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The present work tackles a recent problem in the
class of cardinality constrained combinatorial optimiza-
tion problems for the planar graph case: the minimum
k -cardinality cut problem. Given an undirected edge-
weighted connected graph the min k -cardinality cut prob-
lem consists in finding a partition of the vertex set V
in two sets V1, V2 such that the number of the edges
between V1 and V2 is exactly k and the sum of the
weights of these edges is minimal. Although for gen-
eral graphs the problem is already strongly NP-hard,
we have found a pseudopolynomial algorithm for the pla-
nar graph case. This algorithm is based on the fact that
the min k -cardinality cut problem in the original graph is
equivalent to a bi-weighted exact perfect matching prob-
lem in a suitable transformation of the geometric dual
graph. Because the Lagrangian relaxation of cardinality
constraint yields a max cut problem and max cut is poly-
nomially solvable in planar graphs, we also develop a
Lagrangian heuristic for the min k -cardinality cut in pla-
nar graphs. We compare the performance of this heuristic
with the performance of a more general heuristic based
on a Semidefinite Programming relaxation and on the
Goemans and Williamson’s random hyperplane tech-
nique. © 2006 Wiley Periodicals, Inc. NETWORKS, Vol. 48(4),
195–208 2006
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1. INTRODUCTION

In recent years a number of articles have been published
in which classical combinatorial optimization problems
have been modified by imposing an additional cardinality
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constraint, that is, feasible solutions are constrained to con-
tain a given number k of elements. Applications of cardinality
constrained tree problems are in oil-field leasing [13] and
facilities layout [15]. Chang et al. [9] deals with portfo-
lio optimization, when the portfolio has to contain a fixed
number of assets. A number of other problems, for example,
the assignment problem [11], have also been studied under
cardinality constraints. A survey on the topic with extensive
references is available [14]. A class of combinatorial opti-
mization problems that have applications in a wide variety of
areas are cut problems, that is, the problems to find in a given
graph a cut of maximal (or minimal) weight. In physics, for
example, the maximum cut problem models the problem of
finding a ground state of spin glasses having zero magneti-
zation. In VLSI design, it models the problem of minimizing
the number of vias (holes on a printed circuit board, or con-
tacts on a chip), see [2]. In numerical analysis it is helpful in
finding the L-U factorization of the matrix of a linear system.
The minimum cut problem has applications, for example in
network reliability theory and in compilers for parallel lan-
guages. The minimum cut problem with the addition of a
cardinality constraint has been considered, at our knowledge,
only in the case of oriented graphs; see for example, the paper
by Cong and Y. Ding [10], where an application in the VLSI
area is presented. Hence, we set out to investigate cardinality
constrained cut problems (k cardinality cut problems) in the
case of undirected graphs, because it has not yet been consid-
ered. This article contains the results of our research for what
concerns connected planar graphs. We start with some basic
definitions. Let G = (V , E) be an undirected graph with ver-
tex set V and edge set E. In the whole paper we let be |V | = n
and |E| = m when it is not differently specified.

Definition 1.

1. A cut is a partition of vertex set V in two sets V1, V2 called
the shores of the cut. A cut edge set C := {{v1, v2} ∈ E :
v1 ∈ V1, v2 ∈ V2} is associated with every cut.
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TABLE 1. Complexity results for min k-cardinality cut.

Graph class Unweighted Weighted

General strongly NP-complete strongly NP-hard
Complete P strongly NP-hard
Complete bipartite P strongly NP-hard
Tree P P

2. Given s, t ∈ V an s-t cut is a cut (V1, V2) such that s ∈ V1

and t ∈ V2.

Because from the cut edge set C one can easily reconstruct
the shores V1, V2, in the sequel we shall indifferently define
cuts either through the shores or through the cut edge set. Let
us introduce the notation δ(A, B) and δ(A) for A, B ⊂ V as
follows:

δ(A, B) := {{v1, v2} ∈ E : v1 ∈ A, v2 ∈ B}
δ(A) := δ(A, Ā),

where Ā denotes V\A. Let w: E → N be a positive inte-
ger function on the edge set of graph G. The minimum cut
problem (min cut) and the maximum cut problem (max cut)
are the problems to find a cut such that the sum of the weights
of the cut edge set C is minimal and maximal, respectively.
It will be convenient, to denote the weight of any subset of
edges F ⊂ E by w(F) := ∑

e∈F w(e). We can now intro-
duce cardinality constrained cut problems. Let k be a positive
integer.

Definition 2. The minimum k-cardinality cut problem (min
k-cardinality cut) is the problem to find a cut such that the
cut edge set C has cardinality k and the sum of the weights
of the edges belonging to C is minimal.

In Section 1.1 below we shall present complexity results
for a number of important graph classes. The rest of the
paper is organized as follows. In Section 2 we present
some considerations on the polyhedral structure of the prob-
lem. In Section 3 we show that the existence version of
the k-cardinality cut is in P and we use this result, in the
following section, to present a DualGreedy approximated
Algorithm. In Section 5 we show how the problem can be
solved with a pseudopolynomial time algorithm and with a
random pseudopolynomial one. In Section 6, we present the
Lagrangian relaxation of min k-cardinality cut. We develop
an efficient method to solve the Lagrangian dual to find
the best Lagrangian lower bound. We show that in corre-
spondence to the optimal Lagrangian multiplier either we
obtain an optimal solution of min k-cardinality cut or we
obtain two cuts having cardinality k1 and k2 with k1 < k < k2

such that they are optimal solutions of min k1-cardinality
cut and min k2-cardinality cut, respectively. In the last

section we compare through numerical results the perfor-
mance of Lagrangian relaxation with that of the Semidefinite
Programming relaxation presented in [6].

1.1. Complexity of Minimum k-Cardinality Cut Problem

The computational complexity of min k-cardinality cut
problems has been investigated for the first time in [6].
For general unweighted graphs the existence version of
this problem is already strongly NP-complete, because the
largest k value for which min k-cardinality cut is feasible
represents the solution of the simple max cut problem, which
is strongly NP-complete (see p. 210 of [18]). We notice
that without the cardinality constraint the min k-cardinality
cut problem reduces to the min cut problem which can
be efficiently solved through several algorithms (see, e.g.,
[19, 27, 28].

Despite this result, there are some special cases for which
the min k-cardinality cut problem can be solved in polynomial
time. One is the unweighted problem, when G is a complete
graph. Then there exists a cut containing k edges if and only
if k = i(n − i) for some i ∈ {

1, . . . , � n
2�}. Another case is

G being a tree. Because every subset of the edge set is a cut,
one might simply select the edges with the k smallest weights
and define a cut appropriately, to solve even the weighted
min k cardinality cut problem. We summarize in Table 1 the
complexity results obtained in [6] for min k-cardinality cut,
where the column “Unweighted” corresponds to the existence
version of the problem.

We notice that for planar graphs the complexity of min
k-cardinality cut cannot be determined through the reduc-
tion from max cut like in the general case, because for
planar graphs the max cut is polynomially solvable ([1]).
The aim of the present work is to discuss the problem in
the planar graph case. As we will show for planar graphs
the complexity is given in Table 2, where pP denotes the
class of decision problems that admit a pseudopolynomial
algorithm.

2. SOME CONSIDERATIONS ON THE
POLYHEDRAL STRUCTURE OF k -CARDINALITY
CUT IN PLANAR GRAPHS

Considering the relation between the max cut problem and
min k-cardinality cut and the fact that max cut is polynomial
for planar graphs, established by Theorem 6.4 of [1], which
we report below, it is interesting to consider the polyhedral
structure of both problems for planar graphs.

TABLE 2. Complexity results for planar min k-cardinality cut.

Graph class Unweighted Weighted

Planar P pP
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Theorem 1 (Theorem 6.4 of [6]).
Let

T(G) := {
x ∈ R

n(n−1)

2 : xij + xil + xjl ≤ 2

xij − xil − xjl ≤ 0

−xij + xil − xjl ≤ 0

−xij − xil + xjl ≤ 0

for all 0 ≤ i < j < l ≤ n
}

where

xij =
{

1 if edge {i,j} belongs to the cut,
0 otherwise.

for all 0 ≤ i < j ≤ n,

maximize
∑
e∈E

w(e)xe

subject to x satisfies T(G)

(1)

is the value of a max cut of G if and only if G is not con-
tractible to K5.

This theorem shows that the max cut problem is solvable
in polynomial time for the class of graphs noncontractible to
K5 because it can be formulated as the linear program (1) with
4
(n

3

)
constraints. Finally, because by Kuratowski’s theorem

(see Theorem 4.5 of [7]), planar graphs are those graphs that
are not contractible to K5 or K3,3, the previous result also
holds for planar graphs.

Now let KCUT(G, k) denote the convex hull of all
incidence vectors of min k-cardinality cut, that is,

KCUT(G, k) := conv

{
x ∈ {0, 1}|E| : x is the incidence

vector of a cut and
∑
e∈E

xe = k

}
.

Therefore,

KCUT(G, k) ⊂ CUT(G) ∩
{

x ∈ [0, 1]|E| :
∑
e∈E

xe = k

}
.

(2)

where CUT(G) denotes the cut polytope of G. If the opposite
inclusion held, too, we could conclude that in (2) the equal-
ity holds and so we may try to exploit Theorem 1 also to
solve min k-cardinality cut in polynomial time. But, unfor-
tunately, the opposite inclusion does not hold in (2) as the
example below shows. For the graph G drawn in Figure 1,
KCUT(G, 3) = ∅ because this graph has only cuts with car-
dinality 2 or 4. But CUT(G) ∩ {x ∈ [0, 1]|E| :

∑
e∈E xe =

k} 	= ∅ because, for example, x̃ = (1, 1
2 , 1

2 , 1
2 , 0, 1

2 ) belongs to
this set. Indeed, x̃ ∈ CUT(G) because x̃ = 1

2 x′ + 1
2 x′′ where

x′ = (1, 0, 1, 1, 0, 1) and x′′ = (1, 1, 0, 0, 0, 0) are incidence
vectors of cuts of G. Moreover,

∑
e∈E x̃e = 3. Examples of

grid graphs and triangulations for which the equality does not
hold can also be easily constructed.

FIG. 1. Planar graph G.

3. THE EXISTENCE VERSION OF PLANAR
k -CARDINALITY CUT

In this section we face the problem of determining if a
given planar graph contains a k-cardinality cut. As a first
result we prove the following proposition:

Proposition 1. Given a planar graph G = (V , E) with
|V | = n, |E| = m, every k-cardinality cut of G is equivalent
to an exact perfect matching of weight k in a suitable planar
graph G̃ = (Ṽ , Ẽ) with |Ṽ | = 12(n − 2), |Ẽ| = 15(n − 2).

Proof. Let us consider a planar embedding of graph G. If
the graph owns some faces, also considering the external one,
with more than three edges we transform them in triangular
faces adding suitable dummy edges. Let �E the new set of
edges. From Euler’s formula for planar graphs (n − m + r =
2, where r is the number of the faces) one can derive that
|�E| = 3(n−2) and the number of triangular faces is 2(n−2).
In the graph �G = (V ,�E) we define the edge-weight function
w′ in the following way:

w′(e) =
{

1 if e ∈ E,
0 if e ∈ �E\E,

Because the graph �G is planar it has an associated geometric
dual graph G∗ = (V∗, E∗) built according to the follow-
ing rules: associate a vertex v∗

i ∈ V∗ to each face Fi of �G,
associate a vertex v∗

0 ∈ V∗ to the extern of �G, and asso-
ciate to each edge ei ∈ �E an edge e∗

i = {u∗
i , v∗

i } ∈ E∗
whose vertices correspond to the two faces separated by
the edge ei (see Fig. 2). We define on E∗ the weight func-
tion w∗(e∗) = w′(e), ∀e∗ ∈ E∗, where e is the edge of �G
corresponding to e∗. As a consequence of Theorem 4 and
Theorem 5 of [26], every k-cardinality cut of graph G cor-
responds to an Eulerian subgraph of G∗, that is, a subgraph
where each vertex has even degree, having weight k with
respect to the weight function w∗. Let G̃ be the planar graph,
with edge-weight function w̃, obtained from G∗ in the follow-
ing way. Replace each vertex v∗

i ∈ V∗ with a cycle Ci having
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FIG. 2. The planar graph G and its dual G∗.

length (number of vertices and edges) equal to the degree
of v∗

i and substitute every edge e∗
i ∈ E∗ with a chain CHi of

three edges. In each of these chains, set the weight of the cen-
tral edge equal to w∗(e∗

i ) and the weights of all other edges
equal to 0 (see Fig. 3). Hence, the total number of vertices
of the exploded graph is three times the number of triangular
faces and twice |�E|, i.e. |Ṽ | = 12(n − 2); the total number of
edges is three times the number of triangular faces and three
times |�E|, that is, |Ẽ| = 15(n − 2).

Now we show that the problem of finding an Eulerian
subgraph with weight k in G∗ is equivalent to find an exact
perfect matching with weight k in G̃. The edges in every
perfect matching M of G̃ can be partitioned into three sets
M1, M2 and M3. The set M1 contains the edges belonging to
cycles Ci, M2 contains the edges that are central in chains
CHi, whereas M3 contains the edges that are not central in

FIG. 3. The “exploded” graph G̃ obtained from G∗.

chains CHi. First, we show that from any Eulerian subgraph
of G∗ with edge set Ê, once we put in M2 the central edges of
the chains CHi corresponding to the edges of Ê and we put
in M3 the not central edges of the chains CHi corresponding
to the edges of E∗\Ê, there exists an unique way to build
an exact perfect matching M = M1 ∪ M2 ∪ M3 of G̃. Vice
versa, we show that the edges in E∗ corresponding to the
edges in M2 made up an Eulerian subgraph of G∗. We observe
that because all the faces of �G are triangular, every vertex
v∗

i ∈ V∗ has a degree of 3; hence, every corresponding cycle
Ci has length of exactly 3. Because any vertex in an Eulerian
subgraph has a degree of 2, then any Eulerian subgraph of
G∗ is composed by vertex disjoint cycles. If a vertex v∗

i ∈ V∗
does not belong to an Eulerian subgraph [see Fig. 4(a)], then
the vertices in G̃ belonging to the set S containing the vertices
of cycle Ci and the vertices in the chains corresponding to the
edges incident to v∗

i are covered by the perfect matching M ′
[see Fig. 4(b)]. As in G∗, the edges incident to v∗

i does not
belong to the Eulerian subgraph, then in G̃ the central edges
in the chains corresponding to the edges incident to v∗

i do
not belong to the perfect matching M ′. Whereas, if the same
vertex v∗

i belongs to an Eulerian subgraph [see Fig. 5(a)],
then in G̃ the vertices of S, a part two of them on the border,
are covered by the perfect matching M ′′ [see Fig. 5(b)]. As
in G∗, two of the edges incident to v∗

i belong to the Eulerian
subgraph; then in G̃ the central edges in the corresponding
chains belong to the perfect matching M ′′, while the central
edge of the other chain does not. In this second case a similar
reasoning on vertices v∗

j and v∗
l , which must have two edges

belonging to the Eulerian subgraph, will take into account
for the two uncovered vertices on the border. Vice versa,
every perfect matching M = M1 ∪ M2 ∪ M3 of G̃ will cover
every subset of vertices as S only in one of the two ways
depicted above. As a consequence, the edges in M2 univocally
determine in G∗ an Eulerian subgraph. Because the edges in
M1 ∪ M3 have weight equal to zero, while the edges in M2

have weight equal to the corresponding edges in Ê, then the
total weight of a perfect matching M is equal to the weight
w(Ê), and vice versa. ■

FIG. 4. Case of a vertex v∗
i not belonging to the Eulerian subgraph.
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FIG. 5. Case of a vertex v∗
i belonging to the Eulerian subgraph.

Proposition 2. When G = (V , E) is a planar graph the
existence version of the k-cardinality cut problem is in P
with time complexity O(n5logn).

Proof. We know from Proposition 1 that the existence
version of the k-cardinality cut problem in G is equivalent to
the existence version of a perfect matching of weight k in a
suitable planar graph G̃ whose number of vertices is O(n).
In [3], the problem of finding a perfect matching of a given
weight is solved with time complexity O((n3 +p2)p2(logp)),
where p = nU and U = max{w(e)}. Because in G̃ the max-
imum weight of an edge is 1, then p = n, which completes
the proof. ■

Hereafter, we prove that the above time complexity can be
improved at the expense of using a randomized algorithm.

Definition 3. A random ( pseudo-)polynomial algorithm for
a decision problem is an algorithm that always answers cor-
rectly in the case of a no-instance, whereas for a yes-instance
the answer may be wrong, with probability less than a positive
constant ε < 1 independent of the input size. Furthermore, it
requires a time that is ( pseudo-)polynomial in the input size.

Proposition 3. When G = (V , E) is a planar graph the exis-
tence version of the k-cardinality cut problem can be solved
with a random polynomial algorithm with time complexity
O(n4).

Proof. We know from Proposition 1 that the existence
version of the k-cardinality cut problem in G is equivalent
to the existence version of a perfect matching of weight k
in a suitable planar graph G̃ whose number of vertices is
O(n). Theorem 8 of [17] proves that the problem of finding
a perfect matching of a given weight can be solved using
a randomized algorithm that works in a finite field with
time complexity O(pn2 log(U + 1) + pn3), where p = nU
and U = max{w(e)}. Because in G̃, U = 1, the overall
complexity is O(n4). ■

4. A (RANDOM) PSEUDOPOLYNOMIAL
ALGORITHM FOR PLANAR k -CARDINALITY CUT

To solve or approximate the solution of the min k-
cardinality cut problem, that is, to find a cut such that the
cut edge set has cardinality k and the sum of the weights
of the edges belonging to it is minimal, we propose three
techniques: a random pseudopolynomial algorithm, a dual
greedy procedure, and a Lagrangian heuristic. We apply these
techniques once the existence of a feasible solution has been
proved as described in the previous section. In this section we
describe the random pseudopolynomial algorithm, whereas
the other two methods will be described in the next two ones.
Now we need to introduce a set of definitions that also will
be used in the next section.

Given a skew-symmetric matrix M of even order the
Pfaffian of M, pf (M), is defined as

pf (M) := √
det(M)

where det(M) denotes the determinant of M. Given a graph
G = (V , E) with vertex set V = {1, . . . , 2n}, edge set E,
|E| = m and an edge-weight function w: E → N, let us
consider the 2n × 2n skew-symmetric matrix C

Ci,l =


ti,lyw(e) if e = {i, l} ∈ E, i < l,
−ti,lyw(e) if e = {i, l} ∈ E, i > l,
0 otherwise.

Because the determinant of a skew-symmetric matrix of
even order is a perfect square, we can express pf (C) as a
polynomial in the variables y and ti,l, {i, l} ∈ E:

pf (C) =
�W−1∑
j=0

qj(t)y j,

where �W is a strict upper bound for the weight of any perfect
matching of G, qj(t) is a polynomial in t and t is the vector
that collects the ti,l for all {i, l} ∈ E.

Lemma 1. There exists an exact perfect matching of
weight j in graph G if and only if qj(t) is not identically
zero in pf (C).

Proof. It has been proved in [22] and [21] that qj(t)
is the sum of all monomials corresponding to exact perfect
matchings of weight j. ■

The nice property of pf (C) described in Lemma 1 cannot
directly be exploited because it would be a task of expo-
nential complexity to obtain explicitly the monomials of
pf (C), because, in general, the number of perfect match-
ings in a graph is exponentially large. However, for fixed
t = t̄, pf (C(t̄)) can be evaluated in polynomial time applying
a modified version of the Edmond’s algorithm for computing
the determinant of C(t̄) where C(t̄) is seen as a matrix with
elements in Z[y], the integrality domain of polynomials in
variable y (see [12, 16]).

NETWORKS—2006—DOI 10.1002/net 199



For planar graphs there exists a special orientation of the
edges (called pfaffian orientation) from which we can deduce
the values of the elements of t̄ so that the pfaffian counts
exactly the number of perfect matchings. This is also known
as the Kasteleyn theorem (see Theorem 8.3.4. of [23]). Using
Lemma 1 and the Kasteleyn theorem, the existence of a per-
fect matching of a given weight can be verified through either
the algorithm cited in the proof of Proposition 2 or the one
cited in the proof of Proposition 3.

Now we show how the techniques adopted to test if a
given planar graph contains a k cardinality cut can be used
to build a procedure for testing if the same graph contains
a k cardinality cut of a given weight W . Such a procedure
can be readily used to find a k cardinality cut of mini-
mum weight once its existence has been proved. Indeed,
starting from a lower bound W on the value of an opti-
mal solution (e.g., the maximum between the value of min
cut and the sum of the k minimum edge-weights) one can
call the procedure with input k and increasing values W ,
W + 1, . . . until the procedure gives a “yes” answer. We
notice that in this case a binary search between a lower
bound W and an upper bound �W (no matter how obtained)
would not improve over the above technique because in the
case of a no-answer we cannot halves the current range of
search.

Proposition 4. Given an edge-weighted planar graph G =
(V , E) with |V | = n, |E| = m, every k-cardinality cut of
weight W of G is equivalent to an exact perfect matching
of weight k, with respect to an edge-weight function w1,
and of weight W, with respect to an edge-weight function w2,
in a suitable planar graph G̃ = (Ṽ , Ẽ) with |Ṽ | = 12(n −2),
|Ẽ| = 15(n − 2).

Proof. The graph G̃ is derived like in the proof of Propo-
sition 1, the edge-weight function w1 is defined like w̃,
whereas the edge-weight function w2 is defined setting
the weight of the central edge in each chain of G̃ equal
to the weight of the corresponding edge in G and the weights
of all other edges equal to 0. With the same arguments used in
proof of Proposition 1, one can derive that to a perfect match-
ing of weight W with respect to the edge-weight function w2

in G̃, corresponds a cut of weight W in G and vice versa. ■

Given a planar graph G = (V , E) with vertex set V =
{1, . . . , 2n}, edge set E, |E| = m and two edge-weight func-
tions w1: E → N, w2: E → N let us consider the 2n × 2n
skew-symmetric matrix C

Ci,l =


ti,lyw1(e)zw2(e) if e = {i, l} ∈ E, i < l,
−ti,lyw1(e)zw2(e) if e = {i, l} ∈ E, i > l,
0 otherwise

where y and z are variables, whereas the vector t is derived
from the Kasteleyn theorem. Because the determinant of a
skew-symmetric matrix of even order is a perfect square we

can express pf (C) as a polynomial in the two variables y
and z:

pf (C(t, x, y)) =
�W1−1∑
i=0

�W2−1∑
j=0

qij(t)y
iz j,

where �W1 and �W2 are strict upper bounds for the weights of
any perfect matching of G with respect to the edge-weight
function w1 or w2, respectively, and qij(t) is a polynomial in t.

Lemma 2. Graph G contains an exact perfect matching
of weight i with respect to the edge-weight function w1 and
of weight j with respect to w2 if and only if qij(t) is not
identically zero in pf (C(t, x, y)).

Proof. Straightforward from the proof of Lemma 1. ■

By extending the algorithm of [3] (see proof of Propo-
sition 2) one could derive a pseudopolynomial algorithm
for testing if the monomial qij(t) is not identically zero in
pf (C(t, x, y)). A lower complexity can be obtained by extend-
ing the work of [17] to derive a random pseudopolynomial
algorithm. To this aim it is first necessary to define two finite
fields Zq1 and Zq2 in which to compute the coefficient qij(t)
of the term yiz j in pf (C(t, x, y)) by applying the direct and
inverse Discrete Fourier Transform (DFT) for the evaluation
and interpolation of the polynomial. Working in Zq1 and Zq2

we can compute a unique coefficient of the inverse DFT, that
is, we can compute the coefficient qij(t) by means of the
well-known formula

qij = �W−1
1

�W−1
2

�W1−1∑
r=0

�W2−1∑
s=0

pf (C(t, ωr
1, ωs

2))ω
−ir
1 ω

−js
2

where ω1 and ω2 are suitable chosen roots of unities in Zq1

and Zq2 , respectively.

Proposition 5. When G = (V , E) is a planar graph to test
if a k cardinality cut of weight W exists can be done with
a random pseudopolynomial algorithm with time complexity
O(n4Ulog(U) + n5U).

Proof. By extending Algorithm 3 of [17] for com-
puting the value of qkW and adapting their Theorem 8,
we obtain an algorithm with computational complexity
O(�W1 �W2n2log(�W1 + �W2)+ �W1 �W2n3). Because in G̃, �W1 = n
and �W2 = nU, where U = maxe∈E{w(e)}, the above
complexity reduces to O(n4Ulog(U) + n5U). ■

We observe that the random pseudopolynomial algorithm
used to solve the problem in Proposition 5 can be converted
into an approximated random polynomial algorithm using
rounding techniques (see, e.g., section 8.2 of [29]).

Finally, we notice that the same problem is also faced in
[24] with interpolation techniques based on the use of the
determinant of a special Tutte matrix and on the hypothe-
sis of a specific distribution of the edge weights. However,
as indicated in [8], the details of the procedure given there
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are incorrect, because taking square roots of the determi-
nants obliterates the sign of the pfaffians and therefore
yields a wrong interpolating polynomial. This inaccuracy
can be fixed, for instance, by first interpolating the values
of the determinant and then extracting the square root of the
polynomial so obtained, using, for instance, the probabilistic
method described in [30]. Therefore, the technique presented
in [24] readily becomes impractical because it requires to
manipulate really huge numbers. For this reason we selected
to work in finite field with a double interpolation technique.

5. A DUAL GREEDY PROCEDURE

The dual greedy procedure receives in input the graph G̃
introduced in the proof of Proposition 1, an ordered list T of

edges of G̃, the edge-weight function w̃ of G̃, the value k, the
skew symmetric-matrix C associated to graph G̃, and an ini-
tially empty set PM. After termination the procedure returns
the set PM, which contains a perfect matching in G̃ of value k
with respect to the edge-weight function w̃.

The list T contains the m edges of G̃, which have weight
equal to 1. By construction of G̃ those edges are in one to
one correspondence with the edges in G and we sort them
in nonincreasing order of weight with respect to the edge-
weight function w of G. The procedure then examines each
edge in T in the given order and determine either that the
considered edge is necessary to the existence of the solution
under construction or that it can be removed without com-
promising the ongoing computation. The procedure is listed
below.

Algorithm 1. DualGreedy(G̃, T , w̃, k, C, PM)

1. If |PM| = 6(n − 2) then return PM;
2. Remove from G̃ the first edge ē = ( j1, j2) of T in the given order;
3. If G̃ does not contain a k cardinality cut then
4. PM := PM ∪ {ē};
5. remove the two edges e′ and e′′ connected to the edge ē from G̃;
6. erase the rows and columns j1 and j2 from matrix C;
7. k := k − 1;
8. Else
9. PM := PM ∪ {e′, e′′};

{where e′ = ( j1, j3) and e′′ = ( j2, j4) are the two edges connected to ē}
10. remove from G̃ e′, e′′ and each edge e connected with them;
11. erase the rows and columns j1, j2, j3 and j4 from matrix C;
12. DualGreedy(G̃, T , w̃, k, C, PM);

Proposition 6. The dual greedy procedure builds a feasi-
ble solution with time complexity O(nTA), where TA is the
complexity of the algorithm used to test the existence of a k
cardinality cut.

Proof. The time complexity of the dual greedy algorithm
is O(mTA) and m = O(n). To see this we observe that the
heaviest part of Algorithm 1 is the call to the existence pro-
cedure in step 3, and this call is done once for each removed
element in T . To see that m calls are enough to identify a
perfect matching of 2m elements, we observe which are the
consequences of steps from 4 to 11 on the original graph G.
Every time steps from 4 to 7 are executed the edge ē, which
is added to the perfect matching in G̃, sets the corresponding
edge in G as part of the k-cut. Otherwise, the execution of
steps from 9 to 11 which adds two 0 valued edges to PM,
consists in the removal from G of the edge corresponding to
ē and in the consequent updating of the exploded graph G̃.

Hence, at each iteration an edge is either identified as part of
the k-cut in G or it is removed from G.

Finally, the dual greedy algorithm builds a feasible solu-
tion deterministically. To see this it is sufficient to adopt
in step 3 the same procedure used, before the call of the
dual greedy algorithm, to prove that a feasible solution
exists. In this case, as reported in [17], the random proce-
dure in step 3 always answers correctly when it is iteratively
called in the constructive procedure based on the removals of
elements. ■

Proposition 7. The dual greedy procedure returns a solu-
tion whose value is at most k times the optimal one and the
bound is tight.

Proof. Let M denote the value of the heaviest edge, say
e, in an optimal solution of the min k-cardinality cut problem,
which is discarded by the dual greedy solution. Hence, the
value of an optimal solution is at least M. On the other hand,
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FIG. 6. The “tight” instance.

the dual greedy procedure can output a solution of value at
most k(M − ε) after discarding the edge e. Figure 6 shows
an instance in which this situation is verified. The edges in
bold, thin, and double line have weight M, 0 and M − ε,
respectively. The optimal solution of the min k-cardinality
cut problem on this instance is given by the edges incident to
vertex A. On the other hand, on this instance the dual greedy
procedure returns the solution composed by all the edges
incident to vertex B. ■

Remark 1. We notice that the DualGreedy proce-
dure always finds an optimal solution for the min-max
k-cardinality cut problem, that is, the problem of finding a k-
cardinality cut such that is minimal the weight of the heaviest
edge in the cut.

6. LAGRANGIAN RELAXATION

Given an undirected graph G = (V , E) and an edge-weight
function w: E → N, the min k-cardinality cut problem can

be formulated as

minimize
∑
e∈E

w(e)xe

subject to : x be the incidence vector of a cut (3)∑
e∈E

xe = k

The Lagrangian relaxation of cardinality constraints yields

θ(λ) = λk + mincut(G, w − λ) (4)

where mincut(G, w − λ) indicates the optimal value of min
cut problem on the graph G with weight function w − λ.
Because in literature the min cut problem is only defined for
nonnegative edge-weights, whereas the max cut problem is
also defined for negative edge-weights it is more correct to
rewrite

θ(λ) = λk − maxcut(G, λ − w) (5)

We notice that the min cut problem requires to find a
nonempty cut because otherwise we always obtain the empty
cut like trivial solution of this problem. Whereas the classi-
cal max cut problem also allows an empty cut like solution.
Therefore, in order for (5) to be equivalent to (4), in (5) we
indicate by maxcut(G, λ − w) the optimal value of max cut
problem with the additional constraint that the cut found is
not empty.

Exploiting the fact that in planar graphs the classical
max cut problem can be solved in polynomial time through
the LP formulation (1), we can also polynomially solve
maxcut(G, w) using the following procedure:

Algorithm 2. Maxcut(G, w)

1. If w(e) ≤ 0 ∀e ∈ E, then set z∗ := −mincut(G, −w);
2. Else if w(e) ≥ 0 ∀e ∈ E, then let z∗ the optimal value of LP (1) applied to graph (G, w);
3. Else
4. Set z∗ := −∞, M := w(E);
5. While |V | > 1
6. Choose an arbitrary edge {s, t} ∈ E and set w({s, t}) := w({s, t}) + M;
7. Let z̄ be the optimal value and let �C be the optimal solution of LP (1)

for the current graph (G,w);
8. If z̄ − M > z∗ then z∗ := z̄ − M and C∗ := �C;
9. Shrink G by merging vertices s and t and update the edge weights accordingly;

11. Return z∗

This procedure is a self-reduction that follows the algorithm
proposed in [28]. We notice that through the merging
operation of step 9 this algorithm requires to solve just n − 1
LP problems like (1) with decreasing size instead of o(n2)

problems. The min cut problem required by step 1 has been

efficiently solved using the algorithm of [28]. From (5) we
can rewrite

θ(λ) = λk − maxcut(G, λ − w)

= (k − |Eλ|)λ + w(Eλ)
(6)
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where Eλ is the edge set of a solution of maxcut(G, λ−w) and
w(Eλ) := ∑

e∈Eλ
w(e). Relation (6) emphasizes that θ(λ) is

a piecewise linear function.
Now we state some properties of θ(λ) that we will use in

the sequel and that can be easily derived from the fact that
θ(λ) is a concave and piecewise linear (see, i.e., [25]).

Proposition 8. For any real λ, if Eλ is the edge set of a
solution of maxcut(G, λ − w) and |Eλ| = k′ then Eλ is a min
k′-cardinality cut of (G, w).

Proposition 9. Given λ1, λ2 ∈ R with λ1 ≤ λ2, let Eλ1

a solution of maxcut(G, λ1 − w) with |Eλ1 | = k1 and let
Eλ2 a solution of maxcut(G, λ2 − w) with |Eλ2 | = k2. Then
k1 ≤ k2.

In particular, from Proposition 8 we have that when Eλ

is the edge set of a solution of maxcut(G, λ − w) such that
|Eλ| = k then Eλ is an optimal solution of k-cardinality cut.
In fact, any optimal solution of the Lagrangian relaxation of
k-cardinality cut that satisfies the cardinality constraint must
to be optimal for the original problem because the relaxed
constraint is an equality constraint. The same fact can be
deduced by the following argument. If we subtract λ from
every edge, all k-cardinality cuts lose exactly a kλ value.
Thus, whichever cut is the minimum k-cardinality cut, it stays
minimum. So, if the minimum cut has cardinality k, it is the
minimum k-cardinality cut.

From relation (6) and Proposition 9 we have that for a
small enough λ, function θ(λ) is a straight line having slope
k −min cardinality cut, whereas for a big enough λ, θ(λ) is a
straight line having slope k −max cardinality cut. The corner
points of function θ(λ) are due to the fact that in correspon-
dence of the same λ̄ we can have two solutions E ′̄

λ
and E′′̄

λ
of

maxcut(G, λ̄− w) with different cardinality. The behavior of
function θ(λ) is represented in Figure 7.

A possible choice of the values λ1 and λ2 such that for
λ ≤ λ1 and for λ ≥ λ2 the slope of θ(λ) does not change is
established by the following proposition:

Proposition 10.
Let

λ1 := max

{
w(Ê)

|Ê| − k
, w(E∗) − w(Ê)

}

and let

λ2 := min

{
w(Ẽ)

|Ẽ| − k
, w(Ẽ) − w(E∗)

}

where Ê is the edge set of a min cardinality cut, E∗ is the edge
set of a min cut and Ẽ is the edge set of a max cardinality cut.
For any λ ≤ λ1 the solution of maxcut(G, λ − w) does not
change from the min |Ê|−cardinality cut and for any λ ≥ λ2

the solution of maxcut(G, λ − w) does not change from the
min |Ẽ|−cardinality cut.

Proof. We prove the proposition only for λ1, because
for λ2 the proof is similar. We show that when λ1 is equal to
w(Ê)

|Ê|−k
then λ1 is on the left of the intersection, λ̄, of the most

left straight line in θ(λ) with the λ axis. From (6) we have

λ̄ = w(�E)

|�E| − k

where �E is the minimal cardinality cut with the minimal
weight. Because |�E| − k < 0 and |�E| = |Ê| it results

w(Ê)

|Ê| − k
≤ w(�E)

|�E| − k
= λ̄

Now we show that when λ1 = w(E∗) − w(Ê) then λ1 is on
the left of the first breakpoint, λ̃, of θ(λ), (i.e. the first point
where the slope of θ(λ) changes). From (6) λ̃ must to be such
that

λ̃(k − |�E|) + w(�E) ≤ λ̃(k − |E′|) + w(E′)

for all cut E′.

FIG. 7. Behavior of function θ(λ).
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FIG. 8. Behavior of function θ(λ) for the uniform edge-weight case.

Therefore λ̃ is given by

λ̃ = min

{
w(E′) − w(�E)

|E′| − |�E| : E′ is a cut of G

}
Hence, it results

λ1 = w(E∗) − w(Ê) ≤ λ̃

■

6.1. Solving the Lagrangian Dual

The best Lagrangian lower bound of k-cardinality cut is
given by

θ(λ∗) = max
λ free

θ(λ) (7)

The optimization problem (7) is known as the Lagrangian
dual problem. From Proposition 10 we have that (7) is
equivalent to

θ(λ∗) = max
λ∈[λ1,λ2]

θ(λ) (8)

From the properties of θ(λ) established before it is easy to
see that θ(λ) is differentiable almost everywhere. When all
the solutions of maxcut(G, λ − w) have the same cardinality
then λ is not a corner point and the derivative of θ(λ) is
given by

θ ′(λ) = k − |Eλ|
where Eλ is a solution of maxcut(G, λ−w). Whereas when for
arbitrarily small ε ≥ 0, maxcut(G, λ−ε−w) and maxcut(G,
λ+ε−w) have two solutions Eλ

′ and Eλ
′′, respectively, with

|Eλ
′| 	= |Eλ

′′|, then λ is a corner point of θ(λ) and we can
define the left derivative θ ′−(λ) and the right derivative θ ′+(λ)

in the following way:

θ ′−(λ) = k − |Eλ
′| (9)

θ ′+(λ) = k − |Eλ
′′| (10)

The solution λ∗ of (8) is the only corner point of θ(λ) given
by the intersection of a straight line having non negative slope
with a straight line having non positive slope. So λ∗ is the only
corner point of θ(λ) such that θ ′−(λ∗) ≥ 0 and θ ′+(λ∗) ≤ 0.
Therefore, λ∗ can be determined within an uncertainty inter-
val of width ε > 0 through a dichotomic search algorithm
on λ in the interval [λ1, λ2] where λ1 and λ2 are computed as
described in Proposition 10.

An additional stopping criterium of the dichotomic search
algorithm is the condition |Eλ| = k, where Eλ is a solu-
tion of maxcut(G, λ − w), because in this case, according to
Proposition 8, Eλ is an optimal min k-cardinality cut.

When a cut with cardinality k is not found the algorithm
ends returning a final uncertainty interval [λend

1 , λend
2 ]. In this

case, the algorithm yields two cuts Eλend
1

, Eλend
2

, which are the

solutions of maxcut(G, λend
1 − w) and maxcut(G, λend

2 − w),

FIG. 9. Planar graph G having bad Lagrangian lower bound.
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respectively, such that according to Proposition 9

k1 := |Eλend
1

| < k < k2 := |Eλend
2

|
and according to Proposition 8 Eλend

1
is a min k1-cardinality

cut and Eλend
2

is a min k2-cardinality cut.
We observe that unfortunately there is no approximation

guarantee that the cardinalities of Eλend
1

and Eλend
2

are close
to k. Indeed, if we consider the uniform edge-weight case
we obtain the worst approximation result because Eλend

1
is

reduced to a min cardinality cut, whereas Eλend
2

is reduced
to a max cardinality cut, for any value of k. In fact, when
w(e) = 1∀e ∈ E it results

θ(λ) = λk − maxcut(G, λ − w)

= λk − maxcut(G, λ − 1) (11)

= (k − |Eλ|)λ + |Eλ|
where Eλ is a solution of maxcut(G, λ − 1). So Eλ is a min
cardinality cut for λ < 1, Eλ can be any cut for λ = 1, and Eλ

is a max cardinality cut for λ > 1, and therefore, the behavior
of θ(λ) is that one represented in Figure 8. Hence, for any
ε > 0, although λend

2 − λend
1 ≤ ε, if λend

1 < λ∗ < λend
2 , Eλend

1

and Eλend
2

do not change from the min cardinality cut and the
max cardinality cut, respectively, and so they result to be the
two cuts with the farthest cardinality.

We observe that in the uniform edge-weight case the opti-
mal Lagrangian lower bound is θ(λ∗) = k and so it coincides
with the optimal min k-cardinality cut. An example where
the optimal Lagrangian lower bound is arbitrarily far from
the optimal min k-cardinality cut is the following one.

Consider the graph G = (V , E) drawn in Figure 9 with
the edge-function w defined below

w(e) =
{

1 for all e ∈ E\{e7}
1 + M for e = e7

where M represents an arbitrarily large positive constant.

When k is equal to 3, the behavior of θ(λ) is that repre-
sented in Figure 10. Therefore, the optimal Lagrangian lower
bound is θ(λ∗) = 3, obtained for λ∗ = 1, whereas the optimal
min 3-cardinality cut value is 3 + M.

Another efficient method for solving the Lagrangian dual
problem (7) is by way of parametric linear program (see [4]).
In fact, the total number of breakpoints of function θ(λ)

is upper bounded by m = |E| because each breakpoint
corresponds to a change of cut cardinality: therefore, the para-
metric linear program (7) can be solved in polynomial time
by the simplex algorithm even if in the worst case we visit
all the breakpoints.

7. NUMERICAL RESULTS

Computational experiments have been carried on only for
testing the Lagrangian heuristic because the computational
complexity of the dual greedy procedure and of the random
pseudopolynomial algorithm makes them useful only for very
small instances.

7.1. Description of the Instances for k-Cardinality Cut

Because no validation instances are publicly available
for the min k-cardinality cut problem we have generated
instances ad hoc for this problem. We have generated con-
nected planar graphs considering as vertices uniformly dis-
tributed random points in a square and linking pairs of them
by an edge only if the edge does not cross any edges previ-
ously generated and until an edge density non less than 50%
is achieved (with respect to the maximum number of edges
in a planar graph). All graphs have random integer weights
on the edges uniformly distributed between 1 and 100. We
have built 10 different planar graphs having 30 vertices and a
number of edge between 60 and 70. Finally, we have created
300 instances of min k-cardinality cut considering for each

FIG. 10. Behavior of function θ(λ) for the graph drawn in Figure 9.
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FIG. 11. Deviations of lower bounds from the optimal values.

planar graph 30 different values of k obtained computing the
cardinalities of the cuts generated by random partitions of the
vertex set.

7.2. Solution of the Instances and Final Remarks

All the algorithms presented were implemented in C and
run on a AMD K7 1 GHz computer with 1.2 GB RAM under
the Linux 2.2.14 operating system.

For the solution of the LP problems (1) in the Algorithm 2
we used the LP solver Cplex 7.0 where for efficiency
reasons we do not add all triangle inequalities at once, but
we include them successively according to the amount of
violation.

For all the instances we have found the optimal solution
solving a mixed integer linear formulation for min k-cardi-
nality cut presented in [6] by the MIP solver Cplex 7.0.
Therefore, on this set of instances we calculated the average

FIG. 12. Deviations of cardinalities of heuristic solutions from the required value of k.
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relative deviation of the Lagrangian lower bounds from the
optimal values for each value of k. In Figure 11 we compare
the behavior of the deviation of the Lagrangian lower bounds
with that one of Linear Programming relaxation (LP) and
of Semidefinite Programming relaxation (SDP) presented
in [6].

From this figure we can note that on our set of instances
both SDP relaxation and the Lagrangian relaxation yield a
lower bound by far better than the LP relaxation and the first
one is ever dominated by the second one (or at the maximum
equal). Both SDP relaxation and Lagrangian relaxation yield
the tightest bounds for big values of k. Although in Subsec-
tion 6.1 we have detected an example where the Lagrangian
bound can be arbitrarily far from the optimal value of min
k-cardinality cut the experiments seem to reveal that in the
mean case the Lagrangian bound is very tight. A reason why
the Lagrangian relaxation works well is suggested by the
article of [20], who shows that when random weights are
assigned to a graph, every cut gets value close its expecta-
tion with high probability. Therefore, every cut of cardinality
significantly larger than k ends up with weight significantly
larger than the expected weight of a k-cardinality cut, so that
it does not compete with the k-cardinality cuts in the search
for a minimum. In particular, given that the expected weight
of a k-cardinality cut is 50km presumably λ ≈ 50 at the
Lagrangian optimum.

Moreover, we have noted that for all instances that are
similar to the example presented in Subsection 6.1, the SDP
relaxation yields exactly the same bound of the Lagrangian
relaxation. Finally, about the CPU time we notice that
although for the set of instances considered the Lagrangian
relaxation and the SDP relaxation require roughly the same
time, less than 1.5 minutes, the increase in CPU time is much
less for the Lagrangian relaxation than the SDP relaxation
when the size of the instances increases.

Concerning to the heuristic solutions we report in
Figure 12, the graphics of the average absolute deviation
of the cardinalities of Lagrangian heuristic solutions and
of SDP heuristic solutions from the required value of k.
From this figure we can deduce that the SDP heuristic
approximates the wanted cardinality by far better than the
Lagrangian heuristic. However, we remember that each time
the Lagrangian heuristic returns a k-cardinality cut this is cer-
tainly an optimal min k-cardinality cut, whereas this does not
happen for the SDP heuristic.
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