
European Journal of Operational Research 236 (2014) 695–705
Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Innovative Applications of O.R.
Column-generation based bounds for the Homogeneous Areas Problem
0377-2217/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ejor.2013.12.030

⇑ Corresponding author. Tel.: +39 0250316235; fax: +39 0250316373.
E-mail addresses: fabio.colombo2@unimi.it (F. Colombo), roberto.cordone@

unimi.it (R. Cordone), marco.trubian@unimi.it (M. Trubian).
Fabio Colombo, Roberto Cordone ⇑, Marco Trubian
Università degli Studi di Milano, Dipartimento di Informatica, Via Comelico 39, 20135 Milano, Italy

a r t i c l e i n f o a b s t r a c t
Article history:
Received 2 May 2012
Accepted 23 December 2013
Available online 31 December 2013

Keywords:
Graph partitioning
Column Generation
Tabu Search
Given an undirected graph and a collection of vertex subsets with suitable costs, we consider the problem
of partitioning the graph into subgraphs of limited cost, splitting as little as possible the given subsets
among different subgraphs. This problem originates from the organization of a region (the graph) includ-
ing several towns (the vertices) into administrative areas (the subgraphs). The officers assigned to each
area take care of activities which involve several towns at a time (the subsets). An activity involving
towns from more areas engages the officers of all those areas, leading to redundancies which must be
minimized.

This paper introduces a column generation approach to compute a lower bound for the problem. Since
the pricing subproblem is NP-hard, we solve it with a Tabu Search algorithm, before applying a suitably
strengthened multi-commodity flow formulation. Moreover, we also compute an upper bound for the
overall problem with a primal heuristic based on the idea of diving and limited discrepancy search.
The computational results refer to two real-world instances, a class of realistic instances derived from
them, and two different classes of random instances.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The Homogeneous Areas Problem (HAP) can be formulated as fol-
lows. Let G ¼ V ; Eð Þ be an undirected graph with V ¼ 1; . . . ;nf g,
S# 2V a collection of subsets of vertices, q : S! Rþ a cost func-
tion defined on S and Q a cost threshold. Finally, let k be an integer
positive number. Given any subset of vertices U # V , we denote the
cost of the subgraph induced by U as

P
S2S:S\U–; qS, i.e. the sum of

the values qS for all subsets S intersecting U. The problem requires
to partition graph G into at most k vertex-disjoint connected sub-
graphs Gi ¼ Ui; Eið Þ such that the cost of Gi does not exceed Q for
all i and the total cost

/ ¼
X

i

X
S2S:S\Ui–;

qS ð1Þ

is minimum. The HAP is strongly NP-hard (Ceselli, Colombo, Cor-
done, & Trubian, in press).

This problem derives from a practical requirement, concerning
the partitioning of two administrative regions in Northern Italy
(the provinces of Milan and Monza) into ‘‘homogeneous areas’’.
In that case, the vertices correspond to towns, the edges to pairs
of adjacent towns, each subset S 2S represents an activity involv-
ing a subset of towns and requiring from the officers of the prov-
ince administration a known amount of working hours, qS. The
aim of the problem is to divide the province into connected areas
(subgraphs) and to assign a team of officers to each area, in such
a way that each activity is split as little as possible among different
areas. This is due to the fact that the officers in charge of an area
need to be trained on all the activities involving the towns of the
area and, therefore, splitting an activity implies a redundancy
(more officers trained on the same topics). The cost of a subgraph
expresses the number of working hours required from the officers
in charge of the corresponding area. The limited number of work-
ing hours available for each officer imposes an upper threshold on
the cost of each area. The value of this threshold can also be tuned
to improve fairness among the teams.

In Fig. 1 we report a sample instance and some of its solutions.
Fig. 1(a) provides a graph G with 7 vertices and 9 edges, three
subsets with costs qS1

¼ 10; qS2
¼ 9 and qS3

¼ 11, a cost threshold
Q ¼ 25 and a maximum number of subgraphs k ¼ 3. If the nodes
could be partitioned so as to keep all subsets in S unsplitted, the
overall cost would hit the theoretical lower bound

P
S2SqS ¼ 30.

This value, however, cannot be reached due to the cost threshold
imposed on each subgraph. Fig. 1(b) shows an optimal solution,
with two subgraphs and a total cost equal to qS1

þ 2qS2
þ qS3

¼ 39
(subset S2 intersects both the subgraphs). Fig. 1(c) shows a
suboptimal solution with three subgraphs, in which both S1 and
S2 intersect two subgraphs, so that the overall cost is
2qS1

þ 2qS2
þ qS3

¼ 49. Finally, the solution in Fig. 1(d) is unfeasible
since the subgraph induced by U ¼ 1;2;3;4;5f g intersects all three
subsets and its cost qS1

þ qS2
þ qS3

¼ 30 exceeds the threshold
Q ¼ 25.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2013.12.030&domain=pdf
http://dx.doi.org/10.1016/j.ejor.2013.12.030
mailto:fabio.colombo2@unimi.it
mailto:roberto.cordone@unimi.it
mailto:roberto.cordone@unimi.it
mailto:marco.trubian@unimi.it
http://dx.doi.org/10.1016/j.ejor.2013.12.030
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

(c)

(a) (b)

(d)

Fig. 1. (a) Sample instance having qS1
¼ 10; qS2

¼ 9; qS3
¼ 11 and Q ¼ 25; (b)

Optimal solution with cost qS1
þ 2qS2

þ qS3
¼ 39; (c) Sub-optimal solution with

cost 2qS1
þ 2qS2

þ qS3
¼ 49; (d) Unfeasible solution: the subgraph induced by

U ¼ 1;2;3;4;5f g has cost qS1
þ qS2

þ qS3
¼ 30 > Q .

696 F. Colombo et al. / European Journal of Operational Research 236 (2014) 695–705
This work proposes a column generation approach to the HAP.
Since in our decomposition the pricing subproblem is itself NP-
hard, we apply a customized heuristic before solving it exactly
with an Integer Linear Programming (ILP) formulation, for which
we introduce some valid inequalities. The heuristic is a Tabu
Search algorithm, while the exact approach exploits a multicom-
modity flow formulation. Section 2 introduces a compact formula-
tion of the problem, and an extended one, solved by a column
generation approach. Section 3 deals with the pricing subproblem,
discussing its formulation with some strengthenings, its computa-
tional complexity and a heuristic approach to solve it. Section 4
presents a primal heuristic for the HAP. It is based on the column
generation framework and exploits the concepts of diving and lim-
ited discrepancy search. The final section presents the computa-
tional results.
1.1. On the relationship with graph partitioning problems

The HAP can be seen as a variant of the Graph Partitioning Prob-
lem (GPP). This section provides some references to the huge liter-
ature on the GPP, a small example to illustrate the specific features
of the HAP and a discussion of the differences it exhibits with re-
spect to the other related models. A more detailed discussion, with
counterexamples to the possibility of easily reducing the HAP to a
standard GPP, can be found in Ceselli et al. (in press).

Given an undirected edge-weighted graph G ¼ ðV ; EÞ, the most
common versions of the GPP ask to divide the vertex set V into a
given number k of nonempty, pairwise disjoint subsets, such that
the edge-cut, i.e. the total weight of the edges that connect vertices
in different subsets, is minimized. This basic problem admits a
number of variations; see, e.g., the survey in Fjällström (1998).
Several different approaches have been proposed to solve them,
such as hierarchic multi-level heuristics (Sanders & Schulz,
2011), geometry-based and flow-based methods (Arora, Rao, &
Vazirani, 2008), genetic approaches (Kim, Hwang, Kim, & Moon,
2011), spectral methods (Donath & Hoffman, 1973), mathematical
programming approaches (Fan & Pardalos, 2010), local search
metaheuristics and integrated approaches (Osipov, Sanders, &
Schulz, 2012). The HAP differs from these classical GPPs both in
the constraints and in the objective function, which pose specific
challenges to a solving algorithm.
1.1.1. Cardinality constraint
In the GPP, the number k of vertex-disjoint subsets is usually

given, and the subsets are required to be nonempty, since their
cardinalities, n1; . . . ;nk, with

Pk
j¼1nj ¼ jV j are explicitly imposed

(Guttmann-Beck & Hassin, 2000) or constrained to be approxi-
mately of the same size, see e.g. Osipov et al. (2012). In the HAP,
k is just an upper threshold, so that the subsets of vertices Ui are
allowed to be empty. In fact, merging two subsets into a single
one is always profitable, and only the cost threshold Q possibly for-
bids to do it.

1.1.2. Cost threshold
The HAP is related to the Node-capacitated Graph Partitioning

Problem (Ferreira, Martin, de Souza, Weismantel, & Wolsey,
1998), in which the total weight of each subset in the partition is
limited by a threshold. However, the threshold is managed differ-
ently in the HAP: since it is not associated to single vertices, the
cost of a subset U does not increase linearly as new vertices are
included, but stepwise as new subsets S 2S intersect U. Such a
nonlinear dependence is much harder to handle.

1.1.3. Connectivity constraint
The connectivity constraint is usually not imposed in GPPs,

where the edges of the graph are taken into account only when
computing the objective function. Quite commonly, the edge costs
model a proximity measure, and the subsets end up naturally to be
connected in the optimal solution. In the HAP, on the contrary, the
edges determine the feasibility of the solutions, since each subset
must induce a connected subgraph on G, but they have no relation
with the objective function. In fact, even considering the smaller
benchmark instances, which can be solved exactly, the optimal re-
sult obtained relaxing the connectivity constraints is on average
35% lower than the one obtained respecting them (Ceselli et al.,
in press). This suggests that neglecting the connectivity constraint
would not provide meaningful information on the original problem
and that classical methods ignoring this constraint would not pro-
vide useful solutions.

1.1.4. Objective function
The objective function of the classical GPPs depends linearly on

the cost of the edges whose extreme vertices belong to different
subgraphs. Sometimes, this cost is tuned by a function of the cardi-
nality of the subgraphs; see, e.g., Matula and Shahrokhi (1990). The
objective function of the HAP is completely independent from the
edge set E, and depends nonlinearly on the intersections between
the subsets in S and the subsets of vertices of the subgraphs.

These remarks on the difference between the constraints and
the objective function of the HAP with respect to other GPPs have
moved us to develop ad hoc methods, instead of straightforwardly
adapting algorithms drawn from the literature.

2. Mathematical programming formulations

Hereafter, we present two different formulations of the HAP.
The first one is a compact multicommodity flow formulation that
can be directly solved using a commercial ILP solver. The second
one is an extended formulation which associates a variable to each
feasible subgraph. At the end of the section, we describe the col-
umn generation approach used to solve the continuous relaxation
of the extended formulation.

2.1. Compact formulation

The HAP admits a multicommodity flow formulation based on
an auxiliary directed graph G0 ¼ V ; E0

� �
, derived from G replacing

F. Colombo et al. / European Journal of Operational Research 236 (2014) 695–705 697
each edge in E with two opposite arcs. This allows to enforce the
connectivity requirement by representing each subgraph as a
rooted arborescence. There are at most k roots, i.e. nodes generat-
ing flow. Each other node receives flow generated from exactly one
root, absorbs a single unit of flow and transmits the rest. The index
‘ of the root denotes in the model both the corresponding com-
modity and the arborescence whose nodes receive the flow. To
avoid multiple equivalent solutions, without loss of generality,
we require the root of each arborescence to be the node with min-
imum index. Therefore, any arborescence rooted in ‘ is restricted to
the subgraph G‘ ¼ V ‘; E‘

� �
, where V ‘ ¼ v 2 V : v P ‘f g and

E‘ ¼ u;vð Þ 2 E0 : u P ‘;v P ‘
� �

. For example, referring to Fig. 1a,
subgraph G4 consists of four vertices (V4 ¼ 4;5;6;7f g) and two
edges (E4 ¼ 4;5ð Þ; 6;7ð Þf g). Finally, for each node v 2 V we denote
the collection of subsets from S which contain v as
Sv ¼ S 2S : v 2 Sf g. For example, S4 ¼ S2; S3f g.

Given the following decision variables:

� x‘v ¼ 1 if an arborescence rooted in ‘ includes v 2 V ‘; x‘v ¼ 0
otherwise;

� z‘S ¼ 1 if an arborescence rooted in ‘ intersects S 2S; z‘S ¼ 0
otherwise;

� f ‘uv is the flow on directed arc u;vð Þ 2 E‘ generated by node
‘ 2 V

the HAP can be formulated as:

min / ¼
X
S2S

X
‘2V

qSz‘S ð2aÞ
X

‘2V :v2V‘

x‘v ¼ 1 v 2 V ð2bÞ
X
‘2V

x‘‘ 6 k ð2cÞ
X
S2S

qSz‘S 6 Q x‘‘ ‘ 2 V ð2dÞ

x‘v 6 z‘S ‘ 2 V ;v 2 V ‘; S 2Sv ð2eÞ
x‘v 6 x‘‘ ‘ 2 V ;v 2 V ‘ ð2fÞX
‘;vð Þ2E‘

f ‘‘v ¼
X

v2V‘nf‘g

x‘v ‘ 2 V ð2gÞ

X
u;vð Þ2E‘

f ‘uv 6 V ‘
�� ��� 1
� �

x‘v ‘ 2 V ; v 2 V ‘ ð2hÞ

X
u;vð Þ2E‘

f ‘uv �
X

v;wð Þ2E‘
f ‘vw ¼ x‘v ‘ 2 V ;v 2 V ‘ n f‘g ð2iÞ

x‘v 2 f0;1g ‘ 2 V ;v 2 V ‘ ð2jÞ
0 6 z‘S 6 1 S 2S; ‘ 2 V ð2kÞ
f ‘uv P 0 ‘ 2 V ; u;vð Þ 2 E‘ ð2lÞ

Eq. (2a) defines the objective function /. Constraints (2b) state
that each vertex belongs to exactly one arborescence. Constraint
(2c) imposes the correct number of arborescences, since x‘‘ ¼ 1 if
and only if the solution contains an arborescence rooted in ‘. Con-
straints (2d) state that, if ‘ is the index of an arborescence, its cost
should not exceed the threshold. Constraints (2e) state that, if a
node v is assigned to an arborescence, all subsets S 2S which con-
tain v contribute to the cost of the arborescence. Constraints (2f)
state that if a node belongs to arborescence ‘, node ‘ is the root
of the arborescence. Constraints (2g) state that the root of an arbo-
rescence generates one unit of flow for each other node of the arbo-
rescence. Constraints (2h) state that, if a node receives flow ‘, it
belongs to arborescence ‘. Coefficient V ‘

�� �� can be replaced by any
upper bound on the number of the nodes in arborescence ‘, since
each node absorbs exactly one unit of flow. As discussed in the
following, tighter values should be preferred because they
strengthen the continuous relaxation of the model. Constraints
(2i) guarantee the conservation of flow, while the following ones
impose integrality or nonnegativity on the decision variables. No-
tice that, if the x‘v variables are binary, constraints (2e) and the
objective function trivially guarantee that also the z‘S variables
are binary. Formulation (2) can be strengthened by fixing the
values of some variables and introducing additional logical con-
straints, as described in Ceselli et al. (in press).

2.2. Extended formulation

It is possible to derive from Formulation (2) an alternative one,
which implies a column generation approach. Let G‘ be the collec-
tion of all connected subgraphs of G which have ‘ as the node with
minimum index and whose cost is not larger than Q. We define a bin-
ary variable y‘i for each element of G‘, with i ¼ 1; . . . ; G‘

�� ��, such that
y‘i ¼ 1 if the ith subgraph is used in the solution, y‘i ¼ 0 otherwise.

min / ¼
X
‘2V

XjG‘ j
i¼1

/‘
i y

‘
i ð3aÞ

X
‘2V

XjG‘ j
i¼1

aivy‘i ¼ 1 v 2 V ðkv freeÞ ð3bÞ

X
‘2V

XjG‘ j
i¼1

y‘i 6 k ðl 6 0Þ ð3cÞ

y‘i 2 f0;1g ‘ 2 V ; i ¼ 1; . . . ; G‘
�� �� ð3dÞ

where /‘
i is the cost of the ith subgraph and aiv indicates whether

node v belongs to the ith subgraph or not.
Eq. (3a) defines the objective function /. Constraints (3b) state

that each node should belong to exactly one subgraph; each kv rep-
resents the dual variable of the corresponding constraint in the
continuous relaxation of the problem. Constraint (3c) imposes
the correct number of subgraphs; l represents the corresponding
nonpositive dual variable.

2.3. Computing the linear relaxation of the extended formulation

To solve Formulation (3) we start by relaxing the integrality
conditions on the binary variables y‘i , generating the so called mas-
ter problem (MP). Since the MP has an exponential number of vari-
ables, we apply a column generation approach (Desrosiers &
Lübbecke, 2005). In particular we define the reduced master prob-
lem (RMP) that, at the beginning, considers only a small collection
of feasible subgraphs, G‘, for each ‘ 2 V . Then we solve the RMP
and we use the optimal dual values either to generate non-basic
variables with negative reduced costs or to prove that the current
basic solution is optimal also for the full MP. This requires to solve,
for each ‘ 2 V , the so called pricing problem (PP‘), as described in
Section 3. When the full MP is solved to optimality, its optimum
provides a lower bound for the original problem.

3. On solving the pricing problem

Hereafter, we present two different approaches to solve each
pricing problem PP‘. The first one is a flow formulation which
can be solved exactly by a commercial ILP solver. The second one
is a Tabu Search heuristic, which is used to quickly identify vari-
ables with negative reduced costs. Section 5.3 describes the strat-
egy used to combine these two approaches to efficiently obtain a
lower bound for the HAP. Section 4 describes the role of the Tabu
Search heuristic as a component of a primal heuristic for the HAP.

698 F. Colombo et al. / European Journal of Operational Research 236 (2014) 695–705
3.1. A formulation of the pricing subproblem

The pricing subproblem for each node ‘ 2 V looks for a con-
nected subgraph in G‘ with the minimum reduced cost. We repre-
sent each subgraph as a rooted arborescence to enforce the
connectivity requirement, as already done for the compact formu-
lation. The pricing subproblem PP‘ can be formulated introducing
the following decision variables:

� xv ¼ 1 if the arborescence includes node v 2 V ‘, and xv ¼ 0
otherwise;
� zS ¼ 1 if the arborescence intersects subset S 2S, and zS ¼ 0

otherwise;
� fuv is the flow on directed arc ðu; vÞ 2 E‘

min �/‘ ¼
X
S2S

qSzS �
X
v2V‘

kvxv � l ð4aÞ

X
S2S

qSzS 6 Q ð4bÞ

xv 6 zS v 2 V ‘; S 2Sv ð4cÞ

x‘ ¼ 1 ð4dÞ
X
‘;vð Þ2E‘

f‘v ¼
X

v2V‘nf‘g

xv ð4eÞ

X
u;vð Þ2E‘

fuv 6 jV ‘j � 1
� �

xv v 2 V ‘ ð4fÞ

X
u;vð Þ2E‘

fuv �
X

v;wð Þ2E‘
fvw ¼ xv v 2 V ‘ n f‘g ð4gÞ

xv 2 f0;1g v 2 V ‘ ð4hÞ

0 6 zS 6 1 S 2 S ð4iÞ

fuv P 0 u;vð Þ 2 E‘ ð4jÞ

The objective function �/‘, given by Eq. (4a), is the reduced cost of
a column (of index ‘) of Formulation (3). It can be also interpreted as
the difference between the cost of the column, on one hand, and the
sum of the prizes kv of the nodes included in the corresponding sub-
graph plus the constant term l, on the other hand. Hereafter, for
any feasible solution of Formulation (4), we will denote the termP

S2SqSzS as the cost of the corresponding arborescence, as opposed
to its reduced cost, which is the objective of the pricing subproblem.
Constraint (4b) limits the cost of the arborescence. Constraints (4c)
state that, if a node v is assigned to the arborescence, all subsets
S 2S which contain v contribute to the cost of the arborescence.
Constraint (4d) guarantees that the root node belongs to the arbo-
rescence. Constraint (4e) sets the amount of flow generated by the
root of the arborescence equal to the number of the other nodes
belonging to it. Constraints (4f) state that, if a node receives one
unit of flow, it must belong to the arborescence. Constraints (4g)
guarantee the conservation of flow, while the following ones im-
pose integrality or nonnegativity on the decision variables.

3.1.1. Computational complexity
The problem PP‘ is NP-hard. Let us consider the problem PP

which requires to identify simultaneously both the root ‘ and the
corresponding minimum reduced cost arborescence among the
optimal solutions of all the PP‘ for each ‘ ¼ 1; . . . ;n. It is straightfor-
ward to observe that, in order to solve PP, it is sufficient to solve all
the PP‘ problems and to identify the solution with minimum cost.
Hence, if we can solve each PP‘ in polynomial time, we can also
solve PP in polynomial time. The following proposition proves that
PP is NP-hard, thus implying that PP‘ is NP-hard, too.

Proposition 1. The PP problem is NP-hard, even if kv P 0 for each
v 2 V and Q ¼ þ1.
Proof. The proof is based on a reduction from the Maximum
Weight Connected Subgraph (MWCS) problem, which is NP-hard
(Ideker, Ozier, Schwikowski, & Siegel, 2002) and is defined as fol-
lows. Given a graph eG ¼ ðeV ; eEÞ, and a weight function defined on
the vertices, w : eV ! R, find a connected subgraph eG0 ¼ ðeV 0; eE0Þ ofeG with maximum total weight weG 0 ¼

P
v2eV 0wv .

We now show that from any given instance of the MWCS
problem, it is possible to build an instance of problem PP, such that
their optimal solutions correspond one-to-one. Graph G ¼ ðV ; EÞ
coincides with eG. We set Q ¼ þ1 and l ¼ 0. For each vertex v 2 eV
such that wv < 0, we define a singleton subset S ¼ vf g 2S with
cost qS ¼ �wv and we set kv ¼ 0. For each vertex v 2 eV such that
wv P 0, we set kv ¼ wv .

Each feasible solution G0 ¼ ðV 0; E0Þ of problem PP is a connected
subgraph, and therefore is also feasible for the MWCS problem. Its
cost is equal to

P
v2V 0 :wv<0ð�wvÞ �

P
v2V 0 :wv P0wv ¼ �

P
v2V 0wv ,

which is the opposite of the objective function of the MWCS. Thus,
minimizing the objective of PP corresponds to maximizing the
objective of the MWCS. h
3.1.2. Formulation strengthening
Formulation (4) can be strengthened by adapting the improve-

ments introduced in Ceselli et al. (in press) for the compact formu-
lation (2). These improvements introduce new constraints and fix
the value of some variables. First of all, the cost constraint (4b) in-
duces logical constraints on the node variables xv . These con-
straints derive from the computation of lower bounds on the cost
of the solution, that is on the left-hand side of constraint (4b), un-
der the assumption that one or two nodes different from the given
root ‘ are imposed or forbidden in the solution. If any such lower
bound exceeds Q, the constraint is certainly violated and the
assumption must be reversed. Since all feasible solutions are con-
nected subgraphs, lower bounds can be obtained computing the
minimum cost of simple paths on auxiliary node-weighted graphs.
In particular, given the subgraph G‘ defined above, we introduce
the auxiliary cost function

p‘u tð Þ ¼

X
S2StnðS‘[SuÞ

qS
jVS j

t 2 V ‘ n ‘;uf g

0 t 2 ‘;uf g

8<
:

whose value p‘uðtÞ represents a lower bound on the contribution of
node t to the cost of any arborescence rooted in ‘ and including
node u. In addition, the cost of such an arborescence must necessar-
ily include the cost of all subsets in S‘ and Su.

Proposition 2. Given a root ‘ 2 V and a node u 2 V ‘, let p‘u be the
minimum cost of a path on subgraph G‘ between nodes ‘ and u, with
respect to the cost function p‘u. If p‘u þ

P
S2ðS‘[SuÞqS > Q, then xu ¼ 0

in any feasible solution of Formulation (4).
Proof. Any feasible solution of the pricing problem PP‘ is a con-
nected subgraph including vertex ‘. Let us assume, by contradiction,
that the solution also includes vertex u. The minimum possible left-
hand side of constraint (4b) is associated with a path connecting ‘
and u. Its cost is underestimated by p‘u plus the total cost of the sub-
sets containing ‘ and u. If this underestimate exceeds the cost
threshold Q, the assumption must be reversed, fixing xu ¼ 0. h

F. Colombo et al. / European Journal of Operational Research 236 (2014) 695–705 699
Proposition 3. Given a root ‘ 2 V and two nodes u;v 2 V ‘ with
u – v , let p‘u

:v be the minimum cost of a path on subgraph G‘ between
nodes ‘ and u which does not use v, with respect to the cost function
p‘u. If p‘u

:v þ
P

S2ðS‘[SuÞqS > Q, then any feasible solution of Formula-
tion (4) satisfies the following binding constraint

xu 6 xv
Proof. Let us now assume, by contradiction, that the solution
includes vertex u and does not include vertex v. The minimum pos-
sible left-hand side of constraint (4b) is associated with a path con-
necting ‘ and u, and not visiting v. The cost of such a path can be
underestimated by p‘u

:v , plus the total cost of the subsets containing
‘ and u. If the underestimate exceeds Q, the assumption must be
reversed, stating that if the solution includes u, it necessarily
includes also v. h

A complementary implication can be derived by defining the
following auxiliary cost function

p‘uvðtÞ ¼

X
S2StnðS‘[Su[Sv Þ

qS
jVS j

t 2 V ‘ n u;vf g

0 t 2 ‘;u;vf g

8<
:

whose value p‘uv tð Þ represents a lower bound on the contribution of
node t to the cost of any arborescence rooted in ‘ and including u
and v.

Proposition 4. Given a root ‘ 2 V and two nodes u;v 2 V ‘ n ‘f g with
u < v , the minimum cost of a path between ‘ and u (‘ and v, or u and
v) with respect to the cost function p‘uv , plus the constant termP

S2ðS‘[Su[Sv ÞqS is a lower bound on the cost of any arborescence
rooted in ‘ including both u and v. If any of these three lower bounds
exceeds Q, then any feasible solution of Formulation (4) satisfies the
following incompatibility constraint

xu þ xv 6 1

Proof. By contradiction, we assume that the solution includes
both vertex u and vertex v, besides the root ‘. We underestimate
the left-hand side of constraint (4b) by requiring the solution to
connect two of the three vertices, instead of all of them. This yields
three possible lower bounds, given by the total cost of the subsets
containing ‘;u and v, plus the minimum cost of a path between two
of the three vertices. If any of these underestimates exceeds Q, the
assumption must be reversed, stating that u and v cannot be both
included in the solution. h

The jV ‘j � 1
� �

coefficient of Constraints (4f) can be eventually
reduced by replacing jV ‘j with any upper bound M‘ on the number
of nodes which can belong to a feasible arborescence rooted in ‘.

Proposition 5. The optimum of the following problem provides an
upper bound on the number of nodes of a feasible arborescence rooted
in ‘.

max M‘ ¼
X
v2V ‘

xv ð5aÞ
X
S2S

qSzS 6 Q ð5bÞ

x‘ ¼ 1 ð5cÞ
xv 6 zS 2 V ‘; S 2Sv ð5dÞ
xv 2 f0;1g v 2 V ‘ ð5eÞ
0 6 zS 6 1 S 2S ð5fÞ
Proof. The problem can be obtained from the pricing subproblem
PP‘ by relaxing all constraints concerning the flow variables, that is
by neglecting the connection requirement. The objective function
maximizes the number of vertices in the subgraph. This necessarily
provides an upper bound on the number of vertices of each feasible
solution of PP‘. h

Of course, the bound improves if one includes in Formulation
(2) the fixings, the binding and the incompatibility constraints de-
scribed in Propositions 2–4.

It is worth noticing that all the bounds and strengthenings de-
scribed above depend on the labels assigned to the nodes when
defining set V as 1; . . . ;nf g. In fact, they depend on subgraph G‘,
which strictly depends on these labels. Consequently, different lab-
ellings of the nodes could yield more or less effective strengthen-
ings. According to our experience, a good heuristic labelling can
be obtained by computing for each node v the number of incident
arcs dv and the total cost of the subsets which include v, i.e.
cv ¼

P
S2Sv

qS, and sorting the nodes, first by nonincreasing dv

and then by nonincreasing cv .
3.2. A Tabu Search heuristic for the pricing problem

Since the pricing subproblem is NP-hard and since the system-
atic application of an ILP solver proved rather inefficient, we devel-
oped a Tabu Search heuristic, PrTS, to quickly identify negative
reduced cost columns. Hence, we limit the use of the ILP solver
to the cases in which the heuristic PrTS fails to provide any.

Tabu Search is a well-known local search metaheuristic ap-
proach which allows the visit of nonimproving solutions. It is con-
trolled by memory mechanisms to avoid the insurgence of cyclic
behaviours. It was introduced by Glover (1986) and the interested
reader can find in Glover and Laguna (1997) a detailed treatment of
its applications and variants. In the following, we mainly focus on
the specific aspects of our implementation.

First of all, the heuristic PrTS does not impose a fixed root node,
thus implicitly solving the overall pricing problem PP instead of the
single subproblems PP‘ for each ‘ 2 V . PrTS starts from a given fea-
sible solution G0 ¼ ðU; E0Þ, which corresponds to a subgraph of G,
possibly empty. We defined two simple moves: the addition (re-
moval) of a node to (from) the current set of nodes U. At each iter-
ation, the heuristic evaluates all nodes v 2 V , one at a time: if
v 2 U, it computes the value of the reduced cost of the graph in-
duced by U n fvg; if v 2 V n U, it computes the value of the reduced
cost of the graph induced by U [fvg. In either case, the move is
forbidden if the resulting subset of nodes does not induce a
connected subgraph or if its cost exceeds the threshold Q. The
neighbourhood of each solution, therefore, is the set of all the solu-
tions which can be obtained by applying one of the two kinds of
move, and it contains at most n members.
3.2.1. A nonstandard tabu mechanism
As for any Tabu Search method, PrTS classifies the solutions in

the current neighbourhood either as tabu or non-tabu. The pres-
ence of a tabu mechanism has the purpose to avoid visiting solu-
tions obtained previously by forbidding to reverse the effect of
moves performed too recently. The common way to implement
this mechanism is to maintain, explicitly or implicitly, a list of
attributes of performed moves and to forbid the execution of
moves whose attributes are in the list. The list has a limited length,
say tt, usually called tabu tenure, and it is managed as a FIFO list.
This implies that, after lasting tt iterations in the list, an attribute
is removed from it and all the moves which have that attribute
can now be performed.

In our algorithm, for each node v 2 V , we save in Iv the last iter-
ation in which v changed status, either entering or leaving the solu-
tion. In technical terms, the attribute of a move is the index v of the
node which is removed or added. As a consequence, the solution
obtained adding (removing) a node v to (from) the current set of

700 F. Colombo et al. / European Journal of Operational Research 236 (2014) 695–705
nodes U is tabu if the value of the current iteration counter is smal-
ler than Iv þ tt, meaning that v was moved for the last time less
than tt iterations ago.

In the Tabu Search literature there are two mainstreams,
respectively adopting a fixed and a variable tabu tenure. In the lat-
ter case, the tenure is usually updated depending either on the
quality of the last move performed or on the cardinality of the
neighbourhood. More specifically, it is common to decrease the va-
lue of the tenure when the last move performed is improving and
to increase it in the opposite case; as well, it is common to decrease
the value of the tenure when the neighbourhood becomes smaller
and to increase it when it becomes larger (Glover & Laguna, 1997).
The purpose of these adaptive mechanisms is to favour the explo-
ration of more promising regions of the solution space and to drive
the search away from less promising ones.

Since we visit only feasible solutions, which correspond to con-
nected subgraphs of G, and since in general graph G is not com-
plete, the size of the neighbourhood defined above can vary
significantly from iteration to iteration. For this reason, the use of
a fixed tabu tenure proved very ineffective, and even the standard
adaptive mechanisms, based on the quality of the last move or on
the size of the current neighbourhood, failed. In fact, we frequently
observed that the value of the tabu tenure could not keep pace
with the current situation. For example, the moves whose attri-
butes were saved in the tabu list were quite often nearly all unfea-
sible, and therefore unnecessarily tabu. On the other hand, the
insurgence of a cyclic behaviour triggered the standard anti-cy-
cling mechanism of increasing the tabu tenure, until nearly all
feasible moves became tabu. This worsened the quality of the
available solutions. The result was that the search moved alterna-
tively between cycles and bad solutions.

In order to solve this problem, we decided to get rid of the tabu
tenure, while preserving the basic idea of Tabu Search. At each iter-
ation, we compute the number k of feasible moves and we consider
tabu the �kb c moves with the most recent attribute Iv . Parameter
� 2 0; 1ð Þ is defined by the user. Please notice that, due to the above
rounding and since � < 1, at least one move is always non-tabu.

In general, the move selected at each step is the one which pro-
duces the non-tabu solution with the minimum reduced cost in the
neighbourhood, but we also apply the standard aspiration criterion:
if a solution is tabu, but its reduced cost is the smallest one found
so far, the tabu status is overridden.

We also apply the following anti-cycling mechanism: if for a gi-
ven number of consecutive iterations Kacm the same sequence of
moves generates the same sequence of objective function values,
we assume this as a hint that a cyclic behaviour is occurring, and
consequently increase � to �0 2 �; 1ð Þ for other Kacm iterations, in
an attempt to break the cycle.

Finally, we adopt a frequency-based diversification strategy. We
save the number nv of visited solutions which contain node
v 2 V and the number nS of visited solutions which contain subset
S 2S. If the objective function does not improve for Kni consecu-
tive iterations, we start a diversification phase, which lasts for
Kdiv consecutive iterations. During this phase, we replace the objec-
tive function with the following one

~/ ¼
X
S2S

nS

max
S2S

nS
qSzS �

X
v2V

1� nv

max
v2V

nv

0
@

1
Apvxv

The aim of this change is to decrease the cost of the subsets and to
increase the prize of the nodes which have occurred less frequently
in the visited solutions.

3.2.2. Initialization
Heuristic PrTS requires a starting solution. As we embed it in a

column generation approach, we restart PrTS from the subgraphs
associated with all the k0 basic variables y‘i which have a strictly po-
sitive value in the current optimal solution of the RMP. These solu-
tions are promising starting points because, by definition, they
have a zero reduced cost. Our experiments show that, using this
warm start strategy, the overall column generation algorithm re-
quires less computing time.

3.2.3. Solution pool
To improve the column generation convergence rate, instead of

the best solution, we save all the negative reduced cost columns
found by PrTS, checking them so as to avoid duplicates (in general,
the limited memory mechanism of Tabu Search allows to visit the
same solution more than once). When the heuristic terminates, we
add all the saved columns to the RMP.

3.2.4. Stopping criteria
PrTS has three stopping criteria. First of all, it stops as soon as it

has found Cmax columns. In fact, adding several columns in each
iteration decreases the number of iterations required to obtain
the optimal solution, but also increases the time required to solve
the RMP. So, we need to find a trade-off between these two effects.
Second, for each of the k0 starting solutions, PrTS performs at least
Imin=k0 iterations. If during this search it finds at least one negative
reduced cost column, it moves to the next starting solution. Other-
wise, it proceeds until either it finds a negative reduced cost col-
umn or it performs Imax=k0 iterations, and moves to the next
starting solution.
4. A column generation based heuristic for the HAP

Besides a lower bound, the column generation approach also
provides useful information to build good heuristic solutions. In
the literature, there are different strategies to exploit such infor-
mation. For example, Cacchiani, Hemmelmayr, and Tricoire
(2014) propose an effective heuristic for the Periodic Vehicle Rout-
ing Problem, based on the combination of column generation with
Tabu Search, while Prescott-Gagnon, Desaulniers, and Rousseau
(2009) combine branch and price with Large Neighbourhood
Search (Pisinger & Ropke, 2010) to obtain quasi optimal solutions
for the Vehicle Routing Problem with Time Windows. In this paper,
we develop a heuristic for the HAP following another strategy, pro-
posed in Joncour, Michel, Sadykov, Sverdlov, and Vanderbeck
(2010).

This algorithm, denoted in the following as HAP-LDS, can be
seen as a truncated exploration of a branching tree in which the
branching variables are columns of the extended formulation.
Since the pricing problem is NP-hard, when we process a node
of the branching tree, the associated MP is solved only heuristi-
cally. In other words, when the Tabu Search procedure fails to find
variables with negative reduced cost, instead of applying the ILP
solver to Formulation (4), the column generation algorithm termi-
nates. Hence, the final value of the RMP is not guaranteed to be a
lower bound for the original problem, and the final solution of
the RMP is not guaranteed to be optimal for the MP. However, this
solution probably includes useful information.

HAP-LDS maintains a list L of tabu columns, which is empty at
the root node. At each node of the branching tree, the algorithm se-
lects the column with the largest value in the solution of the cur-
rent RMP among those which are not tabu. Then, it fixes the
selected column to 1 and updates the RMP accordingly: the
right-hand side of Constraints (3b) turns from 1 to 0 for the nodes
belonging to the subgraphs associated to the fixed columns and the
right-hand side of Constraint (3c) decreases by the number of fixed
columns. In the end, the algorithm reoptimizes the RMP with
column generation, always applying only the heuristic pricing

F. Colombo et al. / European Journal of Operational Research 236 (2014) 695–705 701
procedure. In practice, it is very easy to take into account the var-
iable fixing when solving heuristically the pricing subproblems: we
just remove from graph G all nodes belonging to the columns
which have been fixed to 1 so far, and solve the pricing subproblem
on the remaining subgraph. The columns fixed to 0 are not forbid-
den in the Tabu Search procedure, but they are simply not returned
to the RMP. In fact, the same check which avoids introducing dupli-
cates in the solution pool of the pricing subproblem (see the end of
Section 3.2) allows to identify these columns and to avoid return-
ing them. The process of fixing columns and reoptimizing the RMP
is called diving. It terminates either when the current RMP has an
integer solution or when it becomes unfeasible. The best integer
feasible solution is saved. Then, the search backtracks, guided by
two parameters: the maximum depth Dmax and the maximum
length Lmax of the tabu list. In detail, the backtracking stops when
the current depth becomes < Dmax or when the length of the cur-
rent tabu list becomes < Lmax. When it is no longer possible to
backtrack, HAP-LDS terminates. Otherwise, it creates a new child
node, whose tabu list includes all the columns which were tabu
in the parent node plus those that have been fixed in the previous
sibling nodes.

An example of branching tree is illustrated in Fig. 2, for
Dmax ¼ 2, Lmax ¼ 2. The labels of the branching nodes indicate the
order in which they are visited. The label of each arc reports in
round parenthesis the tabu list L which constrains the choice of
the next fixed column and the column which is fixed into the solu-
tion. Let the candidate columns at the root node be ya; yb and yc , in
nonincreasing order of value. After fixing column ya and reoptim-
izing, let the candidate columns at node 1 be yd; ye and yf . Since list
L is empty, algorithm HAP-LDS chooses yd and reoptimizes the
RMP. Then, it ‘‘dives’’, i.e. it keeps fixing other columns until the
current RMP has an integer solution or becomes unfeasible. It back-
tracks up to the first level whose depth is < Dmax ¼ 2, i.e. up to
node 1, inserts column yd into list L and creates a new child node
3, fixing column ye. From there, the algorithm dives again, and
backtracks once more up to 1. Now, it inserts column ye into list
L and creates a new child node 4, fixing column yf . From node 4,
HAP-LDS first dives and then backtracks up to node 0; node 1, in
fact, cannot generate other children, because the length of list L
has grown equal to Lmax ¼ 2. Back at the root node, the algorithm
puts column ya into L and fixes column yb. Then, it proceeds as re-
ported in Fig. 2. In particular, notice how parameter Lmax limits the
number of children at node 5 and directly imposes to dive at node
8.

The best feasible integer solution found during the diving
phases is saved. Since the HAP is a partitioning problem and im-
poses an upper limit k on the number of subgraphs, the algorithm
does not guarantee to always obtain a feasible solution. At the end
of the branching process, however, the columns generated in all
branching nodes (including the root) form an ILP problem, which
is a reduced instance of Formulation (3). We solve it by means of
Fig. 2. An example of branching tree for heuristic HAP-LDS.
a general-purpose solver, possibly obtaining a feasible solution,
which cannot be worse than the best one found (if any) during
the diving phases.
5. Computational results

In this section, we first describe the benchmark instances used,
then we report the comparison between the lower bounds com-
puted with the column generation approach and with the multi-
commodity flow formulation (2). In the end, we compare the
upper bounds obtained by the primal heuristic of Section 4 with
those obtained by the alternative heuristic VLNS-TS proposed in
Ceselli et al. (in press) and with the best known lower bounds.
All the algorithms presented above have been implemented in
C++ language and run on an Intel Pentium Core 2 Duo E6700
2.6 gihahertz with 3 gigabytes of RAM. The LP and ILP problems
have been solved with CPLEX 12.2.
5.1. Benchmark instances

We tested our algorithms on two real-world instances, on a
benchmark set A of 25 instances extracted from the real ones
and on two benchmark sets B and C of, respectively, 72 and 60 ran-
domly generated instances. All the tested instances are available at
http://homes.di.unimi.it/cordone/research/hap.html.

The real-world instances correspond to the Italian provinces of
Milan and Monza: the former has 134 vertices and 774 subsets, the
latter 55 vertices and 426 subsets. The adjacency graph G derives
from geographical data. The number k of areas, the subsets S,
the cost qS of each subset and the threshold Q have been provided
by the staff of the two provinces. In particular, k ¼ 9 for Milan and
k ¼ 3 for Monza.

The benchmark set A was generated merging the graphs of Mi-
lan and Monza, which are geographically adjacent, and extracting
subgraphs from their union, according to the following strategy.
First, we selected the five towns involved in the most costly activ-
ities, that is with the largest value of

P
S2Sv

qS. Starting from each
seed town, we extracted the first n vertices found during a
breadth-first visit of the adjacency graph, with n ¼ 50;60;70;80
and 90. This allowed to produce five different instances with a
shape reasonably similar to a standard province and centred on a
reasonable main town. We included in each instance all the sub-
sets containing the extracted towns. We set the cost threshold Q
to the same value used for the whole province, and identified rea-
sonable values for the maximum number of subgraphs, k, running
algorithm VLNS-TS. This produced 5 � 5 ¼ 25 instances overall.

In the random benchmarks B and C, the structure of graph G,
and the cardinality of the subsets S 2S mirror those of the real-
world instances, but the vertices composing each subset are ran-
domly distributed. The graph G is a random planar graph built as
follows. First, we uniformly generate n points in a Euclidean
squared plane. Then we build a triangulation of these points: we
consider, in turn, all pairs of points by non-decreasing distances,
and we draw the corresponding segment if and only if it does
not cross the previous ones. Each point turns into a node and each
segment into an edge of graph G. Given the number of nodes, n, the
number of subsets is jSj ¼ 2n, and the number of subgraphs is
k ¼ n=5. The collection of subsets S is randomly generated, devot-
ing special care to guarantee that each node belongs to at least one
subset and that no subset is empty. The average cardinality of the
subsets S is set to ajSj, with a 2 f0:05; 0:1g.

The two random benchmark sets differ with respect to the
distribution of the values of function qS. In B, the distribution
mirrors the rather involved way in which costs are assigned both
to subsets and to single vertices in the real-world instances (see

Table 1
Values of the parameters.

Anti-cycling Diversification Stopping criteria

Kacm � �0 Kni Kdiv Cmax Imin Imax

3 0.7 0.9 25 30 1000 2000 20,000

702 F. Colombo et al. / European Journal of Operational Research 236 (2014) 695–705
Ceselli et al. (in press) for more details). In C, the cost of each subset
directly depends on the cost of the vertices it contains. In fact, the
values qS are computed as qS ¼

P
v2Swv , where wv is either fixed to

1 or randomly extracted (with a uniform distribution) from
f1; . . . ;10g or f1; . . . ;100g.

As for the cost threshold Q, this is defined in both benchmark
sets as

Q ¼ b

P
S2SqS min k; jVSjð Þ

k

which is a rough estimate of the average cost of each subgraph,
where coefficient b 2 f1:00;1:15g allows to produce tight instances
or loose ones.

Benchmark B combines 9 sizes (n ranges from 30 to 70 by steps
of 5), two average cardinalities for the subsets, two distributions
for qS and two cost thresholds Q, and therefore includes
9 � 2 � 2 � 2 ¼ 72 instances overall. Set C combines 5 sizes (n ranges
from 30 to 70 by steps of 10), three ranges for wv (i.e. three alter-
native distributions for qS) and two cost thresholds Q, and there-
fore includes 5 � 2 � 3 � 2 ¼ 60 instances.

5.2. A note on the objective function

The objective function / as defined in Eq. (1) is equivalent to the
following one:

w ¼ /�
X
S2S

qS

since we are subtracting a constant term to /. Function w measures
the excess cost with respect to the ideal situation in which no sub-
set is split among different subgraphs. Moreover, function w re-
moves an offset which unduly reduces the gap between upper
and lower bounds, or between different heuristic solutions. In fact,
given two solutions A and B with the corresponding objective func-
tion values /A and /B, or wA and wB, the following relation is always
true:

j/A � /Bj
min /A;/Bf g 6

j /A �
P

S2SqS

� �
� /B �

P
S2SqS

� �
j

min /A;/Bf g �
P

S2SqS
¼ jwA � wBj

min wA;wBf g

In all the following tables we report gaps referring to function w.

5.3. Lower bound comparison

This section compares the lower bound obtained by solving
with CPLEX the multicommodity flow formulation (2) with the
lower bound achieved by solving the extended formulation (3)
with our column generation approach. Formulation (2) has been
strengthened as in Ceselli et al. (in press) with inequalities and
parameter settings corresponding to those given by Propositions
2–5 for the pricing subproblem.

We adopt the following strategy to speed up the column gener-
ation process. At first, we apply heuristic PrTS with the parameter
setting reported in Table 1. As long as PrTS finds negative reduced
cost columns, we add them to the RMP, and reoptimize it. After
that, for each ‘ 2 V in turn, we invoke CPLEX to solve problem
PP‘. As soon as CPLEX finds a negative reduced cost column (no
matter if it is an optimal solution or not), we add it to the RMP
and reoptimize, as we do with the Tabu Search heuristic. When
CPLEX proves that PP‘ admits no such column, we select the next
root ‘ and proceed with the associated pricing problem. When
CPLEX fails to identify a negative reduced cost column for all
‘ 2 V , the optimal solution of the RMP is optimal also for the MP
and provides a lower bound for the extended formulation. The
whole process benefits by considering the roots ‘ in increasing or-
der, because in this way we solve first the larger subproblems PP‘,
which are more likely to provide negative reduced cost columns.
Notice that in our first experiments we directly applied CPLEX to
solve the pricing subproblems, because we had not yet imple-
mented the Tabu Search heuristic. With that configuration, we
could not compute the continuous relaxation of the extended for-
mulation in a reasonable amount of time even for small instances.
Only after developing the Tabu Search heuristic, it became possible
to solve the MP. Moreover, our analysis of the computational
experiments shows that the time required to solve the smallest
pricing subproblems is negligible w.r.t. the time required to solve
the biggest ones. As a consequence, we did not enumerate the
smallest solutions, and we did not develop any ad hoc exhaustive
search procedure, but we decided to simply apply the commercial
ILP solver.

Tables 2 and 3 report the results obtained, respectively, on the
benchmarks B and C of random instances, and on the instances A
extracted from the real ones. The first columns of the three tables
identify each tested instance, while column BK contains the best
known value of the objective function. Under label CFroot (2) we
report the percentage gap between the best known value and the
lower bound provided by the continuous relaxation of the compact
formulation (2) (column D (%)). The gap is computed as
BK � LBð Þ=LB. This bound can be computed in less than one second

for all the considered instances of benchmarks B and C. For the in-
stances of benchmark A, Table 4 includes an additional column, la-
belled CPU, which reports the time required, in seconds. As the
percentage gaps are huge (the upper bound is often several times
larger than the lower bound), the following two columns, labelled
CF (2) report the percentage gap and the computational time ob-
tained by CPLEX, with a time limit of one hour. If an instance can
be solved to optimality, the gap column reports a ‘‘–’’ label and
the CPU column reports a value lower than 3600; otherwise, the
gap column reports the residual gap and the CPU column reports
the label ‘‘TL’’. Finally, the columns labelled EFroot (3) report the
percentage gap and the computational time required to solve the
continuous relaxation of the extended formulation (3).

Notice that in these tables we report only the results obtained
on the smallest instances in the considered benchmarks. On the
larger instances, in fact, even the best lower bounds found by
CPLEX in one hour exhibited very large gaps w.r.t. the best known
upper bounds.

The results for the multicommodity flow formulation describe
what can be achieved directly applying a general-purpose solver
in a reasonable time limit. In all cases, the gap at the root node is
very large. Anyway, the branching process allows to solve to opti-
mality within one hour some instances with 30 vertices and a sin-
gle instance with 35 vertices of the random benchmarks B and C,
considered in Tables 2,3. By contrast, for the instances A extracted
from the real ones, considered in Table 4, CPLEX is able to solve in
one hour all the instances up to n ¼ 60 and some instances with 70
and 80 nodes. The gap increases steeply when passing from 30 to
35–40 vertices for benchmarks B and C and from 70 to 80 vertices
for benchmark A, and the computation requires to analyze hun-
dreds of thousands of branching nodes, with a non-negligible
memory consumption.

The column generation approach, on the contrary, does not
require any branching operation and its results are obtained in a
matter of a few seconds (few minutes for the instances of
benchmark A). The gap is quite stable with respect to the size of

Table 2
Comparison of the percentage gaps between the best known upper bound and the
lower bound achieved by the compact multicommodity flow formulation and the
extended formulation solved with column generation on the random instances of
benchmark B within a time limit of one hour.

Instance BK CFroot (2) CF (2) EFroot (3)

n a qmax b %D %D CPU %D CPU

30 0.05 10 1.00 721.04 330.0 – 181 3.02 3
30 0.05 10 1.15 548.03 539.7 – 312 3.64 3
30 0.05 100 1.00 804.36 231.4 – 328 3.01 4
30 0.05 100 1.15 602.80 266.5 – 186 2.78 2
30 0.10 10 1.00 2586.06 723.8 – 3139 2.02 7
30 0.10 10 1.15 2318.93 961.2 13.24 TL 14.85 7
30 0.10 100 1.00 3207.94 277.7 13.05 TL 1.91 5
30 0.10 100 1.15 2886.68 378.1 13.96 TL 4.50 7

35 0.05 10 1.00 1586.08 221.9 9.72 TL 5.66 4
35 0.05 10 1.15 1394.39 237.0 26.89 TL 4.92 8
35 0.05 100 1.00 1725.72 123.9 – 2621 3.59 4
35 0.05 100 1.15 1561.41 179.1 18.72 TL 5.97 4
35 0.10 10 1.00 4270.00 961.4 64.58 TL 6.79 13
35 0.10 10 1.15 3698.28 1249.7 63.25 TL 10.54 16
35 0.10 100 1.00 5242.28 399.9 32.73 TL 3.18 10
35 0.10 100 1.15 4692.87 465.5 56.02 TL 5.77 14

Table 3
Comparison of the percentage gaps between the best known upper bound and the
lower bound achieved by the compact multicommodity flow formulation and the
extended formulation solved with column generation on the random instances of
benchmark C within a time limit of one hour.

Instance BK CFroot (2) CF (2) EFroot (3)

n a wmax b %D %D CPU %D CPU

30 0.05 1 1 39 963.0 – 399 6.68 3
30 0.05 1 1.15 36 1457.0 – 2100 12.79 10
30 0.05 10 1 265 1427.9 – 927 10.78 5
30 0.05 10 1.15 234 1996.0 – 1733 17.28 6
30 0.05 100 1 2487 1416.2 – 702 11.13 3
30 0.05 100 1.15 2187 1966.1 – 1136 17.08 6
30 0.10 1 1 179 2295.2 10.05 TL 8.01 12
30 0.10 1 1.15 145 3189.8 – 1274 21.44 15
30 0.10 10 1 993 2996.5 22.36 TL 10.23 10
30 0.10 10 1.15 798 4057.9 – 2579 24.42 24
30 0.10 100 1 9343 2992.8 23.21 TL 12.36 12
30 0.10 100 1.15 7368 3950.1 – 1577 22.22 13

Table 4
Comparison of the percentage gaps between the best known upper bound and the
lower bound achieved by the compact multicommodity flow formulation and the
extended formulation solved with column generation on the instances of benchmark
A extracted from the provinces of Milan and Monza within a time limit of one hour.

Instance BK CFroot (2) CF (2) EFroot (3)

%D CPU %D CPU %D CPU

50-1 3864.21 38.12 0 – 117 14.73 76
50-2 5035.11 104.07 1 – 92 0.35 73
50-3 5847.16 151.34 1 – 409 3.73 53
50-4 5136.93 155.46 1 – 162 14.37 122
50-5 5460.25 104.40 0 – 77 4.70 68

60-1 4438.98 42.57 1 – 1894 9.76 71
60-2 6036.54 112.48 1 – 240 9.73 515
60-3 6696.81 138.95 1 – 900 10.54 95
60-4 5703.16 76.20 0 – 393 – 395
60-5 6121.01 80.03 1 – 327 4.68 220

70-1 4617.64 34.40 2 2.55 TL 2.94 66
70-2 6111.93 77.81 2 – 411 4.50 445
70-3 7091.37 105.09 1 – 3315 9.06 368
70-4 7058.42 94.16 1 3.80 TL 12.95 284
70-5 7100.00 76.27 2 7.54 TL 6.43 352

80-1 5434.92 60.69 4 20.30 TL 16.62 114
80-2 6816.78 68.41 4 – 1228 3.67 524
80-3 7830.83 94.00 2 15.90 TL 8.25 334
80-4 8111.31 85.10 5 10.46 TL 4.92 141
80-5 7660.55 77.00 4 16.39 TL 8.97 255

F. Colombo et al. / European Journal of Operational Research 236 (2014) 695–705 703
the instance and mainly depends on the value of the other param-
eters: the hardest instances for benchmark B are those with
a ¼ 0:10; qmax ¼ 10 and b ¼ 1:15; the hardest ones for benchmark
C have a ¼ 0:10 and b ¼ 1:15. For these reasons, in the following
experiments we take into account only the lower bound provided
by column generation.
5.4. Experiments on the heuristic algorithm

This section compares the results of heuristic HAP-LDS, de-
scribed in Section 4, with those obtained by a local search meta-
heuristic, denoted as VLNS-TS, which combines the Tabu Search
and the Very Large Neighbourhood Search approaches (Ceselli
et al., in press). Both heuristics have been executed on the same
machine described at the beginning of Section 5.

In order to solve the pricing subproblem, algorithm HAP-LDS
uses the Tabu Search procedure PrTS with the same parameters re-
ported in Table 1, except for the stopping criteria, which have been
modified setting Imin ¼ Imax ¼ 10;000. In this case, in fact, we are
mainly interested in finding a large number of columns for the final
ILP model. For the other parameters of HAP-LDS, we have set
Lmax ¼ 2 and Dmax ¼ 4. As discussed in Section 4, the aim of column
generation here is to quickly obtain heuristic solutions, and not to
prove their optimality through the computation of a tight lower
bound. Hence, we do not apply CPLEX to solve the pricing subprob-
lems, but we terminate the generation process as soon as PrTS
proves unable to identify negative reduced cost columns. For the
same reason, we impose a time limit of 5000 seconds on the exe-
cution of HAP-LDS, because for a few large instances the resolution
of the final ILP problem requires a high amount of computational
time, most of which is spent in proving the optimality of a solution
found much earlier.

Tables 5–7 report the results obtained by the two heuristics,
respectively, on the random benchmarks B and C and on bench-
mark A. The first column of each table reports the number of ver-
tices n. Column CPU reports the computational time in seconds
required by HAP-LDS; only on one of the largest instances of bench-
mark A, the computation reached the time limit of 5000 seconds.
For the sake of fairness, the same time was assigned, instance by
instance, to algorithm VLNS-TS. The following two columns report
the percentage gap between the result of HAP-LDS and the lower
bound obtained by column generation, and the number of columns
of the final ILP problem. The gap is computed as ðUB� LBÞ=LB,
where UB stands for the heuristic value obtained. The last two col-
umns report the percentage gap achieved and the time required by
VLNS-TS to reach its best solution. All the reported values are aver-
aged over the instances of the same size.

The performance of HAP-LDS on the random benchmark B (see
Table 5) is similar to that of VLNS-TS: the average gap obtained is
slightly lower and the result is better in 22 cases out of 80 versus
15 better results obtained by the competing algorithm. In order to
evaluate whether these differences are statistically significant, we
have applied Wilcoxon’s matched-pairs signed-ranks test (Wilcoxon,
1945), which estimates a probability60.1065 that such differences
are due to random fluctuations. Hence, the two algorithms have a
nearly equivalent performance, when given the same amount of
time.

The random benchmark C (see Table 6) appears to be harder
than B. In this benchmark the cost function does not mimic the dis-
tribution of the original real-world instances, as in the first one; in
fact, the costs are generated with a more straightforward random
process. The performance of HAP-LDS is still similar to that of

Table 5
Comparison of the results obtained by the HAP-LDS (percentage gap and number of
columns generated) and by VLNS-TS (percentage gap and time to reach the best
solution found) on benchmark B.

n CPU HAP-LDS VLNS-TS

%D Ctot %D CPUopt

30 40.1 4.47 9424.63 4.47 0.50
35 65.1 5.80 12377.25 5.80 0.67
40 97.1 5.53 18161.00 5.41 8.54
45 115.9 3.62 18597.50 3.73 10.38
50 151.9 3.25 28464.00 3.35 26.49
55 188.7 3.79 29070.25 3.73 14.14
60 230.2 2.53 31410.25 2.54 21.28
65 254.1 2.74 28521.63 2.91 65.21
70 309.0 2.67 37594.25 2.82 65.56
75 474.0 2.90 43743.88 2.82 146.25
Avg. 192.6 3.73 25736.46 3.76 35.90

Table 6
Comparison of the results obtained by the HAP-LDS (percentage gap and number of
columns generated) and by VLNS-TS (percentage gap and time to reach the best
solution found) on benchmark C.

n CPU HAP-LDS VLNS-TS

%D Ctot %D CPUopt

30 39.7 14.74 10132.75 14.27 0.25
40 120.9 11.20 23422.58 10.89 6.84
50 202.6 7.34 34826.75 6.88 32.72
60 430.4 5.87 44376.42 5.37 103.77
70 501.9 4.47 54987.33 4.40 66.31
Avg. 259.1 8.72 33549.17 8.36 41.98

Table 7
Comparison of the results obtained by the HAP-LDS (percentage gap and number of
columns generated) and by VLNS-TS (percentage gap and time to reach the best
solution found) on benchmark A.

n CPU HAP-LDS VLNS-TS

%D Ctot %D CPUopt

50 172.0 7.59 60258.00 7.57 11.00
60 338.4 7.06 61498.60 6.94 8.20
70 564.0 8.05 120587.20 7.18 6.20
80 1534.0 9.49 181234.60 8.49 14.80
90 2190.0 5.51 214633.60 5.10 58.40
Avg. 959.7 7.54 127642.40 7.06 19.72

704 F. Colombo et al. / European Journal of Operational Research 236 (2014) 695–705
VLNS-TS, but the average gap obtained is larger and HAP-LDS ob-
tains a better result in 5 cases out of 60 versus 17 better results ob-
tained by VLNS-TS. Wilcoxon’s test (Wilcoxon, 1945) estimates a
probability6 0:005 that such differences are due to random fluctu-
ations. Hence, the primal heuristic is slightly worse than VLNS-TS,
when given the same amount of time. A similar relation can be ob-
served on benchmark A, whose instances are extracted from the
real ones. Wilcoxon’s test (Wilcoxon, 1945) suggests that the per-
formance of VLNS-TS is better than that of HAP-LDS with a probabil-
ity 60.00003 of random fluctuations.

An interesting remark on the percentage gap of both heuristics
is that it almost consistently tends to decrease as the size of the in-
stances increases. Since the trend affects both heuristics and since
we do not know the optimal solution of most instances, this
probably means that the quality of the lower bound provided by
column generation improves as size increases, and is in general
rather tight. There is also a clear dependence on other parameters:
the gap tends to increase moving from benchmark B to C to A,
when comparing instances of the same size. Focusing on
benchmarks B and C, the instances with a ¼ 0:10 and b ¼ 1:15,
i.e. with a looser cost threshold and subsets of higher cardinality
tend to have larger gaps.

Finally, it is worth noticing that in a majority of cases the result
of the final ILP problem improves upon that of the diving phase (18
out of 25 for benchmark A, 64 out of 80 for benchmark B and 44 out
of 60 for benchmark C). For two instances of benchmark B and one
of C the diving phase is unable to find feasible solutions. In other
words, the combination of columns obtained in different stages
of the diversification mechanism, allowed by the final ILP problem,
is a crucial step and significantly improves the results of HAP-LDS.

5.5. Results on the real-world instances

The real-world instance concerning the province of Monza
proves easy to solve: the optimum can be found in 98 s by applying
CPLEX to the multicommodity flow formulation. The province of
Milan, on the contrary, is challenging: one hour of computation
approximately corresponds to solving the continuous relaxation
of the multicommodity flow formulation at the root node and pro-
vides a lower bound equal to 4609.81. By contrast, the column gen-
eration approach provides a lower bound equal to 9668.84 in
1918 seconds.

We then applied HAP-LDS imposing a time limit of 5000 sec-
onds on the diving phase. During this phase the algorithm found
the best known solution having a cost equal to 9785.58, with a
1.21% gap. The final ILP problem was solved to optimality in about
300 seconds, but without improving the best known solution. By
contrast, Algorithm VLNS-TS found in the same time a solution with
a cost equal to 9968.19, with a 3.10% gap. This solution is found
after 1043 seconds, but never improved in the following.

6. Conclusions

This paper considers a graph partitioning problem which mod-
els the partition of an organization into administrative areas. It
proposes a column generation approach which obtains tight lower
bounds (within a few percent units from the best known results)
also for realistic size instances (from 70 to 90 vertices), as opposed
to a multicommodity flow formulation which solves instances up
to 30 vertices for random instances and 70 vertices for realistic
ones, but yields large gaps as soon as the number of vertices ex-
ceeds these limits. We also propose a primal heuristic, based on
the column generation approach, which combines the generation
of promising columns based on their reduced cost, a heuristic lim-
ited discrepancy search mechanism and the solution of a final set
partitioning problem on the whole set of columns generated. This
approach, though its computational burden is intrinsically heavy,
proves competitive with a refined local search metaheuristic
drawn from our previous research on the topic. On random in-
stances which mimic the structure of realistic problems, it achieves
slightly better heuristic solutions, whereas on more general ran-
dom instances and on instances drawn from the real ones its per-
formance is slightly worse. When applied to the real-world
instance of Milan (133 vertices), the gap between the result of
the primal heuristic and the bound provided by column generation
is as small as 1.21%.

References

Arora, S., Rao, S., & Vazirani, U. (2008). Geometry, flows, and graph-partitioning
algorithms. Communications of the ACM, 51(10), 96–105. http://dx.doi.org/
10.1145/1400181.1400204. ISSN 0001-078.

Cacchiani, V., Hemmelmayr, V. C., & Tricoire, F. (2014). A set-covering based
heuristic algorithm for the periodic vehicle routing problem. Discrete Applied
Mathematics, 163(1), 53–64. http://dx.doi.org/10.1016/j.dam.2012.08.032. ISSN
0166-218X.

http://dx.doi.org/10.1145/1400181.1400204
http://dx.doi.org/10.1145/1400181.1400204
http://dx.doi.org/10.1016/j.dam.2012.08.032

F. Colombo et al. / European Journal of Operational Research 236 (2014) 695–705 705
Ceselli, A., Colombo, F., Cordone, R., Trubian, M. (in press), Employee workload
balancing by graph partitioning. Discrete Applied Mathematics doi: 10.1016/
j.dam.2013.02.014.

Desrosiers, J., & Lübbecke, M. E. (2005). A primer in column generation. In G.
Desaulniers, J. Desrosiers, & M. M. Solomon (Eds.), Column generation (pp. 1–32).
Springer.

Donath, W. E., & Hoffman, A. J. (1973). Lower bounds for the partitioning of graphs.
IBM Journal of Research and Development, 17(5), 420–425.

Fan, N., & Pardalos, P. (2010). Linear and quadratic programming approaches for the
general graph partitioning problem. Journal of Global Optimization, 48, 57–71.
ISSN 0925-5001.

Ferreira, C. E., Martin, A., de Souza, C. C., Weismantel, R., & Wolsey, L. A. (1998). The
node capacitated graph partitioning problem: A computational study.
Mathematical Programming, 81, 229–256. ISSN 0025-5610.

Fjällström, P.-O. (1998). Algorithms for graph partitioning: A survey. Linköping
Electronic Articles in Computer and Information Science, 10.

Glover, F. (1986). Future paths for integer programming and links to artificial
intelligence. Computers and Operations Research, 13, 533–549.

Glover, F., & Laguna, M. (1997). Tabu search. Kluwer Academic Publishers.
Guttmann-Beck, N., & Hassin, R. (2000). Approximation algorithms for minimum k-

cut. Algorithmica, 27(2), 198–207.
Ideker, T., Ozier, O., Schwikowski, B., & Siegel, A. F. (2002). Discovering regulatory

and signalling circuits in molecular interaction networks. Bioinformatics,
18(suppl 1), S233–S240. http://dx.doi.org/10.1093/bioinformatics/
18.suppl_1.S233.

Joncour, C., Michel, S., Sadykov, R., Sverdlov, D., & Vanderbeck, F. (2010). Column
generation based primal heuristics. In M. Haouari & A. R. Mahjoub (Eds.),
Proceedings of International Symposium on Combinatorial Optimization (ISCO
2010). Electronic notes in discrete mathematics (Vol. 36, pp. 695–702). Tunisia:
Hammamet.

Kim, J., Hwang, I., Kim, Y.-H., & Moon, B.-R. (2011). Genetic approaches for graph
partitioning a survey. In Proceedings of the 13th annual conference on Genetic and
evolutionary computation. GECCO ’11 (pp. 473–480). New York: ACM. http://
dx.doi.org/10.1145/2001576.2001642. ISBN 978-1-4503-0557-0.

Matula, D. W., & Shahrokhi, F. (1990). Sparsest cuts and bottlenecks in graphs.
Discrete Applied Mathematics, 27(1-2), 113–123. http://dx.doi.org/10.1016/
0166-218X(90)90133-W. ISSN 0166-218X.

Osipov, V., Sanders, P., & Schulz, C. (2012). Engineering graph partitioning
algorithms. In R. Klasing (Ed.), Experimental algorithms. Lecture notes in
computer science (Vol. 7276, pp. 18–26). Berlin/Heidelberg: Springer. ISBN
978-3-642-30849-9.

Pisinger, D., & Ropke, S. (2010). Large neighborhood search. In M. Gendreau & J.-Y.
Potvin (Eds.), Handbook of metaheuristics. International series in operations
research & management science (Vol. 146, pp. 399–419). US: Springer. http://
dx.doi.org/10.1007/978-1-4419-1665-5_13. ISBN 978-1-4419-1663-1.

Prescott-Gagnon, E., Desaulniers, G., & Rousseau, L.-M. (2009). A branch-and-price-
based large neighborhood search algorithm for the vehicle routing problem
with time windows. Networks, 54(4), 190–204.

Sanders, P., & Schulz, C. (2011). Engineering multilevel graph partitioning
algorithms. In C. Demetrescu & M. Halldórsson (Eds.), Algorithms – ESA 2011.
Lecture notes in computer science (Vol. 6942, pp. 469–480). Berlin/Heidelberg:
Springer. ISBN 978-3-642-23718-8.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics, 1,
80–83.

http://refhub.elsevier.com/S0377-2217(13)01014-X/h0015
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0015
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0015
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0020
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0020
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0025
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0025
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0025
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0030
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0030
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0030
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0035
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0035
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0040
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0040
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0045
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0050
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0050
http://dx.doi.org/10.1093/bioinformatics/18.suppl_1.S233
http://dx.doi.org/10.1093/bioinformatics/18.suppl_1.S233
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0060
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0060
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0060
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0060
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0060
http://dx.doi.org/10.1145/2001576.2001642
http://dx.doi.org/10.1145/2001576.2001642
http://dx.doi.org/10.1016/0166-218X(90)90133-W
http://dx.doi.org/10.1016/0166-218X(90)90133-W
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0075
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0075
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0075
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0075
http://dx.doi.org/10.1007/978-1-4419-1665-5_13
http://dx.doi.org/10.1007/978-1-4419-1665-5_13
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0085
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0085
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0085
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0090
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0090
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0090
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0090
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0095
http://refhub.elsevier.com/S0377-2217(13)01014-X/h0095

	Column-generation based bounds for the Homogeneous Areas Problem
	1 Introduction
	1.1 On the relationship with graph partitioning problems
	1.1.1 Cardinality constraint
	1.1.2 Cost threshold
	1.1.3 Connectivity constraint
	1.1.4 Objective function

	2 Mathematical programming formulations
	2.1 Compact formulation
	2.2 Extended formulation
	2.3 Computing the linear relaxation of the extended formulation

	3 On solving the pricing problem
	3.1 A formulation of the pricing subproblem
	3.1.1 Computational complexity
	3.1.2 Formulation strengthening

	3.2 A Tabu Search heuristic for the pricing problem
	3.2.1 A nonstandard tabu mechanism
	3.2.2 Initialization
	3.2.3 Solution pool
	3.2.4 Stopping criteria

	4 A column generation based heuristic for the HAP
	5 Computational results
	5.1 Benchmark instances
	5.2 A note on the objective function
	5.3 Lower bound comparison
	5.4 Experiments on the heuristic algorithm
	5.5 Results on the real-world instances

	6 Conclusions
	References

