEN S nen
10 EEn aEn EERR * nEN S BTH * S

5 * * * * * * * * *

EXx B CS,, CS; Optimal, no optimals found in 200 runs of heuristic.
HEBCS,, CS; Optimal.
MAN CS,, CS; Alternate optimal found.
mCE CS Optimal, CS,, CS; best SPP.

BTE CS,, CS; and CS 66.7% better, Teitz and Bart to optimal.

B
S

*

CS,, CS; and CS 1.6% better, Teitz and Bart no improvement.
CS,, CS; and CS no improvement, best SPP found.

Expected failures.
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7. Results and conclusions

See Table 4 for the results. All 90 instances were
solved using the CS_, CS; formulation in order to
see if the additional assumption affected the solution.
In cases where this formulation terminated with a
functional value less than global optimum the in-
stance was then solved again using the first ILP (CS
model). As was to be expected no problem which
earned a ““*”’ in its cell on Table 2 solved optimally
with either formulation.

In all cases corresponding to cells marked with a
black bar, combined or not with another symbol, HC
found the optimal solution — 78.9% of all 90 cases.
As earlier noted HC should not be used for small
values of p. If we exclude p =35 the success rate
raises to 87.7% of the remaining 81 cases. In two of
these cases (marked by a bar and an ‘‘A”) an
alternate optimal was found. In one case (marked by
a bar and a *““C’") the CS_, CS; model made no
improvement while the CS model found the optimal
solution. This is because one node, not in the optimal
solution was included in the set CS, and was there-
fore fixed ‘‘open’’. Once it was a choice facility (CS
model) that facility was substituted and optimality
was achieved.

In two cases HC (both models) found a nonopti-
mal solution better than the best nonoptimal SPP. In
one case (marked by a bar and a ‘“T*’) the functional
value of the solution was 66.7% better (measured as
percent of the range, best, lowest functional value,
SPP to optimal solution) than the functional value of
the best nonoptimal SPP. Application of the Teitz
and Bart algorithm from that solution as a fixed
starting point resuited in the optimal solution. In the
other case (marked by a letter ‘‘B*’) the solution was
1.6% better (measured in the same way) and re-ap-
plication of the heuristic made no further improve-
ment. The HC solution was itself another, until that
time unidentified, SPP better than the best achieved
by the random runs. In six cells (marked by a letter
*“S*’) HC made no improvement, terminating with
the best SPP used in constructing the CS.

It is well known that particular combinations of »
and p and particular geometries make some prob-
lems ‘‘hard’’ and others ‘‘less hard’’ for an inter-
change heuristic. Once a starting set is determined
the mechanistic nature of the heuristic leads to a

fixed outcome. Determining a starting set determines
the solution set — even though it is not know until
execution of the algorithm. From any particular start-
ing point to the corresponding solution set there is a
fixed ‘path’’ or pattern of interchanges. These paths,
from different starting sets, can merge but never
diverge. Consider a case where paths merge and
move to various suboptimal SPPs. The optimal solu-
tion can be thought of as ‘‘defended’’ by suboptimal
bulwarks. An interchange heuristic has then a very
low probability of penetrating these *‘defenses’’ and
reaching optimality.

Something like this occurs in 13 of our 90 cases.
Two hundred runs of the Teitz and Bar heuristic, in
each case, were insufficient to find any optimal
solution at all (in 2600 total runs). A failure rate for
the Teitz and Bart of 14.4%. Of these 13 one (marked
by an *S”’, cell 225 /45) was also a failure for HC.
In the other 12 cases however the cells are marked
by a bar combined with a ““%’’. In these cases HC
(both models) found the optimal solution. A success
rate of 92.3% for the 13 cases where Teitz and Bart
fails. It is this success in cases of interchange failure
which we believe makes HC attractive. HC can
never do worse than the best SPP found and it can,
and regularly does find the optimal solution.

To summarize:

1. In general, heuristic concentration works well, at
least in this problem and probably has potential
for others as well, for moderate and large values
of p. For small values of p it appears to be
inappropriate. A large proportion of the runs of
the interchange heuristic are already optimal for
these values of p in any case.

2. In our experiment m = 5 is too restrictive and a
higher value of m would have provided better
results. We knew this but wished to have failures
to analyze.

3. Considering the minor improvement in results
from programme CS the CS_, CS; programme is,
generally, to be preferred particularly since a
larger m value will also push any ‘‘extra’” nodes
from CS, into CS; and considering the size of
problem whose solution it allows.

4. Heuristic Concentration can provide solutions to
problems with better objective functions than an
interchange heuristic alone.

Given the extremely compact form of the tableau



86 K.E. Rosing, C.S. ReVelle / European Journal of Operational Research 97 (1997) 75-86

resulting from HC one might speculate that this
method, with programme CS_, CS;, could be em-
ployed on problems one or perhaps two orders of
magnitude (in terms of n) larger.

Several important questions remain open. These
questions relate not just to the p-median — it is only
the example demonstrated here — but any applica-
tion of HC; a procedure which should have a general
application to a number of areas of combinatorial
optimisation.

® One question is: does the method work well
with a much more limited number of runs of the
heuristic? The heuristic was run 200 times and the
best five were inspected. The 200 runs used here are
a lot; that number of runs related to the need to
calculate probabilities in a piece of research reported
elsewhere (Rosing, forthcoming). What would be the
effect on the CS, on CS_, CS; of a smaller number
of random starts?

® Another open question is: the setting and na-
ture of the parameter m. Is m highly dependent upon
the structure of the individual problem/data or is a
good m carved in stone? The value for m may also
be related to the number of runs of the heuristic. Just
what is a good value for m? As m goes up the set
CS becomes larger and, in more detail CS  decreases
in size while CS; increases in size. These changes
directly affect the size of the ILP tableau.

® Finally: is the ranking by functional value the
best way to chose solutions which approach the
optimal. Might a more considered analysis of the
solution sets reveal, in some cases at least, signifi-
cant sets of groupings of nodes leading towards
different, nearly equal, solutions? If so could these
be partitioned and the process of stage two applied to
the different Concentration Sets.

We hope to report on these points (and others) in
the near future.
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