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Abstract
We present a general framework for modeling routing problems based on formulating them as
a traditional location problem called the Capacitated Concentrator Location Problem. We apply
this framework to two classical routing problems: the Capacitated Vehicle Routing Problem and
Inventory-Routing Problem. In the former case, the heuristic is proven to be asymptotically
optimal for any distribution of customer demands and locations. Computational experiments
show that the heuristic performs well for both problems and in most cases outperforms all

published heuristics on a set of standard test problems.

1 Introduction

Vehicle routing problems have received much attention in recent years due to the increased im-
portance of determining efficient distribution strategies to reduce operational costs in distribution
systems. A typical routing problem consists of a fleet of vehicles located at a central depot or ware-
house that must be scheduled to provide some type of service to customers geographically dispersed
in a service region. The service may involve the delivery of goods to retailers from a central ware-
house, the pick-up and delivery of children in school buses, or the pick-up of packages for express
mail delivery, just to name a few of the possible applications.

In this paper, we present a general framework for solving several different routing problems. We

apply the algorithm to two classical problems: the Capacitated Vehicle Routing Problem (CVRP)
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and the Inventory-Routing Problem (IRP), also known as the One Warehouse Multi-Retailer Distri-
bution Problem. In the CVRP, a fleet of vehicles of fixed capacity are initially located at a central
depot. A number of items must be delivered by the vehicles to each of the customers. We may
consider the problem of delivering the goods from the central depot to satisfy customer demands,
or the problem of picking up the loads at the customers to be brought to the depot. For the sake of
consistency, we address only the former since these two cases are mathematically equivalent. The
objective is to deliver the items to the customers such that each customer receives its demand, the
vehicle capacity is not exceeded and the total distance traveled is minimized.

In the Inventory-Routing Problem, a central warehouse with an unlimited supply of items serves
a set of retailers distributed in a given area. The retailers experience a fixed demand per unit of time
for the items, and vehicles of limited capacity must be dispatched to replenish the retailer inventories.
Each retailer incurs a holding cost per item per unit of time and a fixed cost per order placed. The
objective is to schedule the vehicle departures and specify the loads destined for each retailer such
that total cost per unit of time is minimized. This cost includes transportation cost, fixed order
cost and inventory holding cost at the retailers. Examples of systems that can be modeled in this
way occur when the warehouse is an outside supplier or when the depot is a manufacturing facility
producing just to meet demand; see Anily and Federgruen (1990) and Gallego and Simchi-Levi
(1990) for a more detailed description.

Since all non-trivial routing problems are NP-hard, much of the research has focused on finding
heuristics that give good solutions, but not necessarily optimal ones. Most routing heuristics fall
into the class called, by Christofides (1985), two-phase methods. These heuristics are of two types:
(i) cluster first-route second, or (ii) route first-cluster second. In the first category, one clusters
customers into groups (phase T) and then designs efficient routes for each cluster (phase IT). In the
second category, one constructs a traveling salesman tour through all the customers (phase T) and
then partitions the tour into segments (phase IT). One vehicle is assigned to each segment and visits
the customers according to their appearance on the traveling salesman tour. The distinction between
these two categories of heuristics on the quality of their solutions is very important, as demonstrated
in Bienstock, Bramel and Simchi-Levi (1991). They show that no heuristic in the route first-cluster
second class can be asymptotically optimal for the CVRP. A heuristic is asymptotically optimal if
the relative error between the cost of the solution provided by the heuristic and the cost of the
optimal solution decreases to zero as the number of customers increases.

We introduce here a new heuristic for general routing problems. This heuristic, called the Lo-



cation Based Heuristic (LBH), is based on formulating the routing problem as a location problem
commonly called the Capacitated Concentrator Location Problem (CCLP). This location problem
is subsequently solved and the solution is transformed back into a solution to the routing problem.
The method enables us to incorporate many different routing features into the model, and hence it
is possible to apply the technique to many different problems.

In Section 2, we provide some motivation for the Location Based Heuristic that stems from recent
results on the probabilistic analysis of the CVRP.

In Section 3, we present the Location Based Heuristic. We also formulate the Capacitated
Concentrator Location Problem and present solution techniques for it.

In Section 4, we apply the heuristic to the CVRP. We present some enhancements to the LBH that
we have found to work well for this problem. In addition, we prove that the LBH is asymptotically
optimal. That is, the solution produced by the heuristic tends to the optimal solution value as the
number of customers increases. To assess the quality of the solution on realistic size problems, we
have performed computational experiments on a set of standard test problems.

In Section 5, we describe the IRP in more detail and apply our algorithm to it. To evaluate the
quality of our solutions we develop a new lower bound on the cost of any policy that belongs to a
specific subset of policies, called fixed partition policies.

In Section 6, we present some concluding remarks, and in particular we point out that the general

framework can handle several other types of combinatorial problems.

2 Preliminaries

The Location Based Heuristic is motivated by some recent probabilistic results on the CVRP per-
formed in Simchi-Levi and Bramel (1991) (see also Bramel at el. (1992)). To describe the results, we
first present some notation. Let N = {x1, 22, -+, 2,} be the set of customers served by the common
depot g, wi the demand of customer zj, di the distance from customer z; to the depot, and dg;
the distance between customers zj, and z; and ) the vehicle capacity. Let Ly(.S) be the length of the
optimal traveling salesman tour through the customers of a set S C N and the depot. We denote
by Z* the value of the optimal solution to the CVRP, and by ZH the value of the solution produced
by heuristic H.

In their work, Simchi-Levi and Bramel relate the asymptotic optimal solution value of the CVRP
to the asymptotic optimal solution of the bin-packing problem defined by the customer demands

with bins of size equal to the vehicle capacity. To present their result, let 47 be the minimum number



of bins of capacity @ needed to pack n demands drawn from some (general) distribution ®. Results
on the bin-packing problem tells us that there exists a constant 4 such that lim,_.« b} /n = 7, (a.s.).
This means that for large n, the minimum number of bins required (b}) is very well approximated

by «vn, where v depends only on the distribution ®. They prove the following.

Theorem 2.1 Let the customers be independently and tdentically distributed in a compact region
of R? with expected distance E(d) to the depot. Let the demands (w;/Q) be independently and
identically distributed according to a probabilily measure ® with support on [0,1]. Then,
lim lZ;’; = 2yE(d) (a.s.). (1)
n—oo 1

That 1s, for large n, the cost of the optimal solution to the CVRP can be very well approximated
by the value 2nyE(d).

The proof of the above result is based on constructing upper and lower bounds on 77 that
converge to the desired value as n tends to infinity. The structure of the upper bound is of special
interest to us since it provides a method to construct a feasible solution which is asymptotically
optimal. This upper bound, which provides the motivation for the Location Based Heuristic, 1s
based on the following procedure.

Superimpose a grid of squares with side € > 0 on the area where the customers are located. For
each square induced by the grid, solve the bin-packing problem defined by the demands of customers
in the square and bins of capacity ). For each bin in the solution to the bin-packing problem, send
one vehicle to serve the customers assigned to the bin. By definition, the total load in a bin will
not violate the vehicle capacity. The actual sequence or tour taken by each vehicle can be found by
solving a traveling salesman problem on the customers in the bin and the depot. However, for the
purpose of constructing an asymptotically optimal heuristic, Simchi-Levi and Bramel show that the
following tour, asymptotically, is good enough. The tour starts at the depot, goes to one particular
customer on its route, called the seed point of the route, and then proceeds to go back and forth
from this customer to all the other customers on the route, and then back to the depot, see Figure
1.

This heuristic 1s very nearly asymptotically optimal; that is, as the number of customers increases
this method will provide a solution whose relative error decreases to €. Since € can conceivably be
picked as small as we like, we can ensure an arbitrarily small error. At a first glance, one might

be tempted to use a similar heuristic in practice; by choosing € very small. The problem is that



one needs to weigh the advantages of a small €, which will give a small error, and a large ¢ which
will ensure enough points in each grid to be able to pack customers efficiently. To overcome these
difficulties, we must turn to methods that do not use this type of region partitioning, but nevertheless
have the same structure as the above described upper bound.

To do that, observe that the cost of each route in the above upper bound can be decomposed
into two parts. The first is the cost of the simple tour that starts at the depot goes to the seed point
and back to the depot; the second is the sum of the costs associated with having the vehicle travel to
and from each customer to the seed point. It is therefore appropriate to construct a heuristic that
clusters customers together so as to minimize the sum of the lengths of simple tours plus the total
insertion cost of customers into simple tours. This can be achieved by approximating the CVRP
with another combinatorial problem called the Capacitated Concentrator Location Problem (CCLP).
This problem has applications in telecommunications network design.

The CCLP:

The Capacitated Concentrator Location Problem can be described as follows: given m possible
sites for concentrators of fixed capacity Q;, j = 1,2,..., m, we would like to locate concentrators at
a subset of these m sites and connect n terminals, where terminal 7 uses w; units of a concentrator’s
capacity, in such a way that each terminal is connected to exactly one concentrator, the concentrator
capacity is not exceeded and the total cost 1s minimized. A site-dependent cost is incurred for
locating each concentrator; that is, if a concentrator is located at site j, the sef-up cost is v;, for
Jj=1,2,...,m. The cost of connecting terminal ¢ to concentrator j is ¢;; (the connection cost), for
1=1,2,...,nand 5 =1,2,...,m.

In formulating an instance of the CVRP as an instance of the Capacitated Concentrator Location
Problem, we make every customer (in the CVRP) a possible site for a concentrator in the CCLP.
We want to make the concentrator selection problem in the CCLP correspond to the seed selection
problem in the CVRP. Therefore, the set-up cost for locating a concentrator at site j corresponds
to the cost of choosing customer j as a seed customer. This cost is simply the cost of sending the
vehicle to the seed customer (customer j) and back; that is, the length of the simple tour through
the depot and customer j. Fach customer (in the CVRP) is also made a terminal in the CCLP. The
cost of connecting terminal ¢ to a concentrator at site j is exactly the cost of inserting customer ¢
into a simple tour through seed customer j and the depot.

In the next section, we use this insight to construct an effective method for solving general routing

problems, not just the CVRP.


Highlight

Highlight

Highlight


3 The Framework of the Location Based Heuristic

In this section we formulate a general routing problem and present the LBH. We then formulate the
CCLP and discuss an effective technique for solving it.

A General Routing Problem is presented as follows. Given a set of customers N, define the
collection of servable sets (denoted C) to be those subsets of N that can be served by one vehicle.
The term “servable” means that the set can be served by one vehicle without violating any of the
constraints of the routing problem. The cost of serving a set S C N is given by a real-valued routing
function ¢(S) and is defined for all subsets of N, even those that are not servable.

Define a partition of a set N to be a collection of disjoint non-empty sets S1,Ss, ..., Sy such
that UL, S; = N. Define a feasible partition to be a partition made up of only servable sets, say,

{Si}i_, such that S; € C, for ¢ = 1,2,...,r. The objective is the following:

1 Si).
min EC;QS( )

all feasible partitions: s,,..,5,

3.1 The Heuristic

In 1ts most general form, the Location Based Heuristic consists of the following three phases:

Phase I: For an integer m, choose m non-empty subsets of N, say 71,75, ..., T, called seed sets.
These are just generalizations of seed points. These sets may overlap, and their union may not even
cover all of N. Calculate the set-up costs v; = ¢(T), for each j = 1,2,...,m. Moreover calculate
the connection costs ¢;; = ¢(T; U{x;}) — ¢(Tj), foreach i = 1,2,.. . ,nand j=1,2,...,m.

Phase II: Solve the CCLP with the data defined in Phase I. The CCLP becomes the problem of
choosing some of the seed sets, and “connecting” nodes to these sets, such that the total set-up cost
of the seed sets chosen plus the sum of connection costs is as small as possible.

Phase III: Transform the solution to the CCLP into a solution to the routing problem.

In the above formulation of the LBH, the sets T}, j = 1,2,...,m, correspond to sets of customers,
that, if selected, are served together. Therefore, the set-up cost v; represents the cost of selecting
the set 7, i.e., the cost of serving this set of customers. The connection cost ¢;;, on the other hand,

represents the added cost of serving customer x; with the set 7.



3.2 A Solution Method for CCLP

Phase II of the LBH requires a solution method for CCLP. We first formulated the CCLP as the

following integer linear program. Let

1, if a concentrator is located at site j,

Yi = .
0, otherwise,

and let ) ) )
1, if terminal ¢ is connected to concentrator j,

Tij = .
0, otherwise.

Then CCLP is:

Problem P : Min Zn: i Cijxij + i v; Y5
j=1

i=1 j=1

s.t. Zl‘lj =1 Vi, (2)
ji=1

Zwil‘zj <Qj V3, (3)
i=1

zi; <y Vi, J, (4)

y; €10,1} Vj. (6)

Constraints (2) ensure that each terminal is connected to exactly one concentrator, and con-
straints (3) ensure that the concentrator’s capacity constraint is not violated. Constraints (4) guar-
antee that if a terminal 1s connected to site j, then a concentrator is located at that site. Constraints
(5) and (6) ensure the integrality of the variables.

Unfortunately, CCLP is NP-hard which indicates that the existence of a polynomial time al-
gorithm for its optimal solution is unlikely. Hence, at a first glance it seems that we have not
gained much; we have transformed one NP-hard problem (the routing problem) into another NP-
hard problem (the CCLP). The advantage, however, is that, while both are NP-hard, the CCLP
is considerably easier to solve in the sense of finding a “good” solution in a “reasonable” amount
of time. One reason is that the constraints of the CCLP are simple compared to the constraints
that appear in the routing problem, namely the subtour elimination constraints. In addition, the

structure of the objective function in the CCLP is substantially simpler than the cost structure in



the general routing problem.

Several algorithms have been proposed to solve the CCLP in the literature; all are based on
the celebrated Lagrangian relaxation technique. This includes Neebe and Rao (1983), Barcelo and
Casanovas (1984), Klincewicz and Luss (1986), and Pirkul (1987). The one we use is derived in a
similar fashion as Pirkul (1987) which seems to be the most effective.

This solution method concentrates on relaxing a set of constraints, bringing them into the objec-
tive function with a multiplier vector giving a lower bound, then using a subgradient search method
to find the best lower bound. At each step of the subgradient procedure (i.e., for each set of multi-
pliers) we try to make use of the information given by the multipliers to find a feasible solution to
the location problem. This step consists of a simple and efficient subroutine. After a prespecified
number of iterations the algorithm is terminated.

More specifically, we relax the problem by including constraints (2) in the objective function.

For any vector A € R", consider the following problem Py:

Problem Py : Min Zn:iczjxij +§:ijj +Zn:/\i(§:xlj - 1)
ji=1 i=1 ji=1

i=1j=1
subject to (3)-(6). Let Zy be its optimal solution with {%, 7} its optimal variables.
One can see that Py separates into m easily solvable subproblems. For a given j = 1,2,...,m,
define the following:
n

Problem Pg\ : Min Z@jl‘zj + vy
=1

n
s.t. Zwil‘lj S Q]',
i=1

l‘ijgy]' Vi:l,?,...,n,
l‘i]'E{O,l} Vi=1,2,...,n,
yj €10, 1}

where ¢;; = ¢;; + A, for all ¢, 7.

Clearly, problem Pg\ 1s no more difficult than a single constraint 0-1 knapsack problem, for which
efficient algorithms exist; see, e.g., Nauss (1976). If the optimal knapsack solution is less than —uv;,
then the corresponding optimal solution to Pg\ is found by setting y; = 1 and 7;; according to

the knapsack solution, indicating whether or not terminal ¢ is connected to concentrator j. If the



optimal knapsack solution is more than —wv;, then the optimal solution to Pg\ is found by setting
y;=0and z;; =0 foralli=1,2,...,n. Let Z{\ be the optimal solution value of Pg\.

The solution to Py, the lower bound on the optimal solution to CCLP, is therefore easily found.
To find the best possible lower bound, we use a subgradient procedure.

Using an initial vector A(?), we solve the m knapsack problems and get a solution {y<0>,5<0>}.
This solution in most cases is not a feasible solution to P, since the values () do not necessarily

satisfy constraints (2). We generate new multipliers using the following formula:
A=A ST EmD — 1), vi= 1,2,
j=1

The step size t; is determined by

. (7— ZA(k))
n m —(k
S (T Y —1)2

iy =« ,
where « is a scalar and Z is an upper bound on the optimal solution to P (see Held, Wolfe and
Crowder (1974) for a justification of this formula). The scalar « is initially set to 2 and halved after
the bound has not improved in a prespecified number of iterations. When « reaches some lower
bound fixed beforehand, the algorithm is terminated.

For a given set of multipliers, if the values 7(%) satisfy (2), then we have an optimal solution to
problem P, and we stop. Otherwise, we perform a quick subroutine to find a feasible solution to P.
This procedure is based on the observation that the knapsack solutions found in the lower bound
give us some information concerning the benefit of setting up a concentrator at a site (relative to the
current multipliers /\(k)). If, for example, the knapsack solution corresponding to a given concentrator
18 0, 1.e., the optimal knapsack is empty, then this is most likely not a “good” concentrator to select
at this time. In contrast, if the knapsack solution has a very negative cost, then this is a “good”
concentrator. In this sense, the multipliers and the knapsack solutions tell us which concentrator
sites are the best ones to select. Given the values ZM,C) (j =1,2,...,m), renumber the concentrators
so that

Zywy < i < < 2wy

The procedure we perform is called GREEDY, since it allocates terminals to concentrators in

a myopic fashion. Let M be the minimum possible number of concentrators used in the optimal
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solution to CCLP. This can be found by solving the bin-packing problem defined on the values
w; with bin capacities @);; see Johnson et al. (1974). Starting with the “best” concentrator, in
this case concentrator 1, connect the terminals in its optimal knapsack to this concentrator. Then,
following the order of the renumbered knapsack solutions, take the next “best” concentrator (say
concentrator j) and solve a new knapsack problem: one defined with costs @;; = ¢;; + /\gk) for each
terminal ¢ still unconnected. Connect all terminals in this knapsack solution to concentrator j. If
this optimal knapsack is empty, then a concentrator is not located at that site, and we go on to the
next concentrator. Continue in this manner until M concentrators are located. Let {y', 2’} be the
resulting solution.

The solution {y’, 2’} may still not be a feasible solution to P since some terminals may not be
connected to a facility. In this case, unconnected terminals are connected to facilities in use where
they fit with minimum additional cost. If needed, additional facilities may be opened following the
ordering of the renumbered knapsack solutions. A local improvement heuristic is then performed to
improve on this location solution, using simple interchanges between terminals, and the best solution
is kept as the upper bound to P.

Upon termination of this algorithm, if the relative error between the best upper bound and the
best lower bound is more than a threshold value (typically 0.5 percent), we start a branch and bound
algorithm to reduce this gap. The branching is done by fixing the values y; to either 0 or 1. The
procedure described above is repeated at each node of the branch and bound tree, until the relative
error is reduced below the threshold value. If the best upper bound does not decrease in the search

of a number of consecutive nodes of the tree (typically 15), the branching is terminated.

4 The Capacitated Vehicle Routing Problem

In this section, we describe the application of the LBH to the CVRP. This problem has been analyzed

extensively in the literature in the last three decades. For a survey, see Christofides (1985).

4.1 Formulation

The Capacitated Vehicle Routing Problem can be stated as follows: a set of n geographically dis-
tributed customers needs to be served by a fleet of identical vehicles of fixed capacity ). Associated
with customer xj is a positive demand w; < ) which is the amount of load that needs to be deliv-

ered to that customer. The objective 1s to design efficient routes to serve the customers at minimum
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cost, where cost is proportional to distance traveled. We concentrate here on the case where the
vehicles have identical capacities since all of the benchmark problems from the literature have this
property. However, the adaptation of the Location Based Heuristic to the different capacity case is
straightforward.

In the CVRP, the collection of servable sets is

c={scn[Yw<aq)

€S
and the routing function is given by
¢(5) = Lo(5).
In Phase I, for a given number m, we choose seed sets, 11,75, ..., Ty, ; each set being a subset of

the customers. In Section 4.2 we present the types of seed sets that we have found to work well in
practice. The cost of selecting set T}, or setting up a concentrator at site j, is then v; = ¢(T;), for
J=12,...,m. Fori=1,2,...,nand j =1,2,...,m, the connection costs ¢;; is a measure of the

cost of inserting node z; into set T3, i.e.,
cij = ¢(T; Udwi}) — o(Tj).

Since finding the exact values of ¢;; can be quite time consuming, in Section 4.2 we present what we
have found to be satisfactory approximations.

In Phase II, we solve the CCLP with the data in this form. The solution to CCLP specifies which
terminals (customers) to connect to which concentrators (seed sets).

In Phase III, we transform the location solution provided in Phase II into a feasible routing
solution. Let {y*,z"} be the best solution found for P and for each j with y; =1 define S; = {1 <
1 < n|x:‘] = 1}. Assume, that S, S5, ..., S, are the non-empty sets after renumbering. Each S; is a
set of customers that can be served by one vehicle since they represent feasible connections in the
CCLP (since z™ satisfies (3)). The cost of the Location Based Heuristic solution to the CVRP is
then:

ZUBH =% ().
ji=1
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4.2 Selection of Seed Sets and Connection Costs

It is clear that many possible variations of the LBH can be implemented depending on two decisions:
first, the types of seed sets chosen, and second, the connection cost approximations used.

The selection of seed sets provide much flexibility in the implementation. If two or more customers
must be served together, for reasons inherent in the particular application, then they can be inputed
as a seed set, which will ensure that they are served together in the final routing solution. Also, if
some routes are known to be good routes by an experienced dispatcher, they can be inputed at this
phase and will be in the final solution.

The choice of connection costs also provides much flexibility. Let the optimal traveling salesman
tour through a seed set 7} be the cycle {xo = xj,,2;,,%),,...,2;,,2;,,, = xo}. There are many

possible connection costs, of which we have used the following:

direct cost: ¢;; = l_%lmp{Qdij’}’ or

nearest insertion cost: ¢;; = min {dj; + dij,, — dj 50, }-
=0,...,p

Direct cost has the advantage that, when added to ¢(Z}), it provides an upper bound on the routing
cost, while the nearest insertion cost works well because it is accurate for small sets T;.

We have implemented several different versions of the LBH. Each one starts with the seed sets
T; ={x;} for j=1,2,... n with m = n. In this case ¢(T;) = 2d;. This seems to work well for the
CVRP.

The heuristics differ in the types of connection costs. In the first implementation, the connection
costs are determined by the nearest insertion cost, i.e., ¢;; = ¢({a; }U{x; ) —o({z;}) = di+di; —d;.
We call this version the Seed-Tours Heuristic (ST).

Another implementation has connection costs determined by the direct cost ¢;; = 2d;;. We call
this version the Star-Connection Heuristic (SC), since connections are made in the form of stars.

In both cases, for each j = 1,2,...,m, the customer that defines the seed set Tj, i.e. x;, is
called the seed customer for that seed set. Note that when the seed sets have only one customer, all
calculations of v; and ¢;; are trivial.

One can note the relationship between the ST Heuristic and the Generalized Assignment Heuristic
due to Fisher and Jaikumar (1981). In their heuristic, Fisher and Jaikumar choose an initial set
of m seed customers, say {x;,,2;,,...,%;, }. For each seed customer, say z;,, they determine the

cost of inserting a non-seed customer z; into the tour containing only customer z;,, i.e., their cost
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is exactly d; + d;;, — d;, . The problem then is to “add” the customers to “tours” at minimum cost.
To do this they solve a generalized assignment problem. The solution is a partition of m sets, all
containing at most a total demand of ¢} and each containing one seed customer.

It is clear that the performance of the Generalized Assignment Heuristic depends highly on
the initial set of seed customers. For this purpose, Fisher and Jaikumar suggest several methods
including an interactive approach (leaving the decision to the scheduler) or an automatic approach
(based on a region partitioning scheme). Using the terminology of Fisher and Jaikumar, the ST
heuristic chooses simultaneously the best m seeds (out of a possible n) and the best way to assign
the customers to these seeds. That is, it combines the seed selection problem with the problem of

assigning customers to the selected seeds by solving the CCLP.

4.3 An Asymptotically Optimal Heuristic

In this section we show that the Star-Connection Heuristic (SC) is asymptotically optimal. This
means that the relative error between the solution i1t produces and the optimal solution decreases
to zero as the number of customers increases. We prove this result by showing that the solution to
the CCLP defined by the parameters in the implementation of the Star-Connection Heuristic can
be transformed into a routing solution which is asymptotically optimal to the CVRP.

The specific set-up and connection costs used in the Star-Connection Heuristic imply that the
cost of the solution to the CCLP (at the end of Phase IT of the LBH) is an upper bound on the cost
of the routing solution produced in Phase III. That is, the cost of the routing solution generated by
the SC Heuristic is bounded from above by the cost of the solution to the CCLP. This is true since
the Star-Connection Heuristic approximates the routing cost by having the vehicle travel back and
forth to and from the seed point to each customer. This provides an upper bound on any efficient
routing of the customers. All that needs to be shown, therefore, is that there is a solution to CCLP
whose cost asymptotically approaches the value on the right-hand side of (1). We do this in the

following theorem.

Theorem 4.1 Let the customers be independently and identically distributed in a compact region of
R? with expected distance E(d) to the depot. Let the demands (w;/Q) be independently and identically
distributed according to a probability measure ® with support on [0,1]. Then, the Star-Connection
Heuristic is asymptotically optimal, 1.e.,

1
lim —7Z5¢ = 2vE(d) (a.s.).

n—oo N
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Proof. We start with an upper bound on the cost of the solution produced by the LBH, that is,
we construct a feasible solution to the CCLP. Pick a fixed € > 0 and let G(¢) be an infinite grid
of € x € squares. Let A be the compact support of the distribution p. Let Ay, As, ..., Ay be the
subregions of G(¢) that intersect A and have fA, dye > 0. Let n(%) be the number of customers located
in subregion A;.

For a given subregion A;, find an optimal bin-packing of customer demands in the subregion
and bin capacity Q. Let b*(¢) be the number of bins used in this optimal packing, and let B; (i) be
the set of customers in the j' bin of this packing. Now arbitrarily select one customer from each
bin; say xi,, 1, .- ., Tl - Each of these customers is a “seed” customer, that is, they correspond

to the selection of the seed sets T3,,7i,,...,1,. Now connect each terminal (or customer) to

(1) °

the concentrator corresponding to the seed customer in its bin. Repeating this for each subregion
defines a solution to the CCLP with value 7.

Then,
t(e) 87 (7)

Z3° < Zp = Z Z {vlj + Z Cklj}

i=1 j=1 zr€B; (1)
t(e) b* (1)

= Z Z {lej + Z 2dklj}~
i=1 j=1 2r€B5 (i)

Clearly, dpi; < e\/2 for each zj, € B; (). Hence,

t(e) b (6)
725°<2, <3 % {lej +2(|B;(5)] - 1)e¢§}.

i=1 j=1

Let d(i) be the distance from the depot to the nearest point in subregion A;. Then d; < d(7) + €v/2

for each customer z; in region A;. Hence,

()
75¢ < 70 < 3" {2 (0dGi) + (D)2,
()
<2 b (i)d(i) + 2neV/2.
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Dividing by n and taking the limit gives

0e)
— 1 — 1 — 1
lim —77¢ < Tim —7Z;, <2 Tim — > b*(i)d(i) + 2eV/2.

n—oo N n—oo 1 n—oo N £ 1
1=

In Simchi-Levi and Bramel (1990) (see also Bramel et al. (1991)) there is a simple proof of the almost

sure result

t(e€)
lim = b*(1)d(i) < vE(d).
Ve >0, nLH;on; (1)d(i) < vE(d)

Then

bl

1 1
im —75¢ < Tim =7 < 27E(d) + 2¢V/2.

n—oo N n—oo N

Since € was arbitrary and with the lower bound of equation (1), this proves that the Star-Connection

Heuristic is asymptotically optimal for the CVRP. 1

4.3.1 Computational Issues

To solve the CVRP, we perform an enhancement phase in parallel with the GREEDY procedure
presented in Section 3.2. The GREEDY procedure constructs solutions to CCLP at each iteration of
the subgradient procedure while this procedure at the same time constructs solutions to the CVRP.

The connection costs used in the CCLP only approximate the real cost of adding a customer
to a tour. Therefore, to get a better approximation we try to update the connection costs as we
add terminals to concentrators. Each time we connect a terminal to a concentrator we update the
connection costs to take into account this new customer. Specifically, for each set of multipliers, we
perform the following procedure. Select the M “best” concentrators according to the current knap-
sack solutions; these are concentrators 1,2, ..., M after renumbering. Consider the set of terminals
that are connected to only one concentrator in the m knapsack solutions, 1.e., that appear in only
one “knapsack”. The subset of these terminals that are connected to one of the M concentrators
selected are each connected to the concentrator whose knapsack they appear in. For each concentra-
tor, determine the tour through the terminals connected to that concentrator (and the concentrator
itself) using the nearest insertion method (see, Rosenkrantz, Stern and Lewis (1977)); a customer
is inserted into a tour without changing the orientation of the tour, but simply by inserting the
customer in the cheapest way between two other customers.

Then determine for each unconnected #; and each j (1 < j < M), the costs &;;, which represents
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the cost of inserting node x; into the tour associated with concentrator j, using the nearest insertion
cost. If #; does not fit in tour j (because of the capacity constraint) then let é;; = +oo. The value
of ¢;; represents the “closeness” of terminal ¢ to the tour associated with concentrator j. Next,
determine the penalty associated with inserting customer z; into its second “closest” tour instead of
into its “closest” tour. Let z;« be the customer with the largest such penalty. Insert node z;+ into
its “closest” tour, say tour j*, using the nearest insertion method. Update the insertion costs {é;;},
(in fact, only ¢é;;+ needs to be updated) and continue in this manner until all terminals are in tours.
The resulting routing solution is then compared with the best solution found so far and the better

one is kept.

4.4 Computational Results

In this section we report on computational experiments with the Location Based Heuristic on a set
of 7 standard test problems from the literature. The problems vary in size from 50 to 199 customers
as reported in Table 1. The problems are from Christofides, Mingozzi and Toth (1979). We compare
the performance of the LBH to the performance of the following 9 published heuristics:

e SAV = Clarke and Wright’s Savings Algorithm (1964),

e M&J = Mole and Jameson (1976),

e PSA = Altinkemer and Gavish’s Parallel Savings Algorithm (1985),

e MBS = Desrochers and Verhoog’s MBS Algorithm (1989),

e SWP = Gillett and Miller’s Sweep Algorithm (1974),

e TPM = Christofides, Mingozzi and Toth’s Two-Phase Method (1979),

o F&J = Fisher and Jaikumar’s Generalized Assignment Heuristic (1981),

e TRE = Christofides, Mingozzi and Toth’s Incomplete Tree Search Algorithm (1979),
e P&TF = Pureza and Franca’s Tabu Search Algorithm (1991),

The CPU time of the LBH (in seconds) is based on running the algorithm on an RS6000 Model
550.

Table 1
Computational Results on the Standard Test Problems
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Prob. Published Heuristics Alg. CPU Alg. CPU
No. Size | SAV.  M&J PSA MBS SWP TPM F&J TRE P&F ST!  Time SC?  Time
1] 50 585 575 564 586 532 547 524 534 536 524.6 68 524.9 240
[2] 75 900 910 878 885 874 883 857 871 842 848.2 406 884.3 656
[3] 100 886 882 868 889 851 851 833 851 851 832.9 890 894.9 1237
[4] 100 831 879 845 828 937 827 824 816 — 826.1 400 828.9 110
[5] 120 | 1079 1100 1066 1058 1266 1066 — 1092 — | 1051.5 1303 | 1051.2 2570
[6] 150 | 1204 1259 1104 1133 1079 1093 1014 1064 1081 | 1088.6 2552 | 1123.7 3412
[7] 199 | 1540 1545 1370 1424 1389 1418 1386 1386 — | 1461.2 4142 | 1438.2 8021

(1) Seed-Tours Heuristic.

(?) Star-Connection Heuristic.

We observe that the Seed-Tours Heuristic finds solutions better than most of the other published
heuristics. The running time is comparable to the running time of many heuristics, including the

recently published, Parallel Saving Algorithm; see Altinkemer and Gavish (1991).

5 The Inventory-Routing Problem

We now turn our attention to another routing problem that involves a more complex cost structure,
but can however be handled by the Location Based Heuristic.

Consider the problem where n retailers are geographically dispersed in a given area. A central
warehouse has an unlimited supply of items. Retailer ¢ faces a deterministic demand of D; items
per unit of time, a fixed cost K; for each order placed, and an inventory holding cost of h; per
item per unit of time. We assume an unlimited amount of inventory can be kept at each of the
retailers. We seek a dispatching and routing strategy that delivers items to retailers from the central
warehouse such that total inventory holding cost, order cost and transportation cost per unit of
time is minimized. We assume all demands must be met without backlogging, that is, shortages are
not allowed. The problem is called the One-Warehouse Multi-Retailer Distribution Problem, or the
Inventory-Routing Problem (IRP).

The problem is clearly difficult since the set-up cost for each order is very complicated. It consists
of the fixed cost plus the cost of sending a vehicle to serve a set of customers, which is proportional
to the total distance traveled by the vehicle. This set-up cost is not separable and this is what makes

the problem drastically more difficult to solve than the CVRP.




18

As is pointed out by Anily and Federgruen (1990), optimal policies for this problem may be very
complicated and in addition characterizing them mathematically may not be easy. Moreover, in
practice, policies that are not easy to implement are not often used. For example, a policy where a
retailer receives orders at very irregular intervals would not be easy to implement. Therefore, much
of the research on this problem concentrates on policies that are, in some sense, simple. The totality
of possible transportation and scheduling policies is much too large, therefore in general researchers
concentrate their efforts on studying subsets of policies.

Many approaches have been used to attempt to tackle this problem. Gallego and Simchi-Levi
(1990) prove that a direct shipping policy, a policy where each vehicle serves only one customer, is
within 6% of optimality under certain conditions. Herer and Roundy (1990) restrict their attention
to power of two policies, and show some good empirical results when vehicles have unlimited capacity.
Anily and Federgruen (1990) suggest region partitioning strategies that are asymptotically optimal
within a specific class of policies.

Consider the following set of policies, which we call Fized Partition Policies. The set of customers
is partitioned into m disjoint sets, S1,.5, ..., Sy, and each set is served separately. That is, whenever
a customer in a set is served, all the customers in the set are served. What is the justification for
this subset of policies? Clearly, these types of policies are easy to implement. Each set has its own
cycle time and all retailers get orders at constant regular intervals. In addition, drivers need only
learn a small number of possible routes.

It is clear that if a given set of customers are always served together, then the set-up cost for
ordering 1s just the cost of the optimal traveling salesman tour through the customers of the set
and the depot plus the fixed order costs. In this case, it is well known that optimal deliveries occur
at regular fixed intervals. Since the set-up cost is known, the optimal cycle time, the time between

deliveries, can be found using the traditional Economic Order Quantity formula. Let S be a set of

customers served every ¢(.5) units of time and define K(S) = ;. K; and D(S) =3 ;. ¢ Di. Then,
the cost per unit time for serving the set S is
1 (L (S)+ K(S)+Y 1h»ﬁ(S)D»)
t( ) 0 ' 9 [ [
1€S
Lo(S) + K(S) 1
= —— 41 —h; D;.
TR0 ©

If the vehicles have unlimited capacity, the optimal cycle time, denoted by ¢*(.S), can be found by
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minimizing on t(5):

2(Lo(S) + K(S)))l/2
ZiES hi D; .

Note that the vehicle capacity restriction disallows us from always choosing this minimum, and in

(S) = (

fact, the cycle time ¢(.S) must satisfy
t(S)D(S) < Q.

The best feasible cycle time for a set S is therefore given by:

#(S) = min {t*(S), %}.

Hence, in this problem, the routing function is

o) = U0 EEED 1 24(5) S (3)

€S

and the collection of servable sets is simply C = {S|S C N}.
The Location Based Heuristic can now be implemented. In Phase I, we select m seed sets and
calculate

v; =¢(T;), Vi=1,2,...,m

and

cij = (T3 U ) — o(Ty), Vi=1,2,...,n, j=1,2,...,m.

In Phase II, since in the IRP any subset of N is a servable set, there is no need to have capacities
on the concentrators. Hence we use the formulation of the CCLP without constraints (3), in this
case the location problem is simply a facility location problem. The solution method described in
Section 3.2 can still be used, and in fact it runs more efficiently since no knapsack algorithm is
needed.

In Phase III, the solution to the CCLP corresponds to a partition of the customers into disjoint
sets, say sets S1,.59,...,5,. These sets correspond to a feasible solution to the IRP: a fixed partition

policy. The cost of the Location Based Heuristic solution to the IRP is then:

ji=1
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Again, many different versions of this algorithm can be implemented. We have used a similar
definition as in the ST Heuristic for the CVRP and have had success. Define T; = {x;}, for each
J=1,2,...,n with m = n. Then, the values ¢;; can be calculated exactly with little effort. We call

this version the Seed-Tours (ST) Heuristic for which computational results are reported in Table 2.

5.1 A Lower Bound on Fixed Partition Policies

In order to assess the quality of the solutions produced by the Location Based Heuristic for the
IRP, we must be able to compute a good lower bound on the best solution within the class of fixed
partition policies.

For any fixed partition policy P, let the partition be {X; };”:1 where the set X is served every
t(X;) units of time, with a load of t(X;)D(X;). Let Z(P) be the total cost per unit time for this
policy. Let X; be the set in the partition {X; }7L, that includes customer (retailer) z;. Then we
have the following:

i=t ! ieX;

m 1 1 7 .

i=1 j i) iex, 5,
- (%D(Dyl) [Lo(X:) + K (X)) + %tihiDi) (where t; = t(X;))
= Z?%% {%D(Dyi.) [Lo(X3) + K(X3)] + %t?hiDi £ D(X;) < Q}.

Let go(x;) be the cost of the minimum cost tour (including only transportation and fixed order
costs), starting and ending at the depot, that serves a set of customers S with #; € S and D(S) = 6.
If for a specific value of @, no tour satisfies these conditions (e.g., # < D;) then assign an infinite
value to gg(x;). The value 0 is called the total demand rate of the tour. Then,

Z2(P) > '”1 i %Di% i %t;“hiDi

1=

“ . 1 gD(X*)(l‘i) 1
= ;tjzgl)l(?(_:N{t? D(x;) | 2f

(X)) £ Q).

D(XT) < Q).
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Let DY = D(X}), then the lower bound is

n

D
Z min { th*—i——gD( )
t*>0,D*>D; Dy

<Q}

i=1

To solve this, for each customer z; and each value of # for which gg(z;) is finite, solve the following

problem:
D; go(xi)
[

) <9)

. 1
Jo(xs) = min {ihiDit +

Then, the lower bound on all fixed partition policies is:

VP, Z(P ZD <I€n<1%(N) o (). (10)

Unfortunately determining the values gg(z;) is in general NP-hard, since the Traveling Salesman
Problem is a special case. Hence we use a dynamic programming procedure to find lower bounds
to these values based on the following simple observation. The tours that define the values gg(;)
are simple tours; no customers are visited more than once. This is the constraint which makes
the computation intractable. Hence, we relax this constraint and allow customers to be visited
more than once. This clearly provides a lower bound on the original values gg(z;). It has however
the misleading property that a tour that serves a set of customers with total demand rate # may
actually be visiting a set of customers whose total demand rate is less than §. This will not cause
any problems since the computed value will still represent a lower bound on the cost.

In Christofides, Mingozzi and Toth (1981), a dynamic programming procedure is implemented
to find a lower bound on gg(#;) for each customer z; and for each value of § (D; < 0 < D(N)). The
procedure was designed for the CVRP, but also works for this problem. Let ¢y(x;) be the cost of the
minimum cost route, without 2-loops (cycles of the form {..., zp, #;, 1, .. .}), starting and ending
at zg, passing through z; and with a total demand rate of 8. It is clear from the construction that
o(;) < go(wy), Yi,0, and hence replacing ¢ with ¢ in (9), still yields a lower bound on any fixed
partition policy. The complexity of this lower bound is O(n? " | D;).

The lower bound (10) can be further improved by using the observation that in any fixed partition
policy every customer has exactly one vehicle arriving and leaving its location. Based on this, a
subgradient procedure can improve the bound in much the same way as in Christofides, Mingozzi

and Toth (1981) for the CVRP. The improvement comes from the fact that the set of routes obtained
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in the computation of the lower bound have cycles and are not customer disjoint. The idea is to
assign a penalty on each customer and to recalculate the lower bound. Adjusting the penalties using
the standard formula of Held, Wolfe and Crowder (1974) will result in new penalties and the lower
bound is recomputed. After a series of iterations without an improvement in the lower bound we

stop the procedure.

5.2 Computational Issues

As in the CVRP, we implement during Phase II an enhancement phase to better approximate the
connection costs in the IRP. That is, the connection costs are accurate when exactly one customer
i1s connected to a seed. As soon as more customers are added, the connection costs become only
approximations.

Specifically, for every set of multipliers, as we search for a feasible solution to the location problem,
using the GREEDY procedure described in Section 3.2, we implement the following procedure to
construct a feasible inventory-routing solution.

In the procedure below, we assume the concentrators are indexed from 1 to m in increasing order
of the knapsack solutions. Therefore, concentrator 1 1s the “best” concentrator, while concentrator
m is the “worst”. In the procedure below, S; represents the set of customers that are served with

seed customer j and L; represents the length of the nearest insertion tour for the customers in 5;.

for v=1,2,...,m do begin
for i =1,2,...,n CONNECTED[{|=FALSE
select concentrators xi,Za,..., %y
for j=1,2,...,v do begin S; = {z;} , L; =2d; end
while Ji such that CONNECTED[{|=FALSE do begin
for :=1,2,...,n do
if CONNECTED[{]=FALSE then begin
for j=1,2,...,v do begin
let ¢;; = cost of adding ¢ to tour S; using nearest insertion
let $;; = ming>o {w—k%t Zkesju{i} hy Dy |t < W}—(b(é’j)
end
let 5 = minj<j<y {5}

let MININDEX[i]=argmin, ¢, 15}
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let PENALTY[i]=§Z’ — minj#MININDEX[i]{gzj}
end
let ¢* = argmax; {PENALTY[?]}
let j* = MININDEX[i*]
add * to tour j* using the nearest insertion procedure
let Sj» — Sj= U {i*}
let Ljs « Ljs + Cixjx
end

end

Once a feasible solution to the IRP is found using this procedure its cost is compared to the cost

of the current best solution and the better one is kept.

5.3 Computational Results

In Table 2 below, we present the results of the implementation of our algorithm on the fifty-customer
problem from Christofides and Eilon (1969). Tt should be clear that the empirical performance of
the heuristic depends on the relative importance of the transportation cost and the inventory cost,
e.g., if the individual fixed costs (K;) are large relative to the transportation costs, then the heuristic
will perform extremely well, since the order quantities (and therefore order intervals) selected will
be close to those minimizing the major part (the inventory cost) of the objective function. For
that reason we choose small values for the inventory parameters which means that we evaluate
the performance of the heuristic under unfavorable conditions. We varied the fixed order costs for
individual retailers from 0 to 15, and used two different holding costs, 0.5 and 1. The vehicle capacity
is exactly the one used in the CVRP, for this problem it is 160. Retailer demands were distributed
uniformly between 1 and 10. The lower bound (FPP LB) is calculated as it is described in Section

5.2 using the subgradient procedure.

Table 2

Computational Results on the Location Based Heuristic



Problem No. Size Q h K | FFP LB Alg. ST' %Error CPU Time?
[1] 50 160 1.0 0 471.9 502.9 6.6 455.0
[2] 50 160 1.0 5 600.9 637.2 6.0 111.0
[3] 50 160 1.0 10 705.8 742.9 5.3 587.7
[4] 50 160 1.0 15 796.4 832.1 4.5 605.0
[5] 50 160 0.5 0 346.3 373.0 7.7 103.6
[6] 50 160 0.5 5 441.4 468.0 6.0 594.2
[7] 50 160 0.5 10 518.2 543.7 4.9 718.8
[8] 50 160 0.5 15 583.5 615.9 5.5 460.3

(1) Seed-Tours Heuristic.

(?) In seconds on a Sun Sparc 2.
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In the following table, we list certain characteristics of the solutions provided by the LBH on

all eight problems. “Number of tours” represents how many sets make up the fixed partition. The

“Number of retailers in each tour” specifies the size of each of these sets. The “Vehicle loads in each

tour” specifies the load (as a percentage of the vehicle capacity) that is sent out every cycle to serve

each set. We see that in almost two thirds of the cases the vehicle capacity is a tight constraint on

the load.

Table 3

Description of Solution Provided by the LBH
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Characteristics of the Location Based Heuristic Solution
Problem | Number of | Number of retailers
No. tours in each tour Vehicle load in each tour
[1] 4 15,20,14,1 100.0%,100.0%, 96.4%, 3.7%
[2] 4 12,16,9,13 100.0%,100.0%, 82.7%, 99.3%
[3] 5 13,14,10,12,1 100.0%,100.0%, 99.0%,100.0%, 6.7%
[4] 5 11,10,10,11,8 99.4%,100.0%,100.0%,100.0%, 80.2%
[5] 4 13,14,9,14 100.0%,100.0%, 85.2%,100.0%
[6] 5 12,8,11,9,10 100.0%,100.0%,100.0%,100.0%, 98.2%
[7] 7 9,5,10,7,8,10,1 100.0%, 76.2%,100.0%, 96.7%,100.0%,100.0%, 9.5%
[8] 8 6,7,9,6,8,9,1,4 100.0%,100.0%,100.0%, 94.2%,100.0%,100.0%, 11.0%, 65.8%

6 Applications to Other Problems

We have shown in this paper that the Location Based Heuristic works well. In fact, the methodology
has much potential. Many different features of the routing problem can be incorporated into the
structure of the heuristic; for example, we are currently working on a more general version of the
vehicle routing problem where in addition to a capacity constraint on the total load that can be
carried by a vehicle, there is a distance constraint on the length of each route traveled by a vehicle.

We also apply the technique presented here to the Capacitated Minimum Spanning Tree Problem
(CMST). This problem has numerous applications in the design of local access tree networks in
communication networks, see Altinkemer and Gavish (1988). The results on this problem will be

summarized in an accompanying paper.
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