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Abstract

We consider the maximum feasible subsystem problem in which, given an infeasible system of linear inequalities, one wishes to
determine a largest feasible subsystem. The focus is on the version with bounded variables that naturally arises in several fields of
application. To tackle this NP-hard problem, we propose a simple but efficient two-phase relaxation-based heuristic. First a feasible
subsystem is derived from a relaxation (linearization) of an exact continuous bilinear formulation, and then a smaller subproblem is
solved to optimality in order to identify all other inequalities that can be added to the current feasible subsystem while preserving
feasibility. Computational results, reported for several classes of instances, arising from classification and telecommunication
applications, indicate that our method compares well with one of the best available heuristics and with state-of-the-art exact
algorithms.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

We consider the Maximum Feasible Subsystem problem (MAX FS ): for an infeasible linear system Ax�b with a
real matrix A ∈ Rm×n and a real vector b ∈ Rm, find a feasible subsystem containing the largest number of inequalities
[18]. If the focus is on violated inequalities, one may alternatively minimize the number of inequalities that must be
deleted to make the resulting subsystem feasible [1]. These two complementary versions of the problem are clearly
equivalent as far as optimal solutions are concerned.

The MAX FS problem has a number of relevant applications in a variety of fields including computational biology
[2], image and signal processing [3,4], linear programming [5–8], radiation therapy [9], political science [10], statistical
discriminant analysis, telecommunications [11] and machine learning, see e.g. [12–15].

MAX FS is a difficult problem: it is NP-hard not only to solve optimally [16,17], but also to approximate [18].
While a simple algorithm is guaranteed to provide a feasible subsystem with at least half the number of inequalities
contained in a largest feasible subsystem, the problem does not admit a polynomial-time approximation scheme, unless
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P = NP [18]. It is worth pointing out that MAX FS plays for linear inequality systems a similar role as the well-known
problem of MAX SAT (given a set of Boolean clauses, find a truth assignment for the Boolean variables which satisfies
a maximum number of clauses [19]) for systems of Boolean clauses. Note, however that, since linear system feasibility
can be checked in polynomial time, the structure of MAX FS differs substantially from that of MAX SAT.

The focus in this paper is on the version of MAX FS in which all variables are bounded and these bounds are mandatory.
The complexity results mentioned above for the case with unbounded variables are still valid for the case with bounded
variables [18]. Since any variable can be expressed as the difference of two nonnegative variables, we can assume
without loss of generality that all variables are nonnegative and bounded above. Instances of MAX FS with bounded
variables naturally arise in several fields of application such as, for example, in planning terrestrial video broadcasts
[11] with the problem of selecting the emission power of a set of transmitters so as to maximize territory (population)
coverage. But the approach and algorithm we propose can also be applied when all but one of the variables are bounded.
In discriminant analysis, for instance, the problem of designing an optimal linear classifier can be formulated in terms
of MAX FS with a single unbounded variable [20].

Besides a series of linear programming approximate formulations (see e.g. [21,22]) and some mixed-integer exact
formulations (see e.g. [23,24]), several heuristics and exact algorithms have been proposed for tackling versions of MAX

FS . This includes, for instance, variants of the relaxation method for solving feasible systems of linear inequalities
[12,25,26], filtering heuristics based on a greedy-like strategy and linear programming [27,5], and bilinear and concave
formulations that are tackled with Frank–Wolfe-type methods [13,28,14]. In the filtering heuristic described in [27,5], at
each iteration a single relation is permanently deleted from the current infeasible system until the remaining subsystem
is feasible. The relations to be dropped are selected according to information obtained by solving elastic programming
formulations, which are closely related to phase I in linear programming. This method compares favourably with the
parametric method proposed in [13], which was among the best methods for designing optimal linear classifiers.

Most exact solution approaches to MAX FS rely on the concept of the Irreducible Infeasible Subsystem (IIS). An IIS
is a minimal infeasible subsystem, i.e., a subsystem such that all its proper subsystems are feasible. Since an infeasible
linear system may have an exponential number of IISs, finding a maximum feasible subsystem amounts to determining
a minimum number of inequalities to be deleted so as to make the resulting system feasible (at least one inequality from
each IIS). The exact algorithms that have been proposed for MAX FS include a method based on a partial set covering
formulation where IISs are dynamically generated [15,8], a first Branch-and-Cut algorithm [29,30] and a polyhedral
method using combinatorial Benders’ cuts (CBC) [31]. For a survey of work on the MAX FS problem up to the end of
2002 the reader is referred to [32].

The paper is organized as follows. In the next section, we consider an exact formulation of MAX FS as a continuous
nonlinear program with a linear objective function subject to bilinear constraints and propose a relaxation (linearization)
for it. In Section 3 we present a simple two-phase heuristic in which a first subsystem is derived from an optimal solution
of the above relaxation and then a subproblem is solved to optimality to establish whether other inequalities can be added
to the current feasible subsystem while preserving feasibility. In Section 4 we report computational results obtained for
randomly generated and structured instances arising from the above-mentioned classification and telecommunication
applications.

2. Bilinear formulation and linearization

By introducing a binary variable yi , with 1� i�m, for each inequality of the infeasible system under consideration,
MAX FS clearly admits the following mixed integer programming (MIP) formulation:

max
m∑

i=1

yi ,

s.t.
n∑

j=1

aij xj + M(1 − yi)�bi, i = 1, . . . , m,

yi ∈ {0, 1}, i = 1, . . . , m, (1)

where aij denotes the entry (i, j) of matrix A, bi denotes the ith component of vector b and M is a large enough constant.
Each binary variable yi is equal to 1 if the corresponding inequality is satisfied and to 0 otherwise.
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Unfortunately such big-M formulations are often beyond the reach of state-of-the-art MIP solvers even for some
medium size instances. Numerical difficulties frequently occur due to the badly conditioned subproblems obtained by
linear relaxation. Choosing the value of the parameter M can be very delicate even when all variables are bounded.
Too large values of M may lead to a highly ill-conditioned linear program, while too small values may not guar-
antee that the solution x found actually satisfies all inequalities for which the corresponding binary variable yi is
equal to 0.

Note that if all variables are bounded, that is lj �xj �uj for all j, and lj = 0 a reasonable choice for M is

M = max
i=1,...,m

⎧⎨
⎩bi −

∑
j :aij <0

aijuj

⎫⎬
⎭ .

In Section 2.2 we will show that one can assume without loss of generality that lj = 0 for j = 1, . . . , n.

2.1. Bilinear formulation

As observed in [32], the MAX FS problem can be formulated as a nonlinear mathematical program with a linear
objective function, bilinear constraints and real variables, a so-called linear program with equilibrium constraints
(LPEC). The problem can be written as:

max
m∑

i=1

yi ,

s.t. yi

n∑
j=1

aij xj �yibi, i = 1, . . . , m,

0�yi �1, i = 1, . . . , m. (2)

Note that, even though the variables yi are continuous, in any optimal solution they can only take 0–1 values. Indeed,
for any nonzero (strictly positive) variable yi the corresponding ith inequality is satisfied and, since the sum of the yi’s
is maximized, each nonzero variable yi is as large as possible, that is, is equal to 1.

For MAX FS with bounded variables we just have to add the bounds

lj �xj �uj , j = 1, . . . , n

to (2). We now present a linearization of this nonlinear continuous exact formulation which will be used in Section 3
to devise an efficient heuristic for MAX FS with mandatory bounds on the variables.

2.2. Linearization

By substituting in (2) each bilinear term yixj with a new variable zij , we have the following linear program:

max
m∑

i=1

yi (3)

s.t.
n∑

j=1

aij zij �yibi, i = 1, . . . , m, (4)

lj �xj �uj , j = 1, . . . , n, (5)

0�yi �1, i = 1, . . . , m, (6)

zij �0, j = 1, . . . , n, (7)
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which needs to be further constrained so that the variables zij are really equivalent to the bilinear terms yixj . Clearly,
if yi ∈ {0, 1} then we have zij = yixj if and only if the following two conditions hold for all i = 1, . . . , m:

yi = 0 �⇒ zij = 0 for all j = 1, . . . , n, (C1)

yi = 1 �⇒ zij = xj for all j = 1, . . . , n. (C2)

Since each variable xj belongs to an interval [lj , uj ], we can assume without loss of generality that we have lj =0 for
j = 1, . . . , n. This can be seen via the following transformations. If uj < 0 we can indeed replace xj with −xj which
takes values in [−uj , −lj ]. If uj > 0 and lj is nonzero, it suffices to apply the following simple variable substitution. If
lj < 0 then xj =x+

j −x−
j , where the positive and negative parts of xj satisfy 0�x+

j �uj and, respectively, 0�x−
j �−lj .

If lj > 0 then xj = x+
j + lj with 0�x+

j �uj − lj .
Under this nonnegativity assumption, conditions (C1) and (C2) need to be imposed only for the pair of indices i

and j such that aij < 0. For all i and j such that aij �0, replacing zij with xj in constraints (5) certainly helps to satisfy
the inequalities, independently on the values of yi , since xj �0. Thus, variables zij are not defined when aij �0 and
constraints (5) are replaced by

∑
j :aij <0

aij zij +
∑

j :aij �0

aij xj �yibi i = 1, . . . , m. (8)

Since we want zij =yixj and both the variables yi and xj are nonnegative, the variables zij can be bounded by imposing
zij �0 for all i = 1, . . . , m, j = 1, . . . , n. While conditions (C1) can be clearly expressed by the following group of
at most nm constraints:

zij �ujyi, i = 1, . . . , m, j = 1, . . . , n, s.t. aij < 0, (9)

conditions (C2) can be enforced by the set of linear constraints:

zij �xj , i = 1, . . . , m, j = 1, . . . , n, s.t. aij < 0 (10)

xj − uj (1 − yi)�zij , i = 1, . . . , m, j = 1, . . . , n, s.t. aij < 0. (11)

Constraints (10) hold since we want zij = yixj and we have yi �1. Moreover, when yi = 1 constraints (11) become
zij �xj and together with constraints (10) they ensure zij =xj . Whereas when yi=0, constraints (11) are redundant since
xj �uj and zij �0. Thus adding (9)–(11) to (3)–(7) and replacing (4) with (8), we obtain the following linearization
of the bilinear formulation (2):

max
m∑

i=1

yi , (12)

s.t.
∑

j :aij <0

aij zij +
∑

j :aij �0

aij xj �yibi, i = 1, . . . , m, (13)

zij �ujyi, i = 1, . . . , m, j = 1, . . . , n, s.t. aij < 0, (14)

zij �xj , i = 1, . . . , m, j = 1, . . . , n, s.t. aij < 0, (15)

xj − uj (1 − yi)�zij , i = 1, . . . , m, j = 1, . . . , n, s.t. aij < 0, (16)

lj �xj �uj , j = 1, . . . , n, (17)

0�yi �1, i = 1, . . . , m, (18)

zij �0, i = 1, . . . , m, j = 1, . . . , n, s.t. aij < 0. (19)

Note that, unlike for (2), an optimal solution of this formulation is not guaranteed to have all variables yi with 0–1
values. Therefore (12)–(19) is not an exact formulation of the MAX FS problem with bounded variables but a relaxation.
In order to ensure exactness, one has to impose that yi ∈ {0, 1} for i = 1, . . . , m.
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This formulation can also be derived via the McCormick convex relaxation [33] of the nonconvex constraints zij =yixj

for i = 1, . . . , m and j = 1, . . . , n:

zij �xL
j yi + yL

i xj − xL
j yL

i , (20)

zij �xU
j yi + yU

i xj − xU
j yU

i , (21)

zij �xU
j yi + yL

i xj − xU
j yL

i , (22)

zij �xL
j yi + yU

i xj − xL
j yU

i , (23)

where xL
j , xU

j , yL
i and yU

i , respectively, denote a lower and upper bound on variables xj and yi (see for example also

[34]). In our case, since we have xL
j = yL

i = 0, xU
j = uj , yU

i = 1, constraint (20) is equivalent to (19), (21) to (16), (22)
to (14) and (23) to (15).

It is worth noting that conditions (C1) can alternatively be imposed by the following set of m linear constraints
instead of (9):∑

j :aij <0

zij �
∑

j :aij <0

ujyi, i = 1, . . . , m, (24)

because, for any given i, all variables zij may simultaneously take the corresponding upper bound value uj . Although
the resulting relaxation (linearization) is more compact than (12)–(19), it turns out to be a weaker formulation, see the
Appendix for more details.

3. A two-phase relaxation-based heuristic

In this section we propose a simple but efficient heuristic for tackling MAX FS instances with mandatory bounds on
the variables. The idea is to exploit the optimal solution of a relaxation of the problem, like the linearization (12)–(19),
to determine a first feasible subsystem. Then a smaller subproblem is solved optimally in order to identify all other
inequalities that can be added to the above feasible subsystem while preserving feasibility.

For i = 1, . . . , m, let ỹi ∈ [0, 1] be the value of variable yi in an optimal solution of the linear relaxation and let
I1 : ={i : ỹi = 1, i = 1, . . . , m}.

Observation: The linear subsystem composed of the inequalities
∑n

j=1aij xj �bi , with i ∈ I1, is feasible.
Indeed, when ỹi = 1 the inequality

∑n
j=1aij xj �bi is imposed in the linear relaxation, and hence the corresponding

vector x̃ satisfies all the inequalities with i ∈ I1.
For both the relaxation (12)–(19) of the bilinear formulation (2) and the linear relaxation of the big-M formulation

(1), we observe that:

• the inequalities corresponding to ỹi < 1 are not always inconsistent with the subsystem indexed by I1, that is, this
feasible subsystem is not maximal with respect to inclusion;

• the inequalities indexed by I1 can also contain the indices of inequalities that do not belong to any maximum feasible
subsystem.

In spite of the last observation, we propose to tackle this NP-hard problem by considering the subsystem S1 composed
of all inequalities indexed by I1 and by looking for a maximum number of remaining inequalities (that is with indices
in {1, . . . , m}\I1) that added to S1 yield a larger feasible subsystem.

Two-phase algorithm
Phase 1:

1. Solve a relaxation of the MAX FS obtaining a solution ỹ.
2. Determine I1 = {i : ỹi = 1, i = 1, . . . , m}.

Phase 2:

3. Solve an exact formulation of MAX FS fixing yi = 1 for all i ∈ I1.
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Notice that in Step 2 all the tests ỹi = 1 should be performed as ỹi �1 − �, where � is a small enough constant
that reflects machine precision. If � is overestimated, the inequalities indexed by I1 may correspond to an infeasible
subsystem. Clearly, the closer � is to 0 the smaller the feasible subsystem indexed by I1 will be. In practice it is not
difficult to select an appropriate value for ε.

In Step 3 we can use an exact algorithm for MAX FS [31,30] or solve the exact MIP formulation (1). Indeed, after
fixing all variables yi with i ∈ I1 to 1, the number of free variables yi in this formulation is generally moderate and a
state-of-the-art commercial MIP solver almost always yields an optimal solution of the resulting linear MIP subproblem
in reasonable computing time.

Since the subproblem amounts to identifying the maximum number of inequalities that can be added to the inequalities
indexed by I1 so as to obtain a larger feasible subsystem, our two-phase algorithm can be viewed as a variable fixing
approach where an optimal solution of a relaxation of the bilinear exact formulation (2) of MAX FS is used to fix a
subset of the yi variables.

4. Computational experiments

4.1. Instances

We tested the performance of the two-phase algorithm on the following four groups of instances.
Random: A set of random instances presented in [30]. Three random instances are generated, with different random

seeds, for each choice of the number of inequalities (rows) and variables (columns). The matrix A and the vector b have
almost full density, and all their elements are integer values in the interval [−100, 100]. Table 1 indicates the average
size and the number of nonzero elements of each group consisting of three instances. For comparison purposes, the
variables take values in [0, 1].

CBC-ML: A set of linear classification problems from the UCI Machine Learning repository [35]. In linear discrim-
inant analysis, the goal is to partition a group of observations into two classes using a separating hyperplane in order
to maximize the number of observations that are correctly classified. In the MAX FS formulation of this problem, the
variables are the normal vector coefficients of the separating hyperplane and the threshold (the constant term of the
hyperplane) [12,13,28,15]. As observed in [20], we can assume without loss of generality that all the coefficients of
the hyperplane are bounded in [−1, 1] except for the threshold, since the direction of a hyperplane is unequivocally
determined up to a multiplicative factor. Applying the variable substitution described in Section 2.2, we have bounded
all the variables in [0, 1], except the free variable that is artificially bounded in [−105, +105]. The instances mentioned
in Table 2 were modified in [20] and used in [31] for the experimental evaluation of the CBC method. The actual values
of the big-M constants are the same as in [31].

Table 1
Random instances: characteristics

Group Avg. non-zeros Group Avg. non-zeros

random10 × 20 198 random20 × 50 989
random10 × 30 299 random20 × 60 1185
random10 × 40 396 random20 × 70 1384
random10 × 50 495 random20 × 80 1583
random10 × 60 594 random5 × 100 494
random10 × 70 693 random5 × 10 49
random10 × 80 792 random5 × 20 99
random15 × 30 447 random5 × 30 149
random15 × 40 594 random5 × 40 198
random15 × 50 741 random5 × 50 248
random15 × 60 890 random5 × 60 298
random15 × 70 1038 random5 × 70 346
random15 × 80 1186 random5 × 80 395
random20 × 40 792 random5 × 90 445

Each random m × n group is composed of three instances with m columns and n rows.
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Table 2
CBC-ML instances: characteristics

Instance Rows Columns Non-zeros

Chorales-116 116 6 380
Balloons76 76 5 106
BCW-367 367 10 3656
BCW-683 683 10 6830
WPBC194 194 34 6509
Breast-Cancer-400 400 18 495
Glass-163 163 10 1362
Horse-colic-151 151 27 3735
Iris-150 150 5 700
Credit-300 300 15 4047
Lymphography-142 142 18 2556
Mech-analysis-107 107 8 739
Mech-analysis-137 137 7 757
Monks-tr-122 122 6 732
Pb-gr-txt-198 198 10 1980
Pb-pict-txt-444 444 10 4440
Pb-hl-txt-277 277 10 2770
Postoperative-88 88 8 659
Bv-os-282 282 18 5039
Opel-Saab-80 80 18 1433
Bus-Van-437 437 18 7811
HouseVotes84-435 435 16 3813
Water-treat-206 206 38 7751
Water-treat-213 213 38 8016

Chorales-134 134 6 637
Chorales-107 107 6 539
Bridges-132 132 12 1584
Mech-analysis-152 152 8 1033
Monks-tr-124 122 6 744
Monks-tr-115 115 6 690
Solar-flare-323 323 12 2982
BV-OS-376 376 18 6722
BusVan445 445 18 7955

Flags-169 169 29 2530
Horse-colic-253 253 26 6285
Horse-colic-185 183 26 4532

Solar-Flare-1066 1066 12 9817

ML:A different group of instances from the UCI repository. These linear classification instances were used in previous
works (see e.g. [14,5,13]) as a testbed for comparing exact and heuristic methods for MAX FS . Their characteristics
are summarized in Table 3. The variables are bounded as for the CBC-ML instances.

DVB: A set of instances arising in planning Digital Video Broadcasts, in particular when selecting the emission
power of a set of transmitters in order to maximize the territory (or population) coverage [11]. All variables are
naturally bounded. Compared to the other testbeds, the DVB instances have a larger number of rows and columns,
but very low density (average 3% and standard deviation 1.4%). For all instances listed in Table 4 we searched for a
maximum feasible subsystem. The large difference between the values of the coefficients, ranging between 10−11 and
1011, causes serious numerical difficulties. This accounts for the fact that the implementation of the Filtering heuristic
based on MINOS [5] faced fatal errors on these instances.
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Table 3
ML instances: characteristics

Instance Rows Columns Non-zeros

breast-cancer-wisconsin 683 9 6147
bupa 345 6 2061
glass 214 9 1534
ionosphere 351 34 10513
iris.1 150 4 600
iris.2 150 4 600
new-thyroid 215 5 1071
pima 768 8 5381
wpbc 194 32 6121

Table 4
DVB instances: characteristics

Instance Rows Columns Non-zeros

mfs_UHF_P4_1 642 487 3603
mfs_UHF_P4_4 1174 487 19 089
mfs_UHF_P4_3 1717 487 22 023
P4_60ofP4 6345 487 65 538
P4_89ofP4 10 338 487 90 210
P4_60_19916 18 035 487 154 845
P4_280ofP4 14 678 487 248 536
P4 15 426 487 304 605
P4_487_19916 19 916 487 547 796

4.2. Experimental campaign

In the computational experiments we consider the two-phase algorithm using the linearization (12)–(19) of the bilinear
formulation for Phase 1 and the big-M exact formulation (1) of MAX FS for Phase 2. For the sake of comparison, we
also consider a Phase 1 with the linear relaxation of (1) as well as the substitution of our Phase 1 with the ordinary first
phase of linear programming. The results obtained with our two-phase relaxation-based algorithm are compared with
those provided by the Filtering heuristic (Algorithm 1 in [5]), the exact big-M formulation (1) tackled with Cplex 8.1
MIP solver, the Branch-and-Cut algorithm of [29,30] and a recent exact polyhedral method based on CBC [31].

Chinneck’s Algorithm 1 [27,5] was implemented in AMPL like our two-phase relaxation-based method. Some of
the reported CPU times may thus be slightly higher than those obtained with more efficient implementations.

The Branch-and-Cut algorithm was tested using the C + + implementation provided by Marc Pfetsch.
For the exact CBC method, we used a C + + implementation provided by Codato and Fischetti. Since the actual

code runs only on the CBC-ML instances, this method could not be tested on the other groups. Moreover, the code
being based on Cplex callable library, the CPU times reported for the CBC method are not directly comparable with
those reported for the other methods implemented in AMPL.

The computational experiments were conducted on a dual-processor PC with two Intel Xeon 2.80 GHz CPUs with a
512 KB L2 cache, 2 GB of physical memory and 4 GB of virtual memory limit. The system was running Linux 2.4.18-
14smp and was configured with four virtual processors. We used the commercial solver ILOG-Cplex 8.1 and the AMPL
ver. 200220528 modelling environment. We used the original .lp files only for solving the CBC-ML instances with the
exact big-M formulation; in all other cases the Cplex solver was called from the AMPL interface. The algorithms were
run on the testbeds ML, CBC-ML, and Random with default settings for both Cplex and AMPL, except for the Cplex
option integrality= 1e−09. The last parameter asks for the solver to discriminate on the variable integrality
more accurately than the default. For the numerically unstable DVB instances, the primal simplex with the Cplex
options presolve= 0 and scale= 1 performed in a stable way on most instances. The maximum CPU time limit
was always set to 10 000 seconds. The actual feasibility of all solutions (subsystems found) was double checked with
default Cplex settings.
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4.3. Computational results

The computational results for the instances of Section 4.1 are reported in Tables 5–8. The following notations are
used across the tables:

• exact-bigM stands for Cplex 8.1 MIP solver applied to the exact big-M formulation (1).
• Branch-and-cut for the branch-and-cut algorithm of [30].
• CBC for the polyhedral method based on the CBC [31].
• Phase1-bigM for the two-phase algorithm with the linearization of the big-M formulation (1) in Phase 1.
• Phase1-bilinear for the two-phase algorithm with the linearization (12)–(19) in Phase 1.
• Phase1-LP for the two-phase algorithm with the ordinary LP first phase in Phase 1.
• Filtering for the heuristic Algorithm 1 of [5].
• FS denotes the number of inequalities in the feasible subsystem found by the algorithm.
• CPU the computing time in seconds.
• V (ub: U ) indicates the number V of inequalities in the largest feasible subsystem found by Cplex for an exact big-M

formulation that cannot be solved to optimality together with the upper bound U on the optimal value.
• V (< B) denotes for the two-phase algorithm the number V of inequalities in the largest feasible subsystem and the

upper bound B found by Cplex when solving the exact big-M formulation of Phase 2, where the y variables are fixed
according to the optimal solution of the relaxation in Phase 1.

Note that in the last item B is not an upper bound on the optimal value of MAX FS but only on the cardinality of
the maximal feasible subsystem containing all the inequalities indexed by I1. In all tables, the optimal solutions are
emphasized in boldface.

4.3.1. Random instances
According to Table 5, the branch-and-cut algorithm of [30] solves all random instances to optimality within 1 h.

For the heuristics, solution quality is measured in terms of relative gap, i.e., the difference between the number of
inequalities in a largest feasible subsystem and that in the subsystem found by the algorithm, divided by the former
optimal value. The Phase1-bilinear variant yields on average the best results.As indicated in the last row of the table, the
average relative gap for Phase1-bilinear is 1.29% against 2.16% for Phase1-BigM, 4.68% for Phase1-LP and 2.25%
for the Filtering heuristic. In particular, if we focus on the most difficult instances, that is on those with at least 70 rows
and 10 columns, Phase1-bilinear always yields the largest feasible subsystem among the three compared heuristics.
It is worth pointing out that the number of variables that are fixed by Phase1-bilinear at the end of the first phase is
always smaller than that fixed by Phase1-bigM. Although one may suspect that fixing an excessive number of variables
could prevent the second phase from selecting a good feasible subsystem, this is not always the case as we shall see
for the remaining testbeds. The experimental results indicate that the linearization of the bilinear formulation, when
compared to a Phase 1 with the linear relaxation of the big-M formulation, leads to a “smarter” choice of the initial
feasible subsystem, namely of the index set I1. As to computing time, Phase1-bilinear is competitive with Filtering
but Phase1-bigM is the best choice for obtaining good quality solutions rapidly. Furthermore, the computing times
required by Phase1-bilinear grow rather slowly when only a few columns are present.

4.3.2. CBC-ML instances
According to Table 6, some of the CBC-ML instances are challenging to solve to optimality. Indeed the exact method

CBC does not find any solution for Flags-169, Horse-colic-253, Horse-colic-185 as well as Solar-flare-1066. For the
sake of comparison, we report the original results for the last four instances presented in [31]. The difference in the
results should be accounted for by the tuning of CBC parameters. Note that exact-bigM provides an optimal solution
only for the first 24 instances. But for most of the remaining instances, the best feasible solution found is very close to
the optimal solution. When CBC does not yield any solution, the best feasible solution found with exact-bigM differs
from the upper bound by at most eight inequalities, except for the difficult Solar-flare-1066.

Both Phase1-bigM and Phase1-bilinear provide an optimal solution for most of the instances, but the computing
times of the latter are higher. It is remarkable that, even though CBC is based on a sophisticated polyhedral method, our
simple two-phase approach yields solutions with comparable quality and, for Phase1-bigM, with lower computing times.
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Table 5
Random instances: computational results

Instance Branch-and-Cut Phase1-bilinear Phase1-bigM Phase1-LP Filtering

FS CPU FS CPU FS CPU FS CPU FS CPU

ph. 1 ph. 2 ph. 1 ph. 1 + 2 ph. 1 ph. 2 ph. 1 ph. 1 + 2 ph. 1 ph. 2 ph. 1 ph. 1 + 2

random5 × 10 22 0.1 17 22 0.1 0.1 17 21 0.1 0.1 16 22 0.1 0.1 22 0.1
random5 × 20 45 1 37 44 0.1 0.1 40 44 0.1 0.1 39 43 0.1 0.1 44 0.1
random5 × 30 62 0.1 43 62 0.1 0.1 57 62 0.1 0.1 52 62 0.1 0.1 61 2
random5 × 40 82 1 69 80 0.1 0.1 74 82 0.1 0.1 75 80 0.1 0.1 80 3
random5 × 50 104 5 89 101 0.1 0.1 95 103 0.1 0.1 94 103 0.1 0.1 103 4
random5 × 60 122 7 102 120 0.1 0.1 108 120 0.1 0.1 105 115 0.1 0.1 117 6
random5 × 70 139 20 115 137 0.1 0.1 125 134 0.1 0.1 118 129 0.1 0.1 130 10
random5 × 80 160 22 131 156 0.1 0.1 141 154 0.2 0.2 135 150 0.1 0.1 151 19
random5 × 90 174 36 131 156 0.1 0.1 154 167 0.2 0.2 148 167 0.1 0.1 169 21
random5 × 100 191 74 162 183 0.2 0.2 172 181 0.2 0.2 167 184 0.1 0.1 182 19

random10 × 20 52 0.1 47 52 0.1 0.1 51 52 0.1 0.1 50 52 0.1 0.1 52 0.3
random10 × 30 69 0.1 57 69 0.1 0.1 59 68 0.1 0.1 60 66 0.1 0.1 69 1
random10 × 40 92 3 73 91 0.1 0.1 78 90 0.1 0.1 79 90 0.1 0.1 89 2
random10 × 50 110 21 88 109 0.1 0.1 95 107 0.1 0.1 93 107 0.1 0.1 109 5
random10 × 60 126 89 97 123 0.1 0.1 103 121 0.1 0.1 96 121 0.1 0.1 117 11
random10 × 70 143 443 110 142 0.1 1 117 141 0.1 0.1 114 136 0.1 0.1 137 14
random10 × 80 162 2584 122 159 0.1 2 125 156 0.1 0.1 125 144 0.1 0.1 156 21

random15 × 30 77 2 64 77 0.1 0.1 67 75 0.1 0.1 64 74 0.1 0.1 76 2
random15 × 40 101 4 78 100 0.1 0.1 86 100 0.1 0.1 83 99 0.1 0.1 101 3
random15 × 50 126 14 104 123 0.1 1 109 123 0.1 0.1 108 118 0.1 0.1 121 5
random15 × 60 148 52 118 147 0.2 2 128 145 0.1 1.1 123 142 0.1 0.1 147 6
random15 × 70 168 301 132 167 0.2 4 143 162 0.2 2 134 163 0.1 0.1 165 12
random15 × 80 190 1782 151 188 0.3 10 165 188 0.2 0.2 156 183 0.1 0.1 185 12

random20 × 40 106 2 84 106 0.1 0.1 103 106 0.1 0.1 92 104 0.1 0.1 106 2
random20 × 50 131 7 100 131 0.2 0.2 112 130 0.1 0.1 108 130 0.1 0.1 130 5
random20 × 60 153 37 117 152 0.3 0.3 123 151 0.2 0.2 121 149 0.1 0.1 153 6
random20 × 70 174 277 131 174 0.3 3 142 172 0.2 2 138 170 0.1 0.1 174 8
random20 × 80 192 2267 136 190 0.4 18 156 186 0.3 18 149 187 0.1 0.1 189 47

Average gap 20.19% 1.29% 13.45% 2.16% 20.68% 4.68% 2.25%

Variables bounded in [0, 1].
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Table 6
CBC-ML instances: computational results. Hyperplane coefficients bounded in [−1, 1]
Instance exact-bigM CBC Phase1-bilinear Phase1-bigM Phase1-LP Filtering

FS CPU FS CPU FS CPU FS CPU FS CPU FS CPU

ph. 1 ph. 2 ph. 1 ph. 1 + 2 ph. 1 ph. 2 ph. 1 ph. 1 + 2 ph. 1 ph. 2 ph. 1 ph. 1 + 2

Chorales-116 92 3559 92 550 58 92 3 11 46 92 0.1 22 46 92 0.1 16 92 14
Balloons76 66 7 66 0.1 52 66 0.1 1 52 66 0.1 0.1 52 66 0.1 0.1 66 4
BCW-367 359 365 359 1 338 359 93 93 333 359 0.1 0.3 334 359 0.1 1 358 5
BCW-683 673 6750 673 10 649 673 675 679 643 673 0.1 2 643 673 0.1 2 672 10
WPBC-194 189 2279 189 299 166 189 1025 1030 161 189 0.1 4 162 189 0.1 8 189 3
Breast-Cancer-400 376 71 376 0.1 374 376 0.1 3 374 376 0.1 0.2 374 376 0.1 0.1 374 13
Glass-163 150 3849 150 3 146 149 8 9 102 150 0.1 0.1 102 150 0.1 0.1 150 10
Horse-colic-151 146 592 146 12 130 146 82 84 128 146 0.1 0.1 126 146 126 146 146 2
Iris-150 132 463 132 56 107 132 2 3 105 132 0.1 1 104 132 0.1 14 130 9
Credit-300 292 1836 292 2 163 292 80 82 258 292 0.1 0.1 259 292 0.1 1 292 5
Lymphography-142 137 8 137 0.4 123 137 21 21 120 137 0.1 0.3 119 137 0.1 1 137 2
Mech-analysis-107 100 10 100 0.1 78 100 3 3 77 100 0.1 0.1 76 100 0.1 0.3 100 2
Mech-analysis-137 119 775 119 6 93 119 3 4 84 119 0.1 2 84 119 3 11 119 10
Monks-tr-122 109 212 109 0.1 78 109 3 4 76 109 0.1 1 75 109 0.1 2 109 6
Pb-gr-txt-198 187 330 187 3 168 187 0.4 11 170 187 0.1 0.1 170 187 0.1 0.3 186 8
Pb-pict-txt-444 437 81 437 0.1 407 437 37 38 422 437 0.1 0.4 423 437 0.1 0.9 434 5
Pb-hl-txt-277 267 193 267 4 247 267 21 22 248 266 0.1 0.1 246 266 0.1 0.8 267 3
Postoperative-88 72 698 72 0.1 64 72 2 2 64 72 0.1 0.1 64 72 0.1 0.1 66 8
Bv-os-282 276a 210 276a 4 264 277a 255 2 261 276a 0.1 l0.1 57 259 276a 0.1 1 277a 2
Opel-Saab-80 77 43 77 11 51 75 15 16 50 74 0.1 0.1 51 74 0.1 5 75 2
Bus-Van-437 431 363 431 5 409 431 806 820 410 431 0.1 6 410 431 0.1 10 431 3
HouseVotes84-435 429 207 429 0.1 409 429 63 65 405 429 0.1 0.1 405 429 0.1 3 429 3
Water-treat-206 202 43 202 4 177 202 1946 1953 175 202 0.1 2 175 202 0.1 8 202 4
Water-treat-213 208 621 208 21 171 208 582 626 175 208 0.1 5 175 208 0.1 25 208 4
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Table 6 (Continued)

Instance exact-bigM CBC Phase1-bilinear Phase1-bigM Phase1-LP Filtering

FS CPU FS CPU FS CPU FS CPU FS CPU FS CPU

ph. 1 ph. 2 ph. 1 ph. 1 + 2 ph. 1 ph. 2 ph. 1 ph. 1 + 2 ph. 1 ph. 2 ph. 1 ph. 1 + 2

Chorales-134 103(ub : 113) b 104 727 50 104 2 33 39 104 0.3 46 40 104 0.1 36 104 27
Chorales-107 80(ub : 85) b 80 67 36 80 1 19 31 80 0.2 22 36 80 0.1 22 79 19
Bridges-132 108(ub : 121) b 109 136 74 109 33 430 67 109 0.1 58 67 109 0.1 136 109 14
Mech-analysis-152 130(ub : 136) b 131 139 117 131 6 6 86 131 0.2 12 88 131 0.1 10 128 16
Monks-tr-124 100(ub : 104) b 100 56 55 100 3 24 50 100 0.1 22 55 100 0.1 38 97 17
Monks-tr-115 88(ub : 96) b 88 487 49 87 2 56 25 88 0.1 61 49 81 0.1 85 88 24
Solar-flare-323 282(ub : 300) b 285 3 254 284 94 96 241 284 0.1 4 247 284 0.1 5 281 45
Bv-os-376 367(ub : 369) b 368 125 341 368 494 505 340 367 0.1 5 341 367 0.1 9 367 6
BusVan445 436(ub : 438) b 437 102 412 437 320 363 411 437 0.1 4 410 437 0.1 11 437 5

Flags-169 159(ub : 163) b (ub:163)c – 130 160 43 135 118 160 0.2 78 102 150 0.1 0.3 159 6
Horse-colic-253 240(ub : 248) b (ub:244)c – 196 240 221 1275 188 240 0.4 654 190 240 0.1 1640 240 15
Horse-colic-185 173(ub : 177) b (ub:178)c – 145 173 128 272 137 173 0.1 42 135 173 0.1 141 172 9

Solar-flare-1066 796(ub : 1058) b (ub:864)d b 525 816(< 925) 1 b 607 814(< 938) 309 b 526 808(< 976) 1 b 808 8378

Average gap 18.76% 0.33% 34.50% 0.34% l21.16% 0.56% 0.86%

aNumerical instability.
bTime limit exceeded.
cMemory limit.
dNo feasible subsystem found.
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Similarly, the two-phase relaxation-based algorithm compares favourably with Filtering in terms of solution quality:
the average relative gap with respect to the optimal solution value (or to the upper bound, when no optimal solution
has been obtained within the time limit) is 0.34% against 0.86% of the latter, excluding Solar-flare-1066. However,
the computing times of the first phase of Phase1-bilinear suggest that the linearization of the bilinear formulation
can be much more time-consuming than both Phase1-bigM and Filtering. As for the random instances, the number of
variables fixed after the first phase of the two-phase algorithm does not affect the quality of the final solution. For these
instances, Phase1-bilinear and Phase1-bigM achieve similar results, in spite of the fact that the number of variables
fixed by Phase1-bigM is in general smaller than those fixed by Phase1-bilinear (the average relative gap of Phase 1
is 34.50% for the former and 18.76% for the latter). We notice that for this set of instances Phase1-LP yields results
of intermediate quality with respect to Phase1-bilinear and Filtering but with a low computational effort, comparable
with that one of Filtering. The results obtained for the Bv-os-282 instance call for an explanation. Both CBC and
Phase1-bigM provide a feasible subsystem with 276 inequalities whereas Filtering and Phase1-bilinear find a solution
with 277 inequalities. This discrepancy is due to the limited machine accuracy, which can also affect the double-check
that the selected subset of inequalities is actually feasible.

4.3.3. ML instances
The results obtained for the ML group are summarized in Table 7. Note that exact-bigM is able to find an optimal

solution within the 10 000 seconds time limit for only three instances, whereas the branch-and-cut algorithm of [30]
for only five instances. The results for the ML and CBC-ML instances indicate that, even though the presence of a
free variable may in principle affect the performance of our two-phase heuristic, it does not happen in practice. The
solution quality of our three variants are indeed comparable to that of Filtering, which yields the best average relative
gap. Observe that in Phase1-bilinear the linearization can require large computing times (see instances ionosphere,
pima and wpbc) and, if a small number of variables are fixed in Phase 1, Phase 2 restricted problem can be too hard
to be solved to optimality within the computing time limit (see instances bupa, pima and wpbc). Although Phase1-
bilinear requires higher computing times, it is useful on two hard instances such as bupa and pima, since it provides
better solutions than Phase1-bigM. Finally, notice that the Phase1-LP algorithm yields slightly worse results than the
other methods and it is not able to end within the 10 000 s time limit for two more instances than the other two-phase
variants.

4.3.4. DVB instances
The results for the challenging DVB instances are reported in Table 8. Since the variables are all bounded in [0, 1],

the linearization of the bilinear formulation is particularly adequate. In fact, Phase1-bilinear yields the smallest average
relative gap obtained in Phase 1, namely 7.55%. For simplicity of exposition, we divided the instances into three groups
according to the instance size. Phase1-bigM and Phase1-bilinear provide comparable results which are better than those
of the Filtering method for all instances. Filtering has higher computing time requirements than our heuristics and these
requirements grow much faster with the instance size, since the number of Filtering steps depends on the number of
inequalities to be deleted from the original infeasible system in order to achieve feasibility. However, the refinements of
the Filtering heuristic described in [5] may at least partially offset this drawback but at the price of slightly affecting the
solution quality. Note that, for instance mfs_UHF_P4_4, Cplex 8.1 MIP solver is not able to find an optimal solution
of the exact-bigM formulation within the time limit but the Phase1-bigM finds a slightly better feasible solution
in just 5 s.

As to the second group of instances, the advantage of Phase1-bilinear with respect to all other methods is remarkable,
both in terms of the size of the feasible subsystems and of the cumulative computing time. For instance P4_60_19916,
Phase1-bilinear finds a feasible subsystem with more than 350 additional inequalities compared to the feasible sub-
system provided by Phase1-bigM. This suggests that for sparse medium-sized instances Phase1-bilinear should be
preferred to Phase1-bigM, and that the higher computational requirements for the first phase are indeed justified. The
instances in the last group are far too large for Phase1-bilinear and Phase1-bigM is the only viable method. Note that
the first phase with the linear relaxation of the big-M formulation gives in a few seconds a solution that compares well
with the best integer solution found with exact-bigM.

Finally, the Phase1-LP method performs poorly on this set of instance: it yields an average relative gap of 15.74%
against 6.40% for Phase1-bilinear.
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Table 7
ML instances: computational results
Instance Branch-and-Cut exact-bigM Phase1-bilinear Phase1-bigM Phase1-LP Filtering

FS CPU FS CPU FS CPU FS CPU FS CPU FS CPU

ph. 1 ph. 2 ph. 1 ph. 1 + 2 ph. 1 ph. 2 ph. 1 ph. 1 + 2 ph. 1 ph. 2 ph. 1 ph. 1 + 2

breast-cancer-wisconsin 672 43 671(ub : 676) a 650 672 370 371 660 672 0.1 1 643 672 0 8 672 15
bupa 227(ub : 263) a 248(ub : 331) a 103 261( � 294) 71 a 166 260( � 266) 0.3 a 101 259( � 298) 0 a 259 331
glass 178(ub : 193) a 176(ub : 205) a 79 168 33 133 112 172 0.2 375 79 167( � 183) 0 a 172 143
ionosphere 345 2215 345(ub : 347) a 319 345 2238 2263 322 345 0.1 4 310 345 0 36 345 36
iris.1 125 1735 125 7630 79 124 2 4 78 124 0.1 1 69 124 0 5 125 30
iris.2 149 0.1 149 0.4 147 149 0.1 1 147 149 0.1 0.2 147 149 0.1 0.2 149 0.1
new-thyroid 204 17 204 46 179 204 9 9 181 204 0.1 0.2 167 204 0.1 0.4 204 10
pima 614(ub : 718) a 588(ub : 761) a 419 617( � 703) 1195 a 508 615( � 667) 0.4 a 377 615( � 743) 0.1 a 619 1977
wpbc 181(ub : 187) a 175(ub : 190) a 133 178 956 a 146 178 0.2 1863 132 178( � 181) 0.1 a 178 91

Average gap 29.73% 7.38% 23.49% 7.22% 28.87% 7.53% 7.11%

Hyperplane coefficients bounded in [−1, 1].
aTime limit exceeded.
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Table 8
DVB instances: computational results

exact-bigM Phase1-bilinear Phase1-bigM Phase1-LP Filtering

FS CPU FS CPU FS CPU FS CPU FS CPU

mfs_UHF_P4_1 538 0.4 534 537 0.1 0.1 533 537 0.1 0.1 491 493 0.1 0.1 532 127
mfs_UHF_P4_4 1050(ub : 1065) a 1028 1044 11 12 1039 1051 4 5 775 1021(�1024) 0.2 a 1037 3089
mfs_UHF_P4_3 1532(ub : 1535) a 1508 1525 59 61 1509 1523 2 2 1395 1477 0.6 3 1523 5583
P4_60ofP4_15426_naz 3257(ub : 3526) a 3071 3130 217 466 2849 3115(�3235) 10 a 711 3276(�3520) 3 a �5926 a

P4_89ofP4_15426_naz 5505(ub : 6158) a 5422 5514(�5602) 755 a 5189 5408(�5456) 4 a 1499 3834(�3951) 4 a �9695 a

P4_60_19916 6805(ub : 8037) a 6838 6902 1191 1513 6308 6546(�6583) 147 a 1574 5743(�7059) 7 a �16494 a

P4_280ofP4_15426_naz 9338(ub : 10708) a 9339 9551 7184 9874 9161 9434(�9713) 24 a 5105 7184(�9153) 18 a �14604 a

P4_15426_naz 12189(ub : 13384) a b – a – 12089 12374(�12692) 52 a 8170 10700(�12038) 15 a �15425 a

P4_487_19916 15700(ub : 19650) a b – a – 15584 15940(�16628) 234 a 7449 11842(�15056) 29 a �19915 a

average gapc 1.96% 1.14% 1.73% 0.95% 1.33%
average gapd 7.55% 6.40% 9.73% 7.26% 44.04% 15.74% –

Variables bounded in [0, 1].
aTime limit exceeded.
bNo feasible subsystem found.
cInstances solved by all methods.
dInstances solved by two-phase algorithms.
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Table 9
Summary of average percent gaps and average absolute gaps

Testbed Phase1-bigM Phase1-bilinear Filtering Phase1-LP

ph.1 ph.2 ph.1 ph.2 ph.1 ph.2

Random 13.45% 2.16% 20.19% 1.29% 2.25% 16.40% 3.47%
17.00 2.86 25.11 1.79 3.07 20.68 4.68

CBC-ML 34.50% 0.34% 18.76% 0.33% 0.86% 21.16% 0.56%
67.50 0.61 28.75 0.55 1.31 30.67 0.78

ML 23.49% 7.22% 29.73% 7.38% 7.11% 28.87% 7.53%
66.8 29.89 97.78 30.00 29.44 106.44 30.56

DVBa 1.73% 0.95% 1.96% 1.14% 1.33% 16.02% 6.12%
18.25 10 21 11.75 13.25 160.25 54.5

DVBb 9.73% 7.26% 7.55% 6.40% – 44.04% 15.74%
1294.5 1085.75 480.38 422.38 – 4699.5 2316.75

aInstances solved by all methods.
bInstances solved by two-phase algorithms.

4.3.5. Overall comparison
Table 9 summarizes, for the four sets of instances, the average percent relative gaps and the average absolute gaps

between the number of inequalities in the feasible subsystem provided by the heuristics and that of an optimal solution
(or of an upper bound, when no optimal solution has been obtained within the time limit). The two-phase relaxation-
based method turns out to compare favourably with the Filtering heuristic on all the classes of instances except for the
ML instances where the solution quality is comparable. Moreover, Phase1-bilinear provides on average better quality
solutions than Phase1-bigM.

5. Conclusions

We have presented a new two-phase heuristic for the MAX FS problem with bounded variables. A feasible subsystem
is derived from an optimal solution of a relaxation (linearization) of an exact continuous bilinear formulation and then
a smaller instance of MAX FS is solved optimally to identify all the other inequalities that are consistent with the above
feasible subsystem. The computational complexity of the method does not depend on the number of inequalities that
need to be deleted to achieve a feasible subsystem. Our simple two-phase approach, which can be easily extended
to infeasible systems of linear equations, provides on average better quality solutions than the Filtering heuristic for
several types of MAX FS instances in which all variables are bounded. Although the proposed relaxation of the bilinear
formulation leads to very good results, other relaxations can be considered to further improve solution quality or
reduce computing times. In particular, we have seen that when a relaxation of the big-M formulation is used in the first
phase, execution times are dramatically reduced and the solution quality is not substantially affected. This is of course
interesting for large instances that cannot be tackled with other state-of-the-art methods.

The computational results indicate that our two-phase approach also performs very well for MAX FS instances with a
single unbounded variable. Indeed, it yields an optimal solution for most linear classification instances of the CBC-ML
testbed and it compares well with the exact method based on CBC. We leave as an open question if the two-phase
relaxation-based approach can also be successfully extended to tackle instances of MAX FS in which all variables are
unbounded.
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Appendix

We show that the relaxation (linearization) obtained imposing conditions (C1) through constraints (24) leads to a
weaker formulation than (12)–(19). This can be verified by observing that for each i = 1, . . . , m the constraint (24)
is obtained by summing over j the corresponding constraints (14), and that there exists at least a point which satisfies
(13)–(19) with (14) replaced by (24) but does not satisfy (13)–(19). Without loss of generality we can assume that there
exists a row ™̂ of matrix A with at least two negative elements and at least one positive element. If in every row of A all
elements are either positive or negative then the MAX FS problem can be solved without introducing variables zij . If
in each row of A there is only one negative element then constraints (14) and (24) are equivalent. Now it is easy to see
that there always exists a value � with 0 < � < uÊ satisfying the following inequality

�a™̂Ê +
∑

j :a™̂j �0

a™̂j uj � �b™̂∑
j :a™̂j <0uj

, (25)

where Ê is such that a™̂Ê< 0. Therefore the point (z, y, x) defined as

zij =
{

� if i = ™̂ and j = Ê,
0 otherwise,

(26)

yi =
⎧⎨
⎩

�∑
j :a™̂j <0uj

if i = ™̂,

0 otherwise,
(27)

and

xj = uj , j = 1, . . . , n (28)

violates constraint (14) for i = ™̂ and j = Ê whereas satisfies constraints (24) for each i = 1, . . . , m and every remaining
constraint of (13)–(19).
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