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2and the Inventory-Routing Problem (IRP), also known as the One Warehouse Multi-Retailer Distri-bution Problem. In the CVRP, a 
eet of vehicles of �xed capacity are initially located at a centraldepot. A number of items must be delivered by the vehicles to each of the customers. We mayconsider the problem of delivering the goods from the central depot to satisfy customer demands,or the problem of picking up the loads at the customers to be brought to the depot. For the sake ofconsistency, we address only the former since these two cases are mathematically equivalent. Theobjective is to deliver the items to the customers such that each customer receives its demand, thevehicle capacity is not exceeded and the total distance traveled is minimized.In the Inventory-Routing Problem, a central warehouse with an unlimited supply of items servesa set of retailers distributed in a given area. The retailers experience a �xed demand per unit of timefor the items, and vehicles of limited capacity must be dispatched to replenish the retailer inventories.Each retailer incurs a holding cost per item per unit of time and a �xed cost per order placed. Theobjective is to schedule the vehicle departures and specify the loads destined for each retailer suchthat total cost per unit of time is minimized. This cost includes transportation cost, �xed ordercost and inventory holding cost at the retailers. Examples of systems that can be modeled in thisway occur when the warehouse is an outside supplier or when the depot is a manufacturing facilityproducing just to meet demand; see Anily and Federgruen (1990) and Gallego and Simchi-Levi(1990) for a more detailed description.Since all non-trivial routing problems are NP-hard, much of the research has focused on �ndingheuristics that give good solutions, but not necessarily optimal ones. Most routing heuristics fallinto the class called, by Christo�des (1985), two-phase methods. These heuristics are of two types:(i) cluster �rst-route second, or (ii) route �rst-cluster second. In the �rst category, one clusterscustomers into groups (phase I) and then designs e�cient routes for each cluster (phase II). In thesecond category, one constructs a traveling salesman tour through all the customers (phase I) andthen partitions the tour into segments (phase II). One vehicle is assigned to each segment and visitsthe customers according to their appearance on the traveling salesman tour. The distinction betweenthese two categories of heuristics on the quality of their solutions is very important, as demonstratedin Bienstock, Bramel and Simchi-Levi (1991). They show that no heuristic in the route �rst-clustersecond class can be asymptotically optimal for the CVRP. A heuristic is asymptotically optimal ifthe relative error between the cost of the solution provided by the heuristic and the cost of theoptimal solution decreases to zero as the number of customers increases.We introduce here a new heuristic for general routing problems. This heuristic, called the Lo-



3cation Based Heuristic (LBH), is based on formulating the routing problem as a location problemcommonly called the Capacitated Concentrator Location Problem (CCLP). This location problemis subsequently solved and the solution is transformed back into a solution to the routing problem.The method enables us to incorporate many di�erent routing features into the model, and hence itis possible to apply the technique to many di�erent problems.In Section 2, we provide some motivation for the Location Based Heuristic that stems from recentresults on the probabilistic analysis of the CVRP.In Section 3, we present the Location Based Heuristic. We also formulate the CapacitatedConcentrator Location Problem and present solution techniques for it.In Section 4, we apply the heuristic to the CVRP.We present some enhancements to the LBH thatwe have found to work well for this problem. In addition, we prove that the LBH is asymptoticallyoptimal. That is, the solution produced by the heuristic tends to the optimal solution value as thenumber of customers increases. To assess the quality of the solution on realistic size problems, wehave performed computational experiments on a set of standard test problems.In Section 5, we describe the IRP in more detail and apply our algorithm to it. To evaluate thequality of our solutions we develop a new lower bound on the cost of any policy that belongs to aspeci�c subset of policies, called �xed partition policies.In Section 6, we present some concluding remarks, and in particular we point out that the generalframework can handle several other types of combinatorial problems.2 PreliminariesThe Location Based Heuristic is motivated by some recent probabilistic results on the CVRP per-formed in Simchi-Levi and Bramel (1991) (see also Bramel at el. (1992)). To describe the results, we�rst present some notation. Let N = fx1; x2; � � � ; xng be the set of customers served by the commondepot x0, wk the demand of customer xk, dk the distance from customer xk to the depot, and dklthe distance between customers xk and xl and Q the vehicle capacity. Let L0(S) be the length of theoptimal traveling salesman tour through the customers of a set S � N and the depot. We denoteby Z� the value of the optimal solution to the CVRP, and by ZH the value of the solution producedby heuristic H.In their work, Simchi-Levi and Bramel relate the asymptotic optimal solution value of the CVRPto the asymptotic optimal solution of the bin-packing problem de�ned by the customer demandswith bins of size equal to the vehicle capacity. To present their result, let b�n be the minimumnumber



4of bins of capacity Q needed to pack n demands drawn from some (general) distribution �. Resultson the bin-packing problem tells us that there exists a constant 
 such that limn!1 b�n=n = 
; (a:s:).This means that for large n, the minimum number of bins required (b�n) is very well approximatedby 
n, where 
 depends only on the distribution �. They prove the following.Theorem 2.1 Let the customers be independently and identically distributed in a compact regionof <2 with expected distance E(d) to the depot. Let the demands (wi=Q) be independently andidentically distributed according to a probability measure � with support on [0; 1]. Then,limn!1 1nZ�n = 2
E(d) (a:s:): (1)That is, for large n, the cost of the optimal solution to the CVRP can be very well approximatedby the value 2n
E(d).The proof of the above result is based on constructing upper and lower bounds on Z�n thatconverge to the desired value as n tends to in�nity. The structure of the upper bound is of specialinterest to us since it provides a method to construct a feasible solution which is asymptoticallyoptimal. This upper bound, which provides the motivation for the Location Based Heuristic, isbased on the following procedure.Superimpose a grid of squares with side � > 0 on the area where the customers are located. Foreach square induced by the grid, solve the bin-packing problem de�ned by the demands of customersin the square and bins of capacity Q. For each bin in the solution to the bin-packing problem, sendone vehicle to serve the customers assigned to the bin. By de�nition, the total load in a bin willnot violate the vehicle capacity. The actual sequence or tour taken by each vehicle can be found bysolving a traveling salesman problem on the customers in the bin and the depot. However, for thepurpose of constructing an asymptotically optimal heuristic, Simchi-Levi and Bramel show that thefollowing tour, asymptotically, is good enough. The tour starts at the depot, goes to one particularcustomer on its route, called the seed point of the route, and then proceeds to go back and forthfrom this customer to all the other customers on the route, and then back to the depot, see Figure1. This heuristic is very nearly asymptotically optimal; that is, as the number of customers increasesthis method will provide a solution whose relative error decreases to �. Since � can conceivably bepicked as small as we like, we can ensure an arbitrarily small error. At a �rst glance, one mightbe tempted to use a similar heuristic in practice, by choosing � very small. The problem is that



5one needs to weigh the advantages of a small �, which will give a small error, and a large � whichwill ensure enough points in each grid to be able to pack customers e�ciently. To overcome thesedi�culties, we must turn to methods that do not use this type of region partitioning, but neverthelesshave the same structure as the above described upper bound.To do that, observe that the cost of each route in the above upper bound can be decomposedinto two parts. The �rst is the cost of the simple tour that starts at the depot goes to the seed pointand back to the depot; the second is the sum of the costs associated with having the vehicle travel toand from each customer to the seed point. It is therefore appropriate to construct a heuristic thatclusters customers together so as to minimize the sum of the lengths of simple tours plus the totalinsertion cost of customers into simple tours. This can be achieved by approximating the CVRPwith another combinatorial problem called the Capacitated Concentrator Location Problem (CCLP).This problem has applications in telecommunications network design.The CCLP:The Capacitated Concentrator Location Problem can be described as follows: given m possiblesites for concentrators of �xed capacity Qj, j = 1; 2; : : :;m, we would like to locate concentrators ata subset of these m sites and connect n terminals, where terminal i uses wi units of a concentrator'scapacity, in such a way that each terminal is connected to exactly one concentrator, the concentratorcapacity is not exceeded and the total cost is minimized. A site-dependent cost is incurred forlocating each concentrator; that is, if a concentrator is located at site j, the set-up cost is vj , forj = 1; 2; : : : ;m. The cost of connecting terminal i to concentrator j is cij (the connection cost), fori = 1; 2; : : :; n and j = 1; 2; : : : ;m.In formulating an instance of the CVRP as an instance of the Capacitated Concentrator LocationProblem, we make every customer (in the CVRP) a possible site for a concentrator in the CCLP.We want to make the concentrator selection problem in the CCLP correspond to the seed selectionproblem in the CVRP. Therefore, the set-up cost for locating a concentrator at site j correspondsto the cost of choosing customer j as a seed customer. This cost is simply the cost of sending thevehicle to the seed customer (customer j) and back; that is, the length of the simple tour throughthe depot and customer j. Each customer (in the CVRP) is also made a terminal in the CCLP. Thecost of connecting terminal i to a concentrator at site j is exactly the cost of inserting customer iinto a simple tour through seed customer j and the depot.In the next section, we use this insight to construct an e�ective method for solving general routingproblems, not just the CVRP.
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63 The Framework of the Location Based HeuristicIn this section we formulate a general routing problem and present the LBH. We then formulate theCCLP and discuss an e�ective technique for solving it.A General Routing Problem is presented as follows. Given a set of customers N , de�ne thecollection of servable sets (denoted C) to be those subsets of N that can be served by one vehicle.The term \servable" means that the set can be served by one vehicle without violating any of theconstraints of the routing problem. The cost of serving a set S � N is given by a real-valued routingfunction �(S) and is de�ned for all subsets of N , even those that are not servable.De�ne a partition of a set N to be a collection of disjoint non-empty sets S1; S2; : : : ; Sm suchthat [mi=1Si = N . De�ne a feasible partition to be a partition made up of only servable sets, say,fSigri=1 such that Si 2 C, for i = 1; 2; : : : ; r. The objective is the following:minall feasible partitions: S1;:::;Sr2C rXi=1 �(Si):3.1 The HeuristicIn its most general form, the Location Based Heuristic consists of the following three phases:Phase I: For an integer m, choose m non-empty subsets of N , say T1; T2; : : : ; Tm, called seed sets.These are just generalizations of seed points. These sets may overlap, and their union may not evencover all of N . Calculate the set-up costs vj = �(Tj), for each j = 1; 2; : : :;m. Moreover calculatethe connection costs cij = �(Tj [ fxig)� �(Tj), for each i = 1; 2; : : : ; n and j = 1; 2; : : :;m.Phase II: Solve the CCLP with the data de�ned in Phase I. The CCLP becomes the problem ofchoosing some of the seed sets, and \connecting" nodes to these sets, such that the total set-up costof the seed sets chosen plus the sum of connection costs is as small as possible.Phase III: Transform the solution to the CCLP into a solution to the routing problem.In the above formulation of the LBH, the sets Tj , j = 1; 2; : : : ;m, correspond to sets of customers,that, if selected, are served together. Therefore, the set-up cost vj represents the cost of selectingthe set Tj , i.e., the cost of serving this set of customers. The connection cost cij, on the other hand,represents the added cost of serving customer xi with the set Tj .



73.2 A Solution Method for CCLPPhase II of the LBH requires a solution method for CCLP. We �rst formulated the CCLP as thefollowing integer linear program. Letyj = ( 1; if a concentrator is located at site j,0; otherwise,and let xij = ( 1; if terminal i is connected to concentrator j,0; otherwise.Then CCLP is: Problem P :Min nXi=1 mXj=1 cijxij + mXj=1 vjyjs:t: mXj=1xij = 1 8i; (2)nXi=1 wixij � Qj 8j; (3)xij � yj 8i; j; (4)xij 2 f0; 1g 8i; j; (5)yj 2 f0; 1g 8j: (6)Constraints (2) ensure that each terminal is connected to exactly one concentrator, and con-straints (3) ensure that the concentrator's capacity constraint is not violated. Constraints (4) guar-antee that if a terminal is connected to site j, then a concentrator is located at that site. Constraints(5) and (6) ensure the integrality of the variables.Unfortunately, CCLP is NP-hard which indicates that the existence of a polynomial time al-gorithm for its optimal solution is unlikely. Hence, at a �rst glance it seems that we have notgained much; we have transformed one NP-hard problem (the routing problem) into another NP-hard problem (the CCLP). The advantage, however, is that, while both are NP-hard, the CCLPis considerably easier to solve in the sense of �nding a \good" solution in a \reasonable" amountof time. One reason is that the constraints of the CCLP are simple compared to the constraintsthat appear in the routing problem, namely the subtour elimination constraints. In addition, thestructure of the objective function in the CCLP is substantially simpler than the cost structure in



8the general routing problem.Several algorithms have been proposed to solve the CCLP in the literature; all are based onthe celebrated Lagrangian relaxation technique. This includes Neebe and Rao (1983), Barcelo andCasanovas (1984), Klincewicz and Luss (1986), and Pirkul (1987). The one we use is derived in asimilar fashion as Pirkul (1987) which seems to be the most e�ective.This solution method concentrates on relaxing a set of constraints, bringing them into the objec-tive function with a multiplier vector giving a lower bound, then using a subgradient search methodto �nd the best lower bound. At each step of the subgradient procedure (i.e., for each set of multi-pliers) we try to make use of the information given by the multipliers to �nd a feasible solution tothe location problem. This step consists of a simple and e�cient subroutine. After a prespeci�ednumber of iterations the algorithm is terminated.More speci�cally, we relax the problem by including constraints (2) in the objective function.For any vector � 2 <n, consider the following problem P�:Problem P� :Min nXi=1 mXj=1 cijxij + mXj=1 vjyj + nXi=1 �i� mXj=1 xij � 1�subject to (3)-(6). Let Z� be its optimal solution with fy; xg its optimal variables.One can see that P� separates into m easily solvable subproblems. For a given j = 1; 2; : : : ;m,de�ne the following: Problem Pj� :Min nXi=1 cijxij + vjyjs:t: nXi=1 wixij � Qj;xij � yj 8i = 1; 2; : : :; n;xij 2 f0; 1g 8i = 1; 2; : : : ; n;yj 2 f0; 1gwhere cij � cij + �i, for all i; j.Clearly, problem Pj� is no more di�cult than a single constraint 0-1 knapsack problem, for whiche�cient algorithms exist; see, e.g., Nauss (1976). If the optimal knapsack solution is less than �vj,then the corresponding optimal solution to Pj� is found by setting yj = 1 and xij according tothe knapsack solution, indicating whether or not terminal i is connected to concentrator j. If the



9optimal knapsack solution is more than �vj , then the optimal solution to Pj� is found by settingyj = 0 and xij = 0 for all i = 1; 2; : : :; n. Let Zj� be the optimal solution value of Pj�.The solution to P�, the lower bound on the optimal solution to CCLP, is therefore easily found.To �nd the best possible lower bound, we use a subgradient procedure.Using an initial vector �(0), we solve the m knapsack problems and get a solution fy(0); x(0)g.This solution in most cases is not a feasible solution to P, since the values x(0) do not necessarilysatisfy constraints (2). We generate new multipliers using the following formula:�(k+1)i = �(k)i + tk( mXj=1 x(k)ij � 1); 8i = 1; 2; : : : ;m:The step size tk is determined by tk = � � (Z � Z�(k))Pni=1(Pmj=1 x(k)ij � 1)2 ;where � is a scalar and Z is an upper bound on the optimal solution to P (see Held, Wolfe andCrowder (1974) for a justi�cation of this formula). The scalar � is initially set to 2 and halved afterthe bound has not improved in a prespeci�ed number of iterations. When � reaches some lowerbound �xed beforehand, the algorithm is terminated.For a given set of multipliers, if the values x(k) satisfy (2), then we have an optimal solution toproblem P, and we stop. Otherwise, we perform a quick subroutine to �nd a feasible solution to P.This procedure is based on the observation that the knapsack solutions found in the lower boundgive us some information concerning the bene�t of setting up a concentrator at a site (relative to thecurrent multipliers�(k)). If, for example, the knapsack solution corresponding to a given concentratoris 0, i.e., the optimal knapsack is empty, then this is most likely not a \good" concentrator to selectat this time. In contrast, if the knapsack solution has a very negative cost, then this is a \good"concentrator. In this sense, the multipliers and the knapsack solutions tell us which concentratorsites are the best ones to select. Given the values Zj�(k) (j = 1; 2; : : :;m), renumber the concentratorsso that Z1�(k) � Z2�(k) � � � � � Zm�(k) :The procedure we perform is called GREEDY, since it allocates terminals to concentrators ina myopic fashion. Let M be the minimum possible number of concentrators used in the optimal



10solution to CCLP. This can be found by solving the bin-packing problem de�ned on the valueswi with bin capacities Qj; see Johnson et al. (1974). Starting with the \best" concentrator, inthis case concentrator 1, connect the terminals in its optimal knapsack to this concentrator. Then,following the order of the renumbered knapsack solutions, take the next \best" concentrator (sayconcentrator j) and solve a new knapsack problem: one de�ned with costs cij = cij + �(k)i for eachterminal i still unconnected. Connect all terminals in this knapsack solution to concentrator j. Ifthis optimal knapsack is empty, then a concentrator is not located at that site, and we go on to thenext concentrator. Continue in this manner until M concentrators are located. Let fy0; x0g be theresulting solution.The solution fy0; x0g may still not be a feasible solution to P since some terminals may not beconnected to a facility. In this case, unconnected terminals are connected to facilities in use wherethey �t with minimum additional cost. If needed, additional facilities may be opened following theordering of the renumbered knapsack solutions. A local improvement heuristic is then performed toimprove on this location solution, using simple interchanges between terminals, and the best solutionis kept as the upper bound to P.Upon termination of this algorithm, if the relative error between the best upper bound and thebest lower bound is more than a threshold value (typically 0.5 percent), we start a branch and boundalgorithm to reduce this gap. The branching is done by �xing the values yj to either 0 or 1. Theprocedure described above is repeated at each node of the branch and bound tree, until the relativeerror is reduced below the threshold value. If the best upper bound does not decrease in the searchof a number of consecutive nodes of the tree (typically 15), the branching is terminated.4 The Capacitated Vehicle Routing ProblemIn this section, we describe the application of the LBH to the CVRP. This problem has been analyzedextensively in the literature in the last three decades. For a survey, see Christo�des (1985).4.1 FormulationThe Capacitated Vehicle Routing Problem can be stated as follows: a set of n geographically dis-tributed customers needs to be served by a 
eet of identical vehicles of �xed capacity Q. Associatedwith customer xk is a positive demand wk � Q which is the amount of load that needs to be deliv-ered to that customer. The objective is to design e�cient routes to serve the customers at minimum



11cost, where cost is proportional to distance traveled. We concentrate here on the case where thevehicles have identical capacities since all of the benchmark problems from the literature have thisproperty. However, the adaptation of the Location Based Heuristic to the di�erent capacity case isstraightforward.In the CVRP, the collection of servable sets isC = nS � N ���Xi2S wi � Qgand the routing function is given by �(S) = L0(S):In Phase I, for a given number m, we choose seed sets, T1; T2; : : : ; Tm; each set being a subset ofthe customers. In Section 4.2 we present the types of seed sets that we have found to work well inpractice. The cost of selecting set Tj , or setting up a concentrator at site j, is then vj = �(Tj), forj = 1; 2; : : : ;m. For i = 1; 2; : : :; n and j = 1; 2; : : : ;m, the connection costs cij is a measure of thecost of inserting node xi into set Tj, i.e.,cij = �(Tj [ fxig)� �(Tj):Since �nding the exact values of cij can be quite time consuming, in Section 4.2 we present what wehave found to be satisfactory approximations.In Phase II, we solve the CCLP with the data in this form. The solution to CCLP speci�es whichterminals (customers) to connect to which concentrators (seed sets).In Phase III, we transform the location solution provided in Phase II into a feasible routingsolution. Let fy�; x�g be the best solution found for P and for each j with y�j = 1 de�ne Sj = f1 �i � njx�ij = 1g. Assume, that S1; S2; : : : ; Sr are the non-empty sets after renumbering. Each Sj is aset of customers that can be served by one vehicle since they represent feasible connections in theCCLP (since x� satis�es (3)). The cost of the Location Based Heuristic solution to the CVRP isthen: ZLBH = rXj=1�(Sj):



124.2 Selection of Seed Sets and Connection CostsIt is clear that many possible variations of the LBH can be implemented depending on two decisions:�rst, the types of seed sets chosen, and second, the connection cost approximations used.The selection of seed sets provide much 
exibility in the implementation. If two or more customersmust be served together, for reasons inherent in the particular application, then they can be inputedas a seed set, which will ensure that they are served together in the �nal routing solution. Also, ifsome routes are known to be good routes by an experienced dispatcher, they can be inputed at thisphase and will be in the �nal solution.The choice of connection costs also provides much 
exibility. Let the optimal traveling salesmantour through a seed set Tj be the cycle fx0 = xj0; xj1 ; xj2; : : : ; xjp; xjp+1 = x0g. There are manypossible connection costs, of which we have used the following:direct cost: cij = minl=0;:::;pf2dijlg; ornearest insertion cost: cij = minl=0;:::;pfdjli + dijl+1 � djljl+1g:Direct cost has the advantage that, when added to �(Tj), it provides an upper bound on the routingcost, while the nearest insertion cost works well because it is accurate for small sets Tj .We have implemented several di�erent versions of the LBH. Each one starts with the seed setsTj = fxjg for j = 1; 2; : : : ; n with m = n. In this case �(Tj) = 2dj. This seems to work well for theCVRP.The heuristics di�er in the types of connection costs. In the �rst implementation, the connectioncosts are determined by the nearest insertion cost, i.e., cij = �(fxjg[fxig)��(fxjg) = di+dij�dj.We call this version the Seed-Tours Heuristic (ST).Another implementation has connection costs determined by the direct cost cij = 2dij. We callthis version the Star-Connection Heuristic (SC), since connections are made in the form of stars.In both cases, for each j = 1; 2; : : :;m, the customer that de�nes the seed set Tj , i.e. xj , iscalled the seed customer for that seed set. Note that when the seed sets have only one customer, allcalculations of vj and cij are trivial.One can note the relationship between the ST Heuristic and the Generalized Assignment Heuristicdue to Fisher and Jaikumar (1981). In their heuristic, Fisher and Jaikumar choose an initial setof m seed customers, say fxj1; xj2; : : : ; xjmg. For each seed customer, say xjk , they determine thecost of inserting a non-seed customer xi into the tour containing only customer xjk , i.e., their cost



13is exactly di + dijk � djk . The problem then is to \add" the customers to \tours" at minimum cost.To do this they solve a generalized assignment problem. The solution is a partition of m sets, allcontaining at most a total demand of Q and each containing one seed customer.It is clear that the performance of the Generalized Assignment Heuristic depends highly onthe initial set of seed customers. For this purpose, Fisher and Jaikumar suggest several methodsincluding an interactive approach (leaving the decision to the scheduler) or an automatic approach(based on a region partitioning scheme). Using the terminology of Fisher and Jaikumar, the STheuristic chooses simultaneously the best m seeds (out of a possible n) and the best way to assignthe customers to these seeds. That is, it combines the seed selection problem with the problem ofassigning customers to the selected seeds by solving the CCLP.4.3 An Asymptotically Optimal HeuristicIn this section we show that the Star-Connection Heuristic (SC) is asymptotically optimal. Thismeans that the relative error between the solution it produces and the optimal solution decreasesto zero as the number of customers increases. We prove this result by showing that the solution tothe CCLP de�ned by the parameters in the implementation of the Star-Connection Heuristic canbe transformed into a routing solution which is asymptotically optimal to the CVRP.The speci�c set-up and connection costs used in the Star-Connection Heuristic imply that thecost of the solution to the CCLP (at the end of Phase II of the LBH) is an upper bound on the costof the routing solution produced in Phase III. That is, the cost of the routing solution generated bythe SC Heuristic is bounded from above by the cost of the solution to the CCLP. This is true sincethe Star-Connection Heuristic approximates the routing cost by having the vehicle travel back andforth to and from the seed point to each customer. This provides an upper bound on any e�cientrouting of the customers. All that needs to be shown, therefore, is that there is a solution to CCLPwhose cost asymptotically approaches the value on the right-hand side of (1). We do this in thefollowing theorem.Theorem 4.1 Let the customers be independently and identically distributed in a compact region of<2 with expected distance E(d) to the depot. Let the demands (wi=Q) be independently and identicallydistributed according to a probability measure � with support on [0; 1]. Then, the Star-ConnectionHeuristic is asymptotically optimal, i.e.,limn!1 1nZSCn = 2
E(d) (a:s:):



14Proof. We start with an upper bound on the cost of the solution produced by the LBH, that is,we construct a feasible solution to the CCLP. Pick a �xed � > 0 and let G(�) be an in�nite gridof � � � squares. Let A be the compact support of the distribution �. Let A1; A2; : : : ; At(�) be thesubregions of G(�) that intersect A and have RAi d� > 0: Let n(i) be the number of customers locatedin subregion Ai.For a given subregion Ai, �nd an optimal bin-packing of customer demands in the subregionand bin capacity Q. Let b�(i) be the number of bins used in this optimal packing, and let Bj(i) bethe set of customers in the jth bin of this packing. Now arbitrarily select one customer from eachbin; say xl1 ; xl2 ; : : : ; xlb�(i) . Each of these customers is a \seed" customer, that is, they correspondto the selection of the seed sets Tl1 ; Tl2 ; : : : ; Tlb�(i) . Now connect each terminal (or customer) tothe concentrator corresponding to the seed customer in its bin. Repeating this for each subregionde�nes a solution to the CCLP with value ZL.Then, ZSCn � ZL = t(�)Xi=1 b�(i)Xj=1 nvlj + Xxk2Bj (i) ckljo= t(�)Xi=1 b�(i)Xj=1 n2dlj + Xxk2Bj (i) 2dkljo:Clearly, dklj � �p2 for each xk 2 Bj(i). Hence,ZSCn � ZL � t(�)Xi=1 b�(i)Xj=1 n2dlj + 2(jBj(i)j � 1)�p2o:Let d(i) be the distance from the depot to the nearest point in subregion Ai. Then dj � d(i) + �p2for each customer xj in region Ai. Hence,ZSCn � ZL � t(�)Xi=1 n2b�(i)d(i) + 2n(i)�p2o;� 2 t(�)Xi=1 b�(i)d(i) + 2n�p2:



15Dividing by n and taking the limit giveslimn!1 1nZSCn � limn!1 1nZL � 2 limn!1 1n t(�)Xi=1 b�(i)d(i) + 2�p2:In Simchi-Levi and Bramel (1990) (see also Bramel et al. (1991)) there is a simple proof of the almostsure result 8� > 0; limn!1 1n t(�)Xi=1 b�(i)d(i) � 
E(d):Then, limn!1 1nZSCn � limn!1 1nZL � 2
E(d) + 2�p2:Since � was arbitrary and with the lower bound of equation (1), this proves that the Star-ConnectionHeuristic is asymptotically optimal for the CVRP.4.3.1 Computational IssuesTo solve the CVRP, we perform an enhancement phase in parallel with the GREEDY procedurepresented in Section 3.2. The GREEDY procedure constructs solutions to CCLP at each iteration ofthe subgradient procedure while this procedure at the same time constructs solutions to the CVRP.The connection costs used in the CCLP only approximate the real cost of adding a customerto a tour. Therefore, to get a better approximation we try to update the connection costs as weadd terminals to concentrators. Each time we connect a terminal to a concentrator we update theconnection costs to take into account this new customer. Speci�cally, for each set of multipliers, weperform the following procedure. Select the M \best" concentrators according to the current knap-sack solutions; these are concentrators 1; 2; : : : ;M after renumbering. Consider the set of terminalsthat are connected to only one concentrator in the m knapsack solutions, i.e., that appear in onlyone \knapsack". The subset of these terminals that are connected to one of the M concentratorsselected are each connected to the concentrator whose knapsack they appear in. For each concentra-tor, determine the tour through the terminals connected to that concentrator (and the concentratoritself) using the nearest insertion method (see, Rosenkrantz, Stern and Lewis (1977)); a customeris inserted into a tour without changing the orientation of the tour, but simply by inserting thecustomer in the cheapest way between two other customers.Then determine for each unconnected xi and each j (1 � j �M ), the costs ĉij, which represents



16the cost of inserting node xi into the tour associated with concentrator j, using the nearest insertioncost. If xi does not �t in tour j (because of the capacity constraint) then let ĉij = +1. The valueof ĉij represents the \closeness" of terminal i to the tour associated with concentrator j. Next,determine the penalty associated with inserting customer xi into its second \closest" tour instead ofinto its \closest" tour. Let xi� be the customer with the largest such penalty. Insert node xi� intoits \closest" tour, say tour j�, using the nearest insertion method. Update the insertion costs fĉijg,(in fact, only ĉij� needs to be updated) and continue in this manner until all terminals are in tours.The resulting routing solution is then compared with the best solution found so far and the betterone is kept.4.4 Computational ResultsIn this section we report on computational experiments with the Location Based Heuristic on a setof 7 standard test problems from the literature. The problems vary in size from 50 to 199 customersas reported in Table 1. The problems are from Christo�des, Mingozzi and Toth (1979). We comparethe performance of the LBH to the performance of the following 9 published heuristics:� SAV = Clarke and Wright's Savings Algorithm (1964),� M&J = Mole and Jameson (1976),� PSA = Altinkemer and Gavish's Parallel Savings Algorithm (1985),� MBS = Desrochers and Verhoog's MBS Algorithm (1989),� SWP = Gillett and Miller's Sweep Algorithm (1974),� TPM = Christo�des, Mingozzi and Toth's Two-Phase Method (1979),� F&J = Fisher and Jaikumar's Generalized Assignment Heuristic (1981),� TRE = Christo�des, Mingozzi and Toth's Incomplete Tree Search Algorithm (1979),� P&F = Pureza and Franca's Tabu Search Algorithm (1991),The CPU time of the LBH (in seconds) is based on running the algorithm on an RS6000 Model550. Table 1Computational Results on the Standard Test Problems



17Prob. Published Heuristics Alg. CPU Alg. CPUNo. Size SAV M&J PSA MBS SWP TPM F&J TRE P&F ST1 Time SC2 Time[1] 50 585 575 564 586 532 547 524 534 536 524.6 68 524.9 240[2] 75 900 910 878 885 874 883 857 871 842 848.2 406 884.3 656[3] 100 886 882 868 889 851 851 833 851 851 832.9 890 894.9 1237[4] 100 831 879 845 828 937 827 824 816 | 826.1 400 828.9 110[5] 120 1079 1100 1066 1058 1266 1066 | 1092 | 1051.5 1303 1051.2 2570[6] 150 1204 1259 1104 1133 1079 1093 1014 1064 1081 1088.6 2552 1123.7 3412[7] 199 1540 1545 1370 1424 1389 1418 1386 1386 | 1461.2 4142 1438.2 8021(1) Seed-Tours Heuristic.(2) Star-Connection Heuristic.We observe that the Seed-Tours Heuristic �nds solutions better than most of the other publishedheuristics. The running time is comparable to the running time of many heuristics, including therecently published, Parallel Saving Algorithm; see Altinkemer and Gavish (1991).5 The Inventory-Routing ProblemWe now turn our attention to another routing problem that involves a more complex cost structure,but can however be handled by the Location Based Heuristic.Consider the problem where n retailers are geographically dispersed in a given area. A centralwarehouse has an unlimited supply of items. Retailer i faces a deterministic demand of Di itemsper unit of time, a �xed cost Ki for each order placed, and an inventory holding cost of hi peritem per unit of time. We assume an unlimited amount of inventory can be kept at each of theretailers. We seek a dispatching and routing strategy that delivers items to retailers from the centralwarehouse such that total inventory holding cost, order cost and transportation cost per unit oftime is minimized. We assume all demands must be met without backlogging, that is, shortages arenot allowed. The problem is called the One-Warehouse Multi-Retailer Distribution Problem, or theInventory-Routing Problem (IRP).The problem is clearly di�cult since the set-up cost for each order is very complicated. It consistsof the �xed cost plus the cost of sending a vehicle to serve a set of customers, which is proportionalto the total distance traveled by the vehicle. This set-up cost is not separable and this is what makesthe problem drastically more di�cult to solve than the CVRP.



18As is pointed out by Anily and Federgruen (1990), optimal policies for this problem may be verycomplicated and in addition characterizing them mathematically may not be easy. Moreover, inpractice, policies that are not easy to implement are not often used. For example, a policy where aretailer receives orders at very irregular intervals would not be easy to implement. Therefore, muchof the research on this problem concentrates on policies that are, in some sense, simple. The totalityof possible transportation and scheduling policies is much too large, therefore in general researchersconcentrate their e�orts on studying subsets of policies.Many approaches have been used to attempt to tackle this problem. Gallego and Simchi-Levi(1990) prove that a direct shipping policy, a policy where each vehicle serves only one customer, iswithin 6% of optimality under certain conditions. Herer and Roundy (1990) restrict their attentionto power of two policies, and show some good empirical results when vehicles have unlimited capacity.Anily and Federgruen (1990) suggest region partitioning strategies that are asymptotically optimalwithin a speci�c class of policies.Consider the following set of policies, which we call Fixed Partition Policies. The set of customersis partitioned intom disjoint sets, S1; S2; : : : ; Sm and each set is served separately. That is, whenevera customer in a set is served, all the customers in the set are served. What is the justi�cation forthis subset of policies? Clearly, these types of policies are easy to implement. Each set has its owncycle time and all retailers get orders at constant regular intervals. In addition, drivers need onlylearn a small number of possible routes.It is clear that if a given set of customers are always served together, then the set-up cost forordering is just the cost of the optimal traveling salesman tour through the customers of the setand the depot plus the �xed order costs. In this case, it is well known that optimal deliveries occurat regular �xed intervals. Since the set-up cost is known, the optimal cycle time, the time betweendeliveries, can be found using the traditional Economic Order Quantity formula. Let S be a set ofcustomers served every t(S) units of time and de�ne K(S) =Pi2S Ki and D(S) =Pi2S Di. Then,the cost per unit time for serving the set S is1t(S)�L0(S) +K(S) +Xi2S 12hit2(S)Di�= L0(S) +K(S)t(S) + t(S)Xi2S 12hiDi: (7)If the vehicles have unlimited capacity, the optimal cycle time, denoted by t�(S), can be found by



19minimizing on t(S): t�(S) � �2(L0(S) +K(S))Pi2S hiDi �1=2:Note that the vehicle capacity restriction disallows us from always choosing this minimum, and infact, the cycle time t(S) must satisfy t(S)D(S) � Q:The best feasible cycle time for a set S is therefore given by:t(S) = minnt�(S); QD(S)o:Hence, in this problem, the routing function is�(S) = L0(S) +K(S)t(S) + 12 t(S)Xi2S hiDi; (8)and the collection of servable sets is simply C = fSjS � Ng.The Location Based Heuristic can now be implemented. In Phase I, we select m seed sets andcalculate vj = �(Tj); 8j = 1; 2; : : :;mand cij = �(Tj [ fxig)� �(Tj); 8i = 1; 2; : : : ; n; j = 1; 2; : : :;m:In Phase II, since in the IRP any subset of N is a servable set, there is no need to have capacitieson the concentrators. Hence we use the formulation of the CCLP without constraints (3), in thiscase the location problem is simply a facility location problem. The solution method described inSection 3.2 can still be used, and in fact it runs more e�ciently since no knapsack algorithm isneeded.In Phase III, the solution to the CCLP corresponds to a partition of the customers into disjointsets, say sets S1; S2; : : : ; Sr . These sets correspond to a feasible solution to the IRP: a �xed partitionpolicy. The cost of the Location Based Heuristic solution to the IRP is then:ZLBH = rXj=1�(Sj):



20Again, many di�erent versions of this algorithm can be implemented. We have used a similarde�nition as in the ST Heuristic for the CVRP and have had success. De�ne Tj = fxjg, for eachj = 1; 2; : : : ; n with m = n. Then, the values cij can be calculated exactly with little e�ort. We callthis version the Seed-Tours (ST) Heuristic for which computational results are reported in Table 2.5.1 A Lower Bound on Fixed Partition PoliciesIn order to assess the quality of the solutions produced by the Location Based Heuristic for theIRP, we must be able to compute a good lower bound on the best solution within the class of �xedpartition policies.For any �xed partition policy P, let the partition be fXjgmj=1 where the set Xj is served everyt(Xj) units of time, with a load of t(Xj)D(Xj ). Let Z(P) be the total cost per unit time for thispolicy. Let Xi be the set in the partition fXjgmj=1 that includes customer (retailer) xi. Then wehave the following:Z(P) = mXj=1 �(Xj)= mXj=1 � 1t(Xj) [L0(Xj) +K(Xj)] + 12t(Xj) Xi2Xj hiDi�= mXj=1 � 1t(Xj) 1D(Xj) Xi2Xj Di[L0(Xj) +K(Xj)] + 12 t(Xj) Xi2Xj hiDi�= nXi=1 � 1ti DiD(X i) [L0(X i) +K(X i)] + 12tihiDi� (where ti � t(X i))� nXi=1 mint�i�0n 1t�i DiD(X i) [L0(X i) +K(X i)] + 12 t�ihiDi ��� t�iD(X i) � Qo:Let g�(xi) be the cost of the minimum cost tour (including only transportation and �xed ordercosts), starting and ending at the depot, that serves a set of customers S with xi 2 S and D(S) = �.If for a speci�c value of �, no tour satis�es these conditions (e.g., � < Di) then assign an in�nitevalue to g�(xi). The value � is called the total demand rate of the tour. Then,Z(P) � nXi=1 mint�i�0n 1t�i Di gD(Xi)(xi)D(X i) + 12 t�ihiDi ��� t�iD(X i) � Qo;� nXi=1 mint�i�0;X�i �N n 1t�i Di gD(X�i )(xi)D(X�i ) + 12 t�ihiDi ��� t�iD(X�i ) � Qo:



21Let D�i � D(X�i ), then the lower bound isnXi=1 mint�i�0;D�i�Di n12hiDit�i + Dit�i gD�i (xi)D�i ���t�iD�i � Qo:To solve this, for each customer xi and each value of � for which g�(xi) is �nite, solve the followingproblem: f�(xi) = mint�0 n12hiDit+ Dit g�(xi)� ���t � Q� o (9)Then, the lower bound on all �xed partition policies is:8P; Z(P) � nXi=1 minDi���D(N) f�(xi): (10)Unfortunately determining the values g�(xi) is in general NP-hard, since the Traveling SalesmanProblem is a special case. Hence we use a dynamic programming procedure to �nd lower boundsto these values based on the following simple observation. The tours that de�ne the values g�(xi)are simple tours; no customers are visited more than once. This is the constraint which makesthe computation intractable. Hence, we relax this constraint and allow customers to be visitedmore than once. This clearly provides a lower bound on the original values g�(xi). It has howeverthe misleading property that a tour that serves a set of customers with total demand rate � mayactually be visiting a set of customers whose total demand rate is less than �. This will not causeany problems since the computed value will still represent a lower bound on the cost.In Christo�des, Mingozzi and Toth (1981), a dynamic programming procedure is implementedto �nd a lower bound on g�(xi) for each customer xi and for each value of � (Di � � � D(N )). Theprocedure was designed for the CVRP, but also works for this problem. Let  �(xi) be the cost of theminimum cost route, without 2-loops (cycles of the form f: : : ; xk; xl; xk; : : :g), starting and endingat x0, passing through xi and with a total demand rate of �. It is clear from the construction that �(xi) � g�(xi); 8i; �, and hence replacing g with  in (9), still yields a lower bound on any �xedpartition policy. The complexity of this lower bound is O(n2Pni=1Di).The lower bound (10) can be further improved by using the observation that in any �xed partitionpolicy every customer has exactly one vehicle arriving and leaving its location. Based on this, asubgradient procedure can improve the bound in much the same way as in Christo�des, Mingozziand Toth (1981) for the CVRP. The improvement comes from the fact that the set of routes obtained



22in the computation of the lower bound have cycles and are not customer disjoint. The idea is toassign a penalty on each customer and to recalculate the lower bound. Adjusting the penalties usingthe standard formula of Held, Wolfe and Crowder (1974) will result in new penalties and the lowerbound is recomputed. After a series of iterations without an improvement in the lower bound westop the procedure.5.2 Computational IssuesAs in the CVRP, we implement during Phase II an enhancement phase to better approximate theconnection costs in the IRP. That is, the connection costs are accurate when exactly one customeris connected to a seed. As soon as more customers are added, the connection costs become onlyapproximations.Speci�cally, for every set of multipliers, as we search for a feasible solution to the location problem,using the GREEDY procedure described in Section 3.2, we implement the following procedure toconstruct a feasible inventory-routing solution.In the procedure below, we assume the concentrators are indexed from 1 to m in increasing orderof the knapsack solutions. Therefore, concentrator 1 is the \best" concentrator, while concentratorm is the \worst". In the procedure below, Sj represents the set of customers that are served withseed customer j and Lj represents the length of the nearest insertion tour for the customers in Sj .for v = 1; 2; : : : ;m do beginfor i = 1; 2; : : : ; n connected[i]=falseselect concentrators x1; x2; : : : ; xvfor j = 1; 2; : : : ; v do begin Sj = fxjg , Lj = 2dj endwhile 9i such that connected[i]=false do beginfor i = 1; 2; : : : ; n doif connected[i]=false then beginfor j = 1; 2; : : : ; v do beginlet ĉij = cost of adding i to tour Sj using nearest insertionlet ŝij = mint�0nK(Sj )+Lj+ĉijt + 12tPk2Sj[fig hkDk���t � QD(Sj )+Dio��(Sj )endlet ŝi = min1�j�vfŝijglet minindex[i]=argmin1�j�vfŝijg



23let penalty[i]=ŝi �minj 6=minindex[i]fŝijgendlet i� = argmaxifpenalty[i]glet j� = minindex[i�]add i� to tour j� using the nearest insertion procedurelet Sj�  Sj� [ fi�glet Lj�  Lj� + ĉi�j�endendOnce a feasible solution to the IRP is found using this procedure its cost is compared to the costof the current best solution and the better one is kept.5.3 Computational ResultsIn Table 2 below, we present the results of the implementation of our algorithm on the �fty-customerproblem from Christo�des and Eilon (1969). It should be clear that the empirical performance ofthe heuristic depends on the relative importance of the transportation cost and the inventory cost,e.g., if the individual �xed costs (Ki) are large relative to the transportation costs, then the heuristicwill perform extremely well, since the order quantities (and therefore order intervals) selected willbe close to those minimizing the major part (the inventory cost) of the objective function. Forthat reason we choose small values for the inventory parameters which means that we evaluatethe performance of the heuristic under unfavorable conditions. We varied the �xed order costs forindividual retailers from 0 to 15, and used two di�erent holding costs, 0.5 and 1. The vehicle capacityis exactly the one used in the CVRP, for this problem it is 160. Retailer demands were distributeduniformly between 1 and 10. The lower bound (FPP LB) is calculated as it is described in Section5.2 using the subgradient procedure. Table 2Computational Results on the Location Based Heuristic



24Problem No. Size Q h K FFP LB Alg. ST1 %Error CPU Time2[1] 50 160 1.0 0 471.9 502.9 6.6 455.0[2] 50 160 1.0 5 600.9 637.2 6.0 111.0[3] 50 160 1.0 10 705.8 742.9 5.3 587.7[4] 50 160 1.0 15 796.4 832.1 4.5 605.0[5] 50 160 0.5 0 346.3 373.0 7.7 103.6[6] 50 160 0.5 5 441.4 468.0 6.0 594.2[7] 50 160 0.5 10 518.2 543.7 4.9 718.8[8] 50 160 0.5 15 583.5 615.9 5.5 460.3(1) Seed-Tours Heuristic.(2) In seconds on a Sun Sparc 2.In the following table, we list certain characteristics of the solutions provided by the LBH onall eight problems. \Number of tours" represents how many sets make up the �xed partition. The\Number of retailers in each tour" speci�es the size of each of these sets. The \Vehicle loads in eachtour" speci�es the load (as a percentage of the vehicle capacity) that is sent out every cycle to serveeach set. We see that in almost two thirds of the cases the vehicle capacity is a tight constraint onthe load. Table 3Description of Solution Provided by the LBH



25Characteristics of the Location Based Heuristic SolutionProblem Number of Number of retailersNo. tours in each tour Vehicle load in each tour[1] 4 15,20,14,1 100.0%,100.0%, 96.4%, 3.7%[2] 4 12,16,9,13 100.0%,100.0%, 82.7%, 99.3%[3] 5 13,14,10,12,1 100.0%,100.0%, 99.0%,100.0%, 6.7%[4] 5 11,10,10,11,8 99.4%,100.0%,100.0%,100.0%, 80.2%[5] 4 13,14,9,14 100.0%,100.0%, 85.2%,100.0%[6] 5 12,8,11,9,10 100.0%,100.0%,100.0%,100.0%, 98.2%[7] 7 9,5,10,7,8,10,1 100.0%, 76.2%,100.0%, 96.7%,100.0%,100.0%, 9.5%[8] 8 6,7,9,6,8,9,1,4 100.0%,100.0%,100.0%, 94.2%,100.0%,100.0%, 11.0%, 65.8%6 Applications to Other ProblemsWe have shown in this paper that the Location Based Heuristic works well. In fact, the methodologyhas much potential. Many di�erent features of the routing problem can be incorporated into thestructure of the heuristic; for example, we are currently working on a more general version of thevehicle routing problem where in addition to a capacity constraint on the total load that can becarried by a vehicle, there is a distance constraint on the length of each route traveled by a vehicle.We also apply the technique presented here to the Capacitated MinimumSpanning Tree Problem(CMST). This problem has numerous applications in the design of local access tree networks incommunication networks, see Altinkemer and Gavish (1988). The results on this problem will besummarized in an accompanying paper.AcknowledgementsWe would like to thank Prof. Michael Pinedo and Prof. Yechiam Yemini for allowing us the useof their computers. We would also like to acknowledge IBM's contribution via an equipment gift toColumbia University of the RS6000 Model 550.ReferencesAltinkemer K. and B. Gavish. 1988. Heuristics with Constant Error Guarantees for the Design of
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