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Abstrat

This paper provides a omprehensive survey of the most popular onstraint-handling tehniques urrently used with

evolutionary algorithms. We review approahes that go from simple variations of a penalty funtion, to others,

more sophistiated, that are biologially inspired on emulations of the immune system, ulture or ant olonies.

Besides desribing briey eah of these approahes (or groups of tehniques), we provide some ritiism regarding

their highlights and drawbaks. A small omparative study is also onduted, in order to assess the performane

of several penalty-based approahes with respet to a dominane-based tehnique proposed by the author, and with

respet to some mathematial programming approahes. Finally, we provide some guidelines regarding how to selet

the most appropriate onstraint-handling tehnique for a ertain appliation, ad we onlude with some of the the

most promising paths of future researh in this area.

Keywords: evolutionary algorithms, onstraint handling, evolutionary optimization.

1 Introdution

The famous naturalist Charles Darwin de�ned Natural Seletion or Survival of the Fittest as the preservation of

favorable individual di�erenes and variations, and the destrution of those that are injurious [33℄. In nature,

individuals have to adapt to their environment in order to survive in a proess alled evolution, in whih those

features that make an individual more suited to ompete are preserved when it reprodues, and those features

that make it weaker are eliminated. Suh features are ontrolled by units alled genes whih form sets alled

hromosomes. Over subsequent generations not only the �ttest individuals survive, but also their �ttest genes

whih are transmitted to their desendants during the sexual reombination proess whih is alled rossover.

Early analogies between the mehanism of natural seletion and a learning (or optimization) proess led to

the development of the so-alled \evolutionary algorithms" (EAs) [2℄, in whih the main goal is to simulate the

evolutionary proess in a omputer. There are three main paradigms within evolutionary algorithms, whose

motivations and origins were independent from eah other: evolution strategies [156℄, evolutionary programming

[58℄, and geneti algorithms [77℄. However, the urrent trend has been to derease the di�erene among these three

paradigms and refer (in generi terms) simply to evolutionary algorithms when talking about any of them.

In general, we need the following basi omponents to implement an EA in order to solve a problem [104℄:

1. A representation of the potential solutions to the problem.

2. A way to reate an initial population of potential solutions (this is normally done randomly, but deterministi

approahes an also be used).
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3. An evaluation funtion that plays the role of the environment, rating solutions in terms of their \�tness".

4. A seletion proedure that hooses the parents that will reprodue.

5. Evolutionary operators that alter the omposition of hildren (normally, rossover and mutation).

6. Values for various parameters that the evolutionary algorithm uses (population size, probabilities of applying

evolutionary operators, et.).

EAs have been quite suessful in a wide range of appliations [67, 111, 101, 3, 130, 64, 57, 133, 157℄. However,

an aspet normally disregarded when using them for optimization (a rather ommon trend) is that these algorithms

are unonstrained optimization proedures, and therefore is neessary to �nd ways of inorporating the onstraints

(normally existing in any real-world appliation) into the �tness funtion.

The most ommon way of inorporating onstraints into an EA have been penalty funtions (we will be referring

only to exterior penalty funtions in this paper) [144, 67℄. However, due to the well-known diÆulties assoiated

with them [144℄, researhers in evolutionary omputing have proposed di�erent ways to automate the de�nition

of good penalty fators, whih remains as the main drawbak of using penalty funtions. Additionally, several

researhers have developed a onsiderable amount of alternative approahes to handle onstraints, mainly to deal

with spei� features of some omplex optimization problems in whih it is diÆult to estimate good penalty fators

or to even generate a single feasible solution.

In this paper, we provide a omprehensive survey of ontraint-handling tehniques that have been adopted over

the years to handle all sorts of onstraints (linear, non-linear, equality, and inequality) in EAs. Eah group of

approahes is briey desribed and disussed, indiating their main advantages and disadvantages. At the end, we

onlude with some of the most promising paths of future researh in this area.

There are several other surveys on onstraint handling tehniques available in the speialized literature (see for

example [104, 109, 103, 63, 34, 161℄), but they are either too narrow (i.e., they over a single group of onstraint

handling tehniques) or they fous more on empirial omparisons and on the design of interesting test funtions.

None of these surverys attempt to fous on the disussion of the di�erent aspets of eah method or to be as

omprehensive as we intend in this paper.

Our main goal is to provide enough (mainly desriptive) information as to allow newomers in this area to get

a very omplete piture of the researh that has been done and that is urrently under way. Sine trying to be

exhaustive is as fruitless as it is ambitious, we have foused on papers in whih the main emphasis is the way

in whih onstraints are handled, and from this subset, we have seleted the most representative work available

(partiularly, when dealing with very proli� authors).

We are interested in the general non-linear programming problem in whih we want to:

Find ~x whih optimizes f(~x) (1)

subjet to:

g

i

(~x) � 0; i = 1; : : : ; n (2)

h

j

(~x) = 0; j = 1; : : : ; p (3)

where ~x is the vetor of solutions ~x = [x

1

; x

2

; : : : ; x

r

℄

T

, n is the number of inequality onstraints and p is the

number of equality onstraints (in both ases, onstraints ould be linear or non-linear).

If we denote with F to the feasible region and with S to the whole searh spae, then it should be lear that

F � S.

For an inequality onstaint that satis�es g

i

(~x) = 0, then we will say that is ative at ~x. All equality onstraints

h

j

(regardless of the value of ~x used) are onsidered ative at all points of F .

The remainder of this paper is organized as follows. Setion 2 presents penalty funtions in several of their

variations that have been used with EAs (i.e., stati, dynami, annealing, adaptive, o-evolutionary, and death

penalties). Penalty funtions are the oldest approah used to inorporate onstraints into unonstrained optimiza-

tion algorithms (inluding EAs) and, therefore, they are disussed �rst. Setion 3 disusses the use of speial

representations and geneti operators. The use of operators that preserve feasibility at all times and deoders
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that transform the shape of the searh spae are disussed, among other tehniques. Setion 4 disusses repair

algorithms, whih are normally used in ombinatorial optimization problems in whih the traditional geneti oper-

ators tend to generate infeasible solutions all (or at least most of) the time. Thus, \repair" refers, in this ontext,

to make valid (or feasible) these individuals through the appliation of a ertain (normally heuristi) proedure.

Setion 5 overs tehniques that handle objetives and onstraints separately. From these approahes, the use

of multiobjetive optimization tehniques seems one of the most promising venues of future researh in the area.

Setion 6 disusses approahes that use hybrids with other tehniques suh as Lagrangian multipliers or fuzzy

logi. This setion also ontains some approahes that onstitute very promising paths of future researh (e.g.,

the use of ultural algorithms or the immune system). Setion 7 presents a small omparative study in whih

several penalty-based tehniques are ompared against a tehnique based on dominane relations (i.e., one of the

tehniques disussed in Setion 5). As a orollary to the results of this omparative study, Setion 8 provides some

�nal suggestions on the hoie of onstraint-handling tehniques for a ertain problem. Finally, Setion 9 presents

some onlusions and some possible paths of future researh.

The detailed table of ontents of the paper is the following:

1. Penalty funtions

(a) Stati Penalty

(b) Dynami Penalty

() Annealing Penalty

(d) Adaptive Penalty

(e) Co-evolutionary Penalty

(f) Death Penalty

2. Speial representations and operators

(a) Davis' appliations

(b) Random keys

() GENOCOP

(d) Constraint Consistent GAs

(e) Loating the boundary of the feasible region

(f) Deoders

3. Repair algorithms

4. Separation of objetives and onstraints

(a) Co-evolution

(b) Superiority of feasible points

() Behavioral memory

(d) Multiobjetive Optimization Tehniques

5. Hybrid Methods

(a) Lagrangian multipliers

(b) Constrained optimization by random evolution

() Fuzzy logi

(d) Immune system

(e) Cultural algorithms
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(f) Ant olony optimization

6. Some Experimental Results

(a) Example 1 : Himmelblau's Nonlinear Optimization Problem

(b) Example 2 : Welded Beam Design

() Example 3 : Design of a Pressure Vessel

7. Some Reommendations

8. Conlusions and Future Researh Paths

2 Penalty funtions

The most ommon approah in the EA ommunity to handle onstraints (partiularly, inequality onstraints) is

to use penalties. Penalty funtions were originally proposed by Courant in the 1940s [31℄ and later expanded by

Carroll [18℄ and Fiao & MCormik [55℄. The idea of this method is to transform a onstrained optimization

problem into an unontrained one by adding (or subtrating) a ertain value to/from the objetive funtion based

on the amount of onstraint violation present in a ertain solution.

In lassial optimization, two kinds of penalty funtions are onsidered: exterior and interior. In the ase of

exterior methods, we start with an infeasible solution and from there we move towards the feasible region. In

the ase of interior methods, the penalty term is hosen suh that its value will be small at points away from the

onstraint boundaries and will tend to in�nity as the onstraint boundaries are approahed. Then, if we start

from a feasible point, the subsequent points generated will always lie within the feasible region sine the onstraint

boundaries at as barriers during the optimization proess [138℄.

The most ommon method used in EAs is the exterior penalty approah and therefore, we will onentrate our

disussion only on suh tehnique. The main reason why most researhers in the EA ommunity tend to hoose

exterior penalties is beause they do not require an initial feasible solution. This sort of requirement (an initial

feasible solution) is preisely the main drawbak of interior penalties. This is an important drawbak, sine in

many of the appliations for whih EAs are intended the problem of �nding a feasible solution is itself NP-hard

[161℄.

The general formulation of the exterior penalty funtion is:

�(~x) = f(~x)�

2

4

n

X

i=1

r

i

�G

i

+

p

X

j=1



j

� L

j

3

5

(4)

where �(~x) is the new (expanded) objetive funtion to be optimized, G

i

and L

j

are funtions of the onstraints

g

i

(~x) and h

j

(~x), respetively, and r

i

and 

j

are positive onstants normally alled \penalty fators".

The most ommon form of G

i

and L

j

is:

G

i

= max[0; g

i

(~x)℄

�

(5)

L

j

= jh

j

(~x)j



(6)

where � and  are normally 1 or 2.

Ideally, the penalty should be kept as low as possible, just above the limit below whih infeasible solutions are

optimal (this is alled, the minimum penalty rule [39, 145, 162℄). This is due to the fat that if the penalty is

too high or too low, then the problem might beome very diÆult for an EA [39, 145, 147℄. If the penalty is too

high and the optimum lies at the boundary of the feasible region, the EA will be pushed inside the feasible region

very quikly, and will not be able to move bak towards the boundary with the infeasible region. A large penalty

disourages the exploration of the infeasible region sine the very beginning of the searh proess. If, for example

there are several disjointed feasible regions in the searh spae, the EA would tend to move to one of them, and

would not be able to move to a di�erent feasible region unless they are very lose from eah other.
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On the other hand, if the penalty is too low, a lot of the searh time will be spent exploring the infeasible region

beause the penalty will be negligible with respet to the objetive funtion [161℄. These issues are very important

in EAs, beause many of the problems in whih they are used have their optimum lying on the boundary of the

feasible region [159, 162℄.

The minimum penalty rule is oneptually simple, but it is not neessarily easy to implement. The reason is

that the exat loation of the boundary between the feasible and infeasible regions is unknown in many of the

problems for whih EAs are intended (e.g., in many ases the onstraints are not given in algebrai form, but are

the outome generated by a simulator [27℄).

It is known that the relationship between an infeasible individual and the feasible region of the searh spae plays

a signi�ant role in penalizing suh an individual [144℄. However, it is not lear how to exploit this relationship to

guide the searh in the most desirable diretion.

There are at least three main hoies to de�ne a relationship between an infeasible individual and the feasible

region of the searh spae [34℄:

1. an individual might be penalized just for being infeasible regardless of its amount of onstraint violation (i.e.,

we do not use any information about how lose it is from the feasible region),

2. the `amount' of its infeasibility an be measured and used to determine its orresponding penalty, or

3. the e�ort of `repairing' the individual (i.e., the ost of making it feasible) might be taken into aount.

Several researhers have studied heuristis on the design of penalty funtions. Probably the most well-known of

these studies is the one onduted by Rihardson et al. [144℄ from whih the following guidelines were derived:

1. Penalties whih are funtions of the distane from feasibility are better performers than those whih are only

funtions of the number of violated onstraints.

2. For a problem having few onstraints, and few feasible solutions, penalties whih are solely funtions of the

number of violated onstraints are not likely to produe any solutions.

3. Good penalty funtions an be onstruted from two quantities: the maximum ompletion ost and the

expeted ompletion ost. The ompletion ost refers to the distane to feasibility.

4. Penalties should be lose to the expeted ompletion ost, but should not frequently fall below it. The

more aurate the penalty, the better will be the solution found. When a penalty often underestimates the

ompletion ost, then the searh may fail to �nd a solution.

Based mainly on these guidelines, several researhers have attempted to derive good tehniques to build penalty

funtions. The most important will be analyzed next. It should be kept in mind, however, that these guidelines

are diÆult to follow in some ases. For example, the expeted ompletion ost sometimes has to be estimated

using alternative methods (e.g., doing a relative saling of the distane metris of multiple onstraints, estimating

the degree of onstraint violation, et. [161℄). Also, it is not lear how to ombine the two quantities indiated by

Rihardson et al. [144℄ and how to design a �tness funtion that uses aurate penalties.

Penalty funtions an deal both with equality and inequality onstraints, and the normal approah is to transform

an equality to an inequality of the form:

jh

j

(~x)j � � � 0 (7)

where � is the tolerane allowed (a very small value).

Most of the approahes analyzed in this paper attempt to avoid this hand-tuning of the penalty fators and

some even make unneessary at all the use of a penalty funtion.
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2.1 Stati Penalties

Under this ategory, we onsider approahes in whih the penalty fators do not depend on the urrent generation

number in any way, and therefore, remain onstant during the entire evolutionary proess.

Homaifar, Lai and Qi [78℄ proposed an approah in whih the user de�nes several levels of violation, and a

penalty oeÆient is hosen for eah in suh a way that the penalty oeÆient inreases as we reah higher levels

of violation. This approah starts with a random population of individuals (feasible or infeasible).

An individual is evaluated using [104℄:

�tness(~x) = f(~x) +

m

X

i=1

�

R

k;i

� max [0; g

i

(~x)℄

2

�

(8)

whereR

k;i

are the penalty oeÆients used,m is total the number of onstraints (Homaifar et al. [78℄ transformed

equality onstraints into inequality onstraints), f(~x) is the unpenalized objetive funtion, and k = 1; 2; : : : ; l,

where l is the number of levels of violation de�ned by the user. The idea of this approah is to balane individual

onstraints separately by de�ning a di�erent set of fators for eah of them through the appliation of a set of

deterministi rules.

An interesting stati penalty approah has been used by Kuri [114℄. Fitness of an individual is determined using:

�tness(~x) =

�

f(~x) if the solution is feasible

K �

P

s

i=1

�

K

m

�

otherwise

(9)

where s is the number of onstraints satis�ed, m is the total number of (equality and inequality) onstraints, and K

is a large onstant (it was set to 1�10

9

[113℄ in the experiments reported in [114℄). Notie that when an individual

is infeasible, its �tness is not omputed and all the individuals that violate the same number of onstraints reeive

the same penalty regardless of how lose they are from the feasible region.

Finally, Ho�meister & Sprave have proposed to use the following penalty funtion [76℄:

�tness(~x) = f(~x)�

v

u

u

t

m

X

i=0

H(�g

i

(~x))g

i

(~x)

2

(10)

where H : R ! f0; 1g is the Heavyside funtion:

H(y) =

�

1 : y > 0

0 : y � 0

(11)

This is equivalent to a partial penalty approah and was suessfully used in some real-world problems [155℄.

Advantages and Disadvantages

The main drawbak of Homaifar et al.'s approah is the high number of parameters required. For m onstraints,

this approah requiresm(2l+1) parameters in total [102℄. So, if we have, for example, six onstraints and two levels,

we would need 30 parameters, whih is a very high number onsidering the small size of the proposed problem.

Also, this method requires prior knowledge of the degree of onstraint violation present in a problem (to de�ne the

levels of violation), whih might not be always given (or easy to obtain) in real-world appliations.

Kuri's approah does not use information about the amount of onstraint violation, but only about the number

of onstraints that were violated. Although this ontradits one of the basi rules stated by Rihardson [144℄

about the de�nition of good penalty funtions, apparently the self-adaptive EA used by Kuri (alled Eleti

Geneti Algorithm or EGA for short) ould ope with this problem and was able to optimize several diÆult

nonlinear optimization problems. In one of the funtions reported in [114℄, however, it was neessary to initialize

the population with another EGA beause no feasible solutions were present in the �rst generation. This problem

was obviously produed by the lak of diversity in the population (not having a single feasible individual in the

population, they all had a very similar or equal �tness), whih seriously limits its appliability in highly onstrained

searh spaes.
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The problem with Ho�meister & Sprave's approah is that it is based on the assumption that infeasible points

will always be valuated worse than feasible ones, and that is not always the ase [103℄.

Other researhers have used di�erent distane-based stati penalty funtions [68, 5, 79, 124, 144, 17, 172℄, but

in all ases these metris rely on some extra parameter (namely one or more penalty fators) whih are diÆult to

generalize and normally remain problem-dependent.

2.2 Dynami Penalties

Within this ategory, we will onsider any penalty funtion in whih the urrent generation number is involved

in the omputation of the orresponding penalty fators (normally the penalty funtion is de�ned in suh a way

that it inreases over time|i.e., generations). Notie that although the two approahes desribed in the following

subsetions (annealing penalties and adaptive penalties) are also dynami penalty approahes, they were onsidered

separately for the sake of larity.

Joines and Houk [83℄ proposed a tehnique in whih individuals are evaluated (at generation t) using (we assume

minimization):

�tness(~x) = f(~x) + (C � t)

�

� SV C(�; ~x) (12)

where C, � and � are onstants de�ned by the user (the authors used C = 0:5, � = 1 or 2, and � = 1 or 2), and

SV C(�; ~x) is de�ned as [83℄:

SV C(�; ~x) =

n

X

i=1

D

�

i

(~x) +

p

X

j=1

D

j

(~x) (13)

and

D

i

(~x) =

�

0 g

i

(~x) � 0

jg

i

(~x)j otherwise

1 � i � n (14)

D

j

(~x) =

�

0 �� � h

j

(~x) � �

jh

j

(~x)j otherwise

1 � j � p (15)

This dynami funtion inreases the penalty as we progress through generations.

Kazarlis & Petridis [85℄ performed a detailed study of the behavior of a dynami penalty funtion of the form:

�tness(~x) = f(~x) + V (g)�

 

A

m

X

i=1

(Æ

i

� w

i

� �(d

i

(S))) +B

!

� Æ

s

(16)

where A is a \severity" fator, m is the total number of onstraints, Æ

i

is 1 if the onstraint i is violated and

0 otherwise, w

i

is a weight fator for onstraint i, d

i

(S) is a measure of the degree of violation of onstraint i

introdued by solution S, �

i

(:) is a funtion of this measure, B is a penalty threshold fator, Æ

s

is a binary fator

(d

s

= 1 if S is infeasible and is zero otherwise), and V (g) is an inreasing funtion of g (the urrent generation) in

the range (0 : : : 1).

Using as test funtions the utting stok problem and the unit ommitment problem, Kazarlis & Petridis

experimented with di�erent forms of V (g) (linear, quadrati, ubi, quarti, exponential and 5-step), and found

that the best overall performane was provided by a funtion of the form:

V (g) =

�

g

G

�

2

(17)

where G is the total number of generations.
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Advantages and Disadvantages

Some researhers have argued that dynami penalties work better than stati penalties. However, it is diÆult

to derive good dynami penalty funtions in pratie as it is diÆult to produe good penalty fators for stati

funtions [159℄. For example, in the approah proposed by Joines and Houk [83℄, the quality of the solution found

was very sensitive to hanges in the values of � and � and there were no lear guidelines regarding the sensitivity

of the approah to di�erent values of C. Even when the values indiated above were found by the authors of

this method to be a reasonable hoie, Mihalewiz [102, 108℄ reported that these parameters produed premature

onvergene most of the time in other examples. Also, it was found that the tehnique normally either onverged

to an infeasible solution or to a feasible one that was far away from the global optimum [102, 34℄. Apparently, this

tehnique provides very good results only when the objetive funtion is quadrati [109℄.

The dynami penalty funtion proposed by Kazarlis & Petridis (alled by them Varying Fitness Funtion Teh-

nique or VFF for short) [85℄ requires several parameters that depend on the problem and whose de�nition is not

at all lear (for example, A = 1000 and B = 0 in the experiments reported in [85℄, but no further explanation

is provided about why these values were hosen). Also, their tests (although exhaustive for the two problems

onsidered in their work) need to be extended to other funtions before being able to make more general laims

about this tehnique.

In general, the problems assoiated with stati penalty funtions are also present with dynami penalties: if a

bad penalty fator is hosen, the EA may onverge to either non-optimal feasible solutions (if the penalty is too

high) or to infeasible solutions (if the penalty is too low) [161℄.

2.3 Annealing Penalties

Mihalewiz and Attia [105℄ onsidered a method based on the idea of simulated annealing [89℄: the penalty

oeÆients are hanged one in many generations (after the algorithm has been trapped in a loal optima). Only

ative onstraints are onsidered at eah iteration, and the penalty is inreased over time (i.e., the temperature

dereases over time) so that infeasible individuals are heavily penalized in the last generations.

The method of Mihalewiz and Attia [105℄ requires that onstraints are divided into four groups: linear equal-

ities, linear inequalities, nonlinear equalities and nonlinear inequalities. Also, a set of ative onstraints A has to

be reated, and all nonlinear equalities together with all violated nonlinear inequalities have to be inluded there.

The population is evolved using [102℄:

�tness(~x) = f(~x) +

1

2�

X

i2A

�

2

i

(~x) (18)

where � is the ooling shedule [89℄,

�

i

(~x) =

�

max[0; g

i

(~x)℄ if 1 � i � n

jh

i

(~x)j if n+ 1 � i � m

(19)

and m is the total number of onstraints.

An interesting aspet of this approah is that the initial population is not really diverse, but onsists of multiple

opies of a single individual that satis�es all the linear onstraints (a single instane of this feasible individual is

really enough [109℄). At eah iteration, the temperature � is dereased and the new population is reated using the

best solution found in the previous iteration as the starting point for the next iteration. The proess stops when a

pre-de�ned �nal `freezing' temperature �

f

is reahed.

A similar proposal was made by Carlson et al. [160℄. In this ase, the �tness funtion of an individual is

omputed using:

�tness(~x) = A � f(~x) (20)

where A depends on two parameters: M , whih measures the amount by whih a onstraint is violated (it takes

a zero value when no onstraint is violated), and T , whih is a funtion of the running time of the algorithm. T
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tends to zero as evolution progresses. Using the basi priniple of simulated annealing, Carlson et al. [160℄ de�ned

A as:

A = e

�M=T

(21)

so that the initial penalty fator is small and it inreases over time. This will disard infeasible solutions in the

last generations.

To de�ne T (the ooling shedule), Carlson et al. [160℄ use:

T =

1

p

t

(22)

where t refers to the temperature used in the previous iteration.

Finally, it should be mentioned that Joines and Houk [83℄ also experimented with a penalty funtion based on

simulated annealing:

�tness(~x) = f(~x) + e

(C�t)

�

�SV C(�;~x)

(23)

where t is the generation number, SV C(�; ~x) is de�ned by equation (13), C = 0:05, and � = � = 1.

This �tness funtion was proposed as another form of handling onstraints in an EA, but their suess was

relative, mainly beause they used unnormalized onstraints.

Advantages and Disadvantages

One of the main drawbaks of Mihalewiz and Attia's approah is its extreme sensitivity to the values of its

parameters (partiularly the ooling shedule �), and it is also well known that it is normally diÆult to hoose an

appropriate ooling shedule when solving a problem with simulated annealing [89℄. Mihalewiz and Attia [105℄

used �

0

= 1 and �

f

= 0:000001 in their experiments, with inrements �

i+1

= 0:1��

i

. Carlson et al. [160℄ deided to

use the mean onstraint violation (

�

M) as the starting temperature value. For the �nal temperature, they deided

to use one hundreth of the mean onstraint violation at the last generation. However, these values are empirially

derived and although proved to be useful in some engineering problems by Carlson et al. [160℄, their de�nition

remains as the most ritial issue when using this approah.

The approah used to handle linear onstraints in Mihalewiz and Attia's tehnique (treated separately by

them) is very eÆient, but it requires that the user provides an initial feasible point to the algorithm. The

implementation of this tehnique might require the use of another program to generate a feasible starting point

that satis�es all linear onstraints (equalities and inequalities) and also requires speial operators that produe

always feasible o�spring from feasible parents.

Regarding Joines and Houk's approah [83℄, their main problems to make this approah work were due to the

overows produed by the fat that they did not normalize their onstraints. Therefore, the exponential funtion

would sometimes fall out of the valid numerial range of the omputer. Furthermore, the de�nition of the onstant

C was not justi�ed, and the authors admitted that further experimentation regarding its e�et was neessary. On

the other hand, the implementation of this tehnique is easier beause it does not distinguish between linear and

nonlinear onstraints and its authors leave to the EA itself the task of generating feasible solutions from an initial

set of random values.

2.4 Adaptive Penalties

Bean and Hadj-Alouane [10, 69℄ developed a method that uses a penalty funtion whih takes a feedbak from the

searh proess. Eah individual is evaluated by the formula:

�tness(~x) = f(~x) + �(t)

2

4

n

X

i=1

g

2

i

(~x) +

p

X

j=1

jh

j

(~x)j

3

5

(24)

where �(t) is updated at every generation t in the following way:
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�(t+ 1) =

8

<

:

(1=�

1

) � �(t); if ase #1

�

2

� �(t); if ase #2

�(t); otherwise;

(25)

where ases #1 and #2 denote situations where the best individual in the last k generations was always (ase

#1) or was never (ase #2) feasible, �

1

; �

2

> 1, �

1

> �

2

, and �

1

6= �

2

(to avoid yling). In other words, the

penalty omponent �(t+1) for the generation t+1 is dereased if all the best individuals in the last k generations

were feasible or is inreased if they were all infeasible. If there are some feasible and infeasible individuals tied as

best in the population, then the penalty does not hange.

Smith and Tate [162℄ proposed an approah later re�ned by Coit and Smith [28℄ and Coit et al. [29℄ in whih

the magnitude of the penalty is dynamially modi�ed aording to the �tness of the best solution found so far. An

individual is evaluated using the formula (only inequality onstraints were onsidered in this work):

�tness(~x) = f(~x) + (B

feasible

�B

all

)

n

X

i=1

�

g

i

(~x)

NFT (t)

�

k

(26)

where B

feasible

is the best known objetive funtion at generation t, B

all

is the best (unpenalized) overall

objetive funtion at generation t, g

i

(~x) is the amount by whih the onstraint i is violated, k is a onstant that

adjusts the \severity" of the penalty (a value of k = 2 has been previously suggested by Coit and Smith [28℄), and

NFT is the so-alled Near Feasibility Threshold, whih is de�ned as the threshold distane from the feasible region

at whih the user would onsider that the searh is \reasonably" lose to the feasible region [109, 63℄.

Norman & Smith [123℄ further applied Coit & Smith's approah to faility layout problems, and apparently the

tehnique has been used only in ombinatorial optimization problems.

Gen and Cheng [63℄ indiate that Yokota et al. [177℄ proposed a variant of Smith, Tate and Coit's approah in

whih they use a multipliative form of the �tness funtion (instead of an addition as in Smith et al. [162℄):

�tness(~x) = f(~x)� P (~x) (27)

where P (~x) is de�ned as:

P (~x) = 1�

1

n

n

X

i=1

�

�b

i

(~x)

b

i

�

k

(28)

and

�b

i

(~x) = max[0; g

i

(~x)� b

i

℄ (29)

In this ase, �b

i

(~x) refers to the violation of onstraint i. Notie that this approah is really a speial ase of

Smith et al.'s approah in whih NFT = b

i

, assuming that g

i

(~x) � b

i

is required to onsider a solution as feasible.

Gen and Cheng [62℄ later re�ned their approah introduing a more severe penalty for infeasible solutions. In

the new version of their algorithm,

P (~x) = 1�

1

n

n

X

i=1

�

�b

i

(~x)

�b

max

i

�

k

(30)

�b

i

(~x) = max[0; g

i

(~x)� b

i

℄ (31)

�b

max

i

= max[�;�b

i

(~x); ~x 2 P (t)℄ (32)

where �b

i

(~x) is the value by whih the onstraint i is violated in the n-th hromosome. �b

max

i

is the maximum

violation of onstraint i in the whole (urrent) population, and � is a small positive number used to avoid dividing

by zero [63℄. The motivation of this tehnique was to preserve diversity in the population, avoiding at the same

time overpenalizing infeasible solutions whih will onstitute most of the population at early generations in highly

onstrained optimization problems [63℄.
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Eiben & van der Hauw [52℄, Eiben et al. [53℄ and Eiben & Ruttkay [51℄ proposed an adaptive penalty funtion

that was suessfully applied to the graph 3-oloring problem. They used a �tness funtion of the form

�tness(~x) =

n

X

i=1

w

i

� �(~x; i) (33)

where w

i

is a weight (or penalty) assigned to node i of a graph, and

�(~x; i) =

�

1 if node x

i

is left unolored beause of a onstraint violation

0 otherwise

(34)

In this approah, originally introdued by Eiben et al. [50℄, the weights used in the �tness funtion are hanged

during the evolutionary proess suh that the searh fouses on satisfying those onstraints that are onsidered

\harder" by giving higher rewards to the �tness funtion in those ases. This tehnique proved to be superior to a

powerful (traditional) graph oloring tehnique alled DSatur [15℄ and to a Grouping Geneti Algorithm [54℄.

Rasheed [139℄ proposed an approah in whih the penalty fator would be small at the beginning of the evolu-

tionary proess, and it would be inreased whenever the searh gave too little attention to feasibility (i.e., when the

point with highest �tness in the population was infeasible). Conversely, the penalty fator would be dereased if the

searh gave too muh attention to feasibility (i.e., if all individuals in the population were feasible). The rationale

behind the approah was to insure proper searh of the regions adjaent to onstraint boundaries, sine in many

ases the optimum lies preisely there. This approah was suessfully applied to several engineering optimization

problems (e.g., supersoni transport airraft design).

Crossley and Williams [32℄ experimented with several adaptive penalty oeÆients based on the urrent gen-

eration number (this would really be a dynami penalty funtion) and the standard deviation and variane of

the population's �tness values. They tested their six di�erent penalty oeÆients (inluding a onstant value) on

four engineering problems. Their results showed supperiority of the adaptive approahes over the use of a on-

stant penalty oeÆient. A oeÆient whose variation was linear with respet to the urrent generation number

was found to provide the best results overall. However, they onluded that the best adaptive penalty is really

problem-dependent if we are onerned of �nding the best result in the minimum number of generations.

Advantages and Disadvantages

The obvious drawbak of Bean and Hadj-Alouane's approah [10, 69℄ is how to hoose the generational gap (i.e.,

the appropriate value of k) that provides reasonable information to guide the searh. More important yet is how

do we de�ne the values of �

1

and �

2

to penalize fairly a given solution.

The most obvious drawbak of Smith and Tate's [162℄ approah is how to hoose NFT , sine this parameter

will be problem dependent. Coit and Smith [28℄ have proposed to de�ne NFT as:

NFT =

NFT

0

1 + �� t

(35)

where NFT

0

is an upper bound for NFT , t is the generation number, and � is a onstant that assures that

the entire region between NFT

0

and zero (feasible region) is searhed. Care should be taken that NFT does not

approah zero either too quikly or too slowly [28℄. Although Coit and Smith [28℄ have provided some alternatives

for de�ning NFT , its value remains as an additional parameter to be determined by the user.

Additionally, the fator B

feasible

�B

all

has some potential dangers: First, if B

feasible

is muh greater than B

all

,

then the penalty would be quite large for all individuals in the population. Coit and Smith [28℄ laim that this

does not seem to happen too often in pratie beause they use seletion strategies that prelude the possibility of

seleting solution vetors suÆiently far from the feasible region for this to happen, but in any ase, they propose

hanging the values of B

feasible

and B

all

for the initial generations.

The seond potential danger is that if B

feasible

and B

all

are idential, then the penalty would be zero, whih

means that all infeasible individuals would go unpenalized in that generation. The underlying assumption here is

that the best unpenalized individual in fat lies on the feasible region, but that might not be the ase, and it ould

introdue a strong bias towards infeasible solutions.
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The approah proposed by Gen and Cheng [63℄ assigns a relatively mild penalty with respet to Coit et al. [29℄,

but the authors of this method argue that their approah is problem-independent [63℄. However, no information

is provided by Gen and Cheng [63℄ regarding the sort of problems used to test this tehnique, and apparently the

approah was used only in one ombinatorial optimization problem, whih does not onstitute enough evidene of

this statement.

Similarly, the approah of Eiben & van der Hauw [52℄ also requires the de�nition of additional parameters

(the weights w

i

assigned to eah node of the graph), and it has been applied only to ombinatorial optimization

problems.

Rasheed's approah [139℄ was inspired by Smith and Tate [162℄, and it seems to be the �rst attempt to use

adaptive penalties in numerial optimization. This approah is interesting, but it requires the de�nition of an

initial value for the penalty fator. Rasheed provides a way of omputing suh a default value. However, his

formula is based on the assumption that the numerial magnitude of the onstraints is omparable to what he alls

the \measure of merit" (i.e., the objetive funtion). If this is not true, then a saling funtion will be required.

Also, ertain limits have to be de�ned for the inrements and derements of the penalty fator, in order to avoid

abrupt hanges.

Crossley and Williams' study was inonlusive. For example, adaptive penalties based on the standard deviation

and variane of the population's �tness values were found to be too expensive (omputationally speaking). A

penalty fator that inreased quadratially with respet to the number of generations was also found to provide

poor results. However, from the remaining approahes, none of them was found to provide the best possible results

with the lowest number of �tness funtion evaluations for all test problems. Obviously, more studies of this sort

are required.

2.5 Co-evolutionary penalties

Coello [25℄ proposed the use of a penalty funtion of the form:

�tness(~x) = f(~x)� (oef � w

1

+ viol � w

2

) (36)

where f(~x) is the value of the objetive funtion for the given set of variable values enoded in a hromosome; w

1

and w

2

are 2 penalty fators (onsidered as integers); oef is the sum of all the amounts by whih the onstraints

are violated (only inequality onstraints were onsidered):

oef =

n

X

i=1

g

i

(~x) 8g

i

(~x) > 0 (37)

viol is an integer fator, initialized to zero and inremented by one for eah onstraint of the problem that is

violated, regardless of the amount of violation (i.e., only the number of onstraints violated is ounted with this

variable, but not the magnitude in whih eah onstraint is violated).

In Coello's approah, the penalty is atually split into two values (oef and viol), so that the EA has enough

information not only about how many onstraints were violated, but also about the orresponding amounts of

violation. This follows Rihardson's suggestion [144℄ about using penalties that are guided by the distane to

feasibility.

Coello [25℄ used two di�erent populations P1 and P2 with orresponding sizesM1 andM2. The seond of these

populations (P2) enoded the set of weight ombinations (w

1

and w

2

) that would be used to ompute the �tness

value of the individuals in P1 (i.e., P2 ontained the penalty fators that would be used in the �tness funtion).

The idea of Coello's approah is to use one population to evolve solutions (as in a onventional EA), and another

to evolve the penalty fators w

1

and w

2

. For eah individual A

j

in P2 there is an instane of P1. However, the

population P1 is reused for eah new element A

j

proessed from P2.

Eah individual A

j

(1 � j � M2) in P2 is deoded and the weight ombination produed (i.e., the penalty

fators) is used to evolve P1 during a ertain number (Gmax1) of generations. The �tness of eah individual B

k

(1 � k � M1) is omputed using equation (36), keeping the penalty fators onstant for every individual in the

instane of P1 orresponding to the individual A

j

being proessed.

12



After evolving eah P1 orresponding to every A

j

in P2 (there is only one instane of P1 for eah individual in

P2), the best average �tness produed is omputed using:

average fitness

j

=

M1

X

i=1

�

�tness(~x)

ount feasible

�

+ ount feasible 8~x 2 F (38)

In equation (38), the �tnesses of all feasible solutions in P1 are added, and an average of them is omputed

(the integer variable ount feasible is a ounter that indiates how many feasible solutions were found in the

population). The reason for onsidering only feasible individuals is that if infeasible solutions are not exluded

from this omputation, the seletion mehanism of the EA may bias the population towards regions of the searh

spae where there are solutions with a very low weight ombination. Suh solutions may have good �tness values,

and still be infeasible. The reason for that is that low values of w

1

and w

2

may produe penalties that are not big

enough to outweight the value of the objetive funtion.

Notie also the use of ount feasible to avoid stagnation (i.e., loss of diversity in the population) at ertain

regions in whih only very few individuals will have a good �tness or will be even feasible. By adding this quantity

to the average �tness of the feasible individuals in the population, the EA is enouraged to move towards regions

in whih lie not only feasible solutions with good �tness values, but there are also lots of them. In pratie, it may

be neessary to apply a saling fator to the average of the �tness before adding ount feasible, to avoid that the

EA gets trapped in loal optima. However, suh saling fator is not very diÆult to ompute beause Coello [25℄

assumes populations of onstant size (suh size must be de�ned before running the EA). The range of the �tness

values an be also easily obtained at eah generation, beause the maximum and minimum �tness values in the

population are known at eah generation.

The proess indiated above is repeated until all individuals in P2 have a �tness value (the best average fitness

of their orresponding P1). Then, P2 is evolved one generation using onventional geneti operators (i.e., rossover

and mutation) and the new P2 produed is used to start the same proess all over again. It is important to notie

that the interation between P1 and P2 introdues diversity in both populations, whih keeps the EA from easily

onverging to a loal optimum.

Advantages and Disadvantages

The problem with this approah is that it introdues the de�nition of four additional parameters: Gmax1, Gmax2,

M1 and M2. Coello [25, 22℄ argues that those parameters have to be (empirially) determined for an EA in any

partiular appliation, and showed that the approah was really more sensitive to hanges in the parameters of P1

than to hanges in the parameters of P2. However, the de�nition of these parameters remains as an additional

issue to be settled. Furthermore, if these parameters are not arefully hosen, a lot of �tness funtion evaluations

might be required due to the nested loops involved in the optimization proess. A parallel algorithm may be a

viable solution to this problem, but suh an alternative has not been implemented yet.

2.6 Segregated geneti algorithm

Le Rihe et al. [147℄ designed a (segregated) geneti algorithm whih uses two penalty parameters (for eah

onstraint) instead of one; these two values aim at ahieving a balane between heavy and moderate penalties

by maintaining two subpopulations of individuals instead of one. Even when individuals of the two populations

interbreed (i.e., they are merged), they are \segregated" in terms of satisfation of a ertain onstraint.

The proedure is the following [147℄: a population of size 2 � m is generated. Eah individual is evaluated

aording to two penalty funtions (one with heavy and one with moderate penalties). Two ranked lists are

generated and then merged. Only m individuals are hosen from the new list to apply the geneti operators

(rossover and mutation): the best individuals from the two original ranked lists are hosen to beome parents for

the next generation. This aims to ombine feasible and infeasible individuals, and to help the geneti algorithm to

stay out of loal minima.

Another important di�erene of this approah with respet to a traditional geneti algorithm is that if the two

penalties have the same value, the m hildren produed after applying the geneti operators are mixed with their
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m parents. Then the best m individuals from this merged list are hosen for further proessing. This replaement

strategy (alled \super elitism" by Le Rihe et al. [147℄) was taken from evolution strategies [156℄ and allows to

balane the inuene of the two penalty fators used.

Linear ranking was used to derease the high seletion pressure that ould ause premature onvergene. This

approah was used to solve a laminated design problem, providing exellent results [147℄.

Advantages and Disadvantages

The problem with this approah is again the way of hoosing the penalties for eah of the two sub-populations.

Even when some guidelines have been provided by the authors of this method to de�ne suh penalties [147℄, they

also admit that it is diÆult to produe generi values that an be used in any problem for whih no previous

information is available.

2.7 Death penalty

The rejetion of infeasible individuals (also alled \death penalty") is probably the easiest way to handle onstraints

and it is also omputationally eÆient, beause when a ertain solution violates a onstraint, it is assigned a �tness

of zero. Therefore, no further alulations are neessary to estimate the degree of infeasibility of suh a solution.

The normal approah taken is to iterate reursively, generating a new point at eah reursive all, until a feasible

solution is found [76℄. This might be a rather lengthy proess in problems in whih is very diÆult to approah

the feasible region.

Advantages and Disadvantages

Death penalty is very popular within the evolution strategies ommunity [156, 4℄, but it is limited to problems in

whih the feasible searh spae is onvex and onstitutes a reasonably large portion of the whole searh spae. This

approah has the drawbak of not exploiting any information from the infeasible points that might be generated

by the EA to guide the searh.

One potential problem of this approah is that if there are no feasible solutions in the initial population (whih

is normally generated at random) then the evolutionary proess will \stagnate" beause all the individuals will

have the same �tness (i.e., zero).

There are well-doumented experiments in whih the use of death penalty with EAs is not a good hoie. For

example, Coit & Smith [28℄ ompared this approah against an adaptive penalty in a reliability design optimization

problem (a problem with highly onstrained searh spaes), �nding that the adaptive penalty was superior in terms

of both the quality of the �nal solutions found and the onvergene of the EA to the best solution found. Mihalewiz

[102, 108, 109℄ has also shown that the use of death penalty is inferior to the use of penalties that are de�ned in

terms of the distane to the feasible region.

3 Speial representations and operators

Some researhers have deided to develop speial representation shemes to takle a ertain (partiularly diÆult)

problem for whih a generi representation sheme (e.g., the binary representation used in the traditional geneti

algorithm) might not be appropriate. Due to the hange of representation, it is neessary to design speial geneti

operators that work in a similar way than the traditional operators used with a binary representation.

A hange of representation is aimed at simplifying the shape of the searh spae and the speial operators are

normally used to preserve the feasibility of solutions at all times. The main appliation of this approah is naturally

in problems in whih it is extremely diÆult to loate at least a single feasible solution.

3.1 Davis' appliations

Lawrene Davis' Handbook of Geneti Algorithms [40℄ ontains several examples of EAs that use speial represen-

tations and operators to solve omplex real-world problems. For example, Yuval Davidor [37℄ (see also [36℄) used
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a varying-length geneti algorithm to generate robot trajetories, and de�ned a speial rossover operator alled

analogous rossover [35℄, whih uses phenotypi similarities to de�ne rossover points in the parent strings. Davi-

dor also used Lamarkian probabilities for rossover and mutation. This means that the rossover and mutation

points were hosen aording to the error distribution along the string, whih was relatively easy to estimate in

this partiular appliation.

Other appliations inluded in Davis' book are: shedule optimization [170℄, synthesis of neural networks arhi-

teture [73℄, and onformational analysis of DNA [98℄, among others.

Advantages and Disadvantages

The use of speial representations and operators is, with no doubt, quite useful for the intended appliation for

whih they were designed, but their generalization to other (even similar) problems is by no means obvious.

3.2 Random keys

James C. Bean [8, 9℄ proposed a speial representation alled \random keys enoding" whih (in ontrast with

the approahes reported in Davis' book) is used to eliminate the need of speial rossover and mutation operators

in ertain sequening and optimization problems (e.g., job shop sheduling, parallel mahine tool sheduling, and

faility layout), beause it maintains the feasiblity of the permutations used in these domains at all times. It also

adds no omputational overhead to the searh.

The idea is to enode a solution with random numbers. Suh random numbers are used as sort keys to deode

the solution. For example, to represent an n-job m-mahine sheduling problem using this approah, eah allele is

a real number in whih the integer part belongs to the set f1; 2; : : : ;mg, whereas the deimal fration is randomly

generated within the interval (0; 1). The integer part of the number is then interpreted as the mahine assignment

for that job, whereas the sorted frational parts provide the job sequene on eah mahine [121, 122℄.

Advantages and Disadvantages

This approah is with no doubt interesting, although some researhers have reported poor performane of the

tehnique in some appliations. For example, Parsons et al. [131, 132℄ found that the random keys geneti algorithm

did not perform as well as a standard permutation representation with speial-purpose operators (transposition

and a form of inversion) in a DNA fragment-assembly problem (a TSP problem with noise, errors, and some other

ompliations).

3.3 GENOCOP

Another example of this approah is GENOCOP (GEneti algorithm for Numerial Optimization for COnstrained

Problems), developed by Mihalewiz [101℄. GENOCOP eliminates equality onstraints together with an equal

number of problem variables. This removes part of the spae to be searhed and simpli�es the problem for the

EA. The remaining onstraints are linear inequalities, whih form a onvex set that must be searhed by the EA.

GENOCOP tries to loate an initial (feasible) solution by sampling the feasible region. If it does not sueed after a

ertain number of trials, the user is asked to provide suh a starting point. The initial population will then onsist

of idential opies of this starting point. The geneti operators adopted perform linear ombinations of individuals

to ensure that their o�spring will also be feasible (these operators rely on properties of onvex sets).

Advantages and Disadvantages

GENOCOP assumes a feasible starting point (or feasible initial population), whih implies that the user or the

EA must have a way of generating (in a reasonable time) suh starting point. Also, the fat that GENOCOP only

allows linear onstraints, limits its appliations to onvex searh spaes [34℄.
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3.4 Constraint Consistent GAs

Kowalzyk [90℄ proposed the use of onstraint onsisteny [93℄ to prune the searh spae by preventing variable

instantiations that are not onsistent with the onstraints of the problem (i.e., making sure that variables produe

only feasible solutions).

Kowalzyk used real-numbers representation and de�ned speial geneti operators and a speial initialization

proedure that inorporated the onept of onstraint onsisteny. He indiated that his approah an be used

in ombination with any other onstraint-handling tehnique, and was aware that in many ases partially feasible

solutions may be preferred beause they an guide the searh in a more appropriate way or beause they are muh

easier to �nd.

Advantages and Disadvantages

The main drawbak of this approah is the extra omputational ost required to propagate onstraints, whih may

beome a proess more expensive than the optimization itself. In any ase, the approah deserves some attention

and more experimentation is required, sine Kowalzyk illustrated its performane with only two optimization

problems.

3.5 Loating the boundary of the feasible region

The main idea of this tehnique is to searh areas lose to the boundary of the feasible region. Sine in many

nonlinear optimization problems at least some onstraints are ative at the global optimum, it is perfetly justi�ed

to fous the searh to the boundary between the feasible and infeasible regions.

The idea was originally proposed in an Operations Researh tehnique known as strategi osillation [65℄ and

has been used in ombinatorial and nonlinear optimization problems [66℄. The basi approah is to use adaptive

penalties or other similar mehanism (e.g., gradients) to ross the feasibility boundary bak and forth by relaxing

or tightening a ertain fator that determines the diretion of movement [109℄.

The two basi omponents of this approah are: (a) an initialization proedure that an generate feasible points,

and (b) geneti operators that explore the feasible region.

Additionally, the geneti operators must satisfy the following onditions [136, 101℄: (1) rossover should be

able to generate all points \between" the parents, (2) small mutations must result in small hanges in the �tness

funtion.

In the work done by Shoenauer and Mihalewiz [152℄, several examples are presented and speial geneti

operators are designed for eah using geodesial urves and plane-based operators. In a further paper, Shoenauer

and Mihalewiz [153℄ analyze in more detail the use of sphere operators in onvex feasible searh spaes.

Advantages and Disadvantages

The main drawbak of this approah is that the operators designed are either highly dependent on the hosen

parameterization [152℄, or more omplex alulations are required to perform rossover and mutation. Also, many

problems have disjoint feasible regions and the use of operators of this sort would not be of muh help in those

ases sine they would explore only one of those feasible regions.

Finally, the use of these operators is limited to a single problem, although some of the onepts involved an be

generalized. Whenever appliable, however, the approah is quite eÆient and produes very good results.

3.6 Deoders

In this ase, a hromosome \gives instrutions" on how to build a feasible solution. Eah deoder imposes a

relationship T between a feasible solution and a deoded solution [34℄. When using deoders, however, it is

important that several onditions are satis�ed [127℄: (1) for eah feasible solution s there must be a deoded

solution d, (2) eah deoded solution d must orrespond to a feasible solution s, and (3) all feasible solutions

should be represented by the same number of deodings d. Additionally, it is reasonable to request that (4) the
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transformation T is omputationally fast and (5) it has loality feature in the sense that small hanges in the

deoded solution result in small hanges in the solution itself [34℄.

Koziel and Mihalewiz [91, 92℄ have reently proposed a homomorphous mapping between an n-dimensional

ube and a feasible searh spae (either onvex or non-onvex). The main idea of this approah is to transform the

original problem into another (topologially equivalent) funtion that is easier to optimize by the EA.

Kim and Husbands [86, 87℄ had an earlier proposal of a similar approah that used Riemann mappings to

transform the feasible region into a shape that failitated the searh for the EA.

Advantages and Disadvantages

Despite the several advantages of Koziel and Mihalewiz's approah [92℄, it also has some disadvantages [92℄:

� It uses an extra parameter v whih has to be found empirially, performing a set of runs.

� Requires extra omputational e�ort beause of the binary searh required to �nd the intersetion of a line

with the boundary of the feasible region (whih is the ore of the tehnique).

� It violates the loality feature mentioned before when used in non-onvex searh spaes: small hanges in the

enoded solution may result in huge hanges in the deoded value (e.g., when dealing with disjoint searh

spaes).

However, in the experiments reported by Koziel and Mihalewiz [92℄, this tehnique provided muh better results

than those reported with any other onstraint-handling method, and seems a very promising area of researh.

Kim and Husbands' approah [86, 87℄ ould only be used with problems of low dimensionality (no more than

four variables) and required the objetive funtion to be given in algebrai form. The mapping proposed by Koziel

and Mihalewiz [91, 92℄, however, an be used with problems of any dimensionality and does not require that the

objetive funtion is given in algebrai form.

4 Repair algorithms

In many ombinatorial optimization problems (e.g., traveling salesman problem, knapsak problem, set overing

problem, et.) is relatively easy to `repair' an infeasible individual (i.e., to make feasible an infeasible individual).

Suh a repaired version an be used either for evaluation only, or it an also replae (with some probability) the

original individual in the population.

Liepins et al. [96, 97℄ have shown, through an empirial test of EA performane on a diverse set of onstrained

ombinatorial optimization problems, that a repair algorithm is able to surpass other approahes in both speed

and performane.

GENOCOP III [108℄ also uses repair algorithms. The idea is to inorporate the original GENOCOP system

[107℄ (whih handles only linear onstraints) and extend it by maintaining two separate populations, where results

in one population inuene evaluations of individuals in the other population. The �rst population onsists of

the so-alled searh points whih satisfy linear onstraints of the problem; the feasibility (in the sense of linear

onstraints) of these points is maintained by speialized operators. The seond population onsists of feasible

referene points. Sine these referene points are already feasible, they are evaluated diretly by the objetive

funtion, whereas searh points are \repaired" for evaluation.

Xiao et al. [110, 176, 175℄ used a repair algorithm to transform an infeasible path of a robot trying to move

between two points in the presene of obstales, so that the path would beome feasible (i.e., ollision-free). The

repair algorithm was implemented through a set of arefully designed geneti operators that used knowledge about

the domain to bring infeasible solutions into the feasible region in an eÆient way.

Other authors that have used repair algorithms are Orvosh and Davis [126℄, M�uhlenbein [115℄, Le Rihe and

Haftka [146℄, and Tate and Smith [171℄.

There are no standard heuristis for the design of repair algorithms: normally, it is possible to use a greedy

algorithm (i.e., an optimization algorithm that proeeds through a series of alternatives by making the best deision,

as omputed loally, at eah point in the series), a random algorithm or any other heuristi whih would guide the
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repair proess. However, the suess of this approah relies mainly on the ability of the user to ome up with suh

a heuristi.

Another interesting aspet of this tehnique is that normally an infeasible solution that is repaired is only used

to ompute its �tness, but the repaired version is returned to the population only in ertain ases (using a ertain

probability). The question of replaing repaired individuals is related to the so-alled Lamarkian evolution, whih

assumes that an individual improves during its lifetime and that the resulting improvements are oded bak into

the hromosome [166℄. Some researhers like Liepins et al. [96, 97℄ have taken the never replaing approah (that

is, the repaired version is never returned to the population), while other authors suh as Nakano [119℄ have taken

the always replaing approah.

Orvosh and Davis [125, 126℄ reported a so-alled 5% rule for ombinatorial optimization problems, whih means

that EAs (applied to ombinatorial optimization problems) with a repairing proedure provide the best result when

5% of the repaired hromosomes replae their infeasible originals. Mihalewiz et al. [104℄ have reported, however,

that a 15% replaement rule seems to be the best hoie for numerial optimization problems with nonlinear

onstraints.

Advantages and Disadvantages

When an infeasible solution an be easily (or at least at a low omputational ost) transformed into a feasible

solution, repair algorithms are a good hoie. However this is not always possible and in some ases repair operators

may introdue a strong bias in the searh, harming the evolutionary proess itself [161℄. Furthermore, this approah

is problem-dependent, sine a spei� repair algorithm has to be designed for eah partiular problem.

5 Separation of onstraints and objetives

There are several approahes that handle onstraints and objetives separately (i.e., without ombining the amount

of onstraint violation and the objetive funtion value). In this setion we will review some of the most represen-

tative proposals.

5.1 Co-evolution

Paredis [128℄ proposed a tehnique based on a o-evolutionary model in whih there are two populations: the �rst

ontains the onstraints to be satis�ed (in fat, this is not a population in the general sense of the term, sine

its ontents does not hange over time) and the seond ontains potential (and possibly invalid) solutions to the

problem to be solved. Using an analogy with a predator-prey model, the seletion pressure on members of one

population depends on the �tness of the members of the other population [128℄.

An individual with high �tness in the seond population represents a solution that satis�es a lot of onstraints

whereas an individual with high �tness in the �rst population represents a onstraint that is violated by a lot of

solutions.

Solutions and onstraints have enounters in whih individuals belonging to both populations are evaluated.

Eah individual keeps a history of its enounters, and its �tness is omputed aording to the sum of the last n

enounters (Paredis [128℄ used n = 25). The idea of the approah is to inrease the �tness of those onstraints

that are harder to satisfy so that the evolutionary searh onentrates on them. In fat, the relevane of a ertain

onstraint an be hanged over time using this approah.

Advantages and Disadvantages

Paredis [128℄ indiated that his approah was similar to a self-adaptive penalty funtion in whih the relevane of

a ertain onstraint an be hanged over time, aording to its diÆulty. The results reported by Paredis [128℄

are very impressive, and the approah seems very eÆient beause not all onstraints have to be heked at all

times. One problem with this approah is that the use of a historial reord to ompute �tness of an invidual

might introdue \stagnation" (i.e., the searh may not progress anymore) if all the onstraints (or at least most

of them) are equally diÆult to satisfy. Also, there is no further evidene of the e�etiveness of the approah in
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other ombinatorial optimization problems, and apparently, it has not been extended to numerial optimization

problems either.

5.2 Superiority of feasible points

Powell and Skolnik [134℄ inorporated a heuristi rule (suggested by Rihardson et al. [144℄) for proessing

infeasible solutions: evaluations of feasible solutions are mapped into the interval (�1, 1), and infeasible solutions

into the interval (1, 1). Individuals are evaluated using [134℄:

�tness(~x) =

(

f(~x) if feasible

1 + r

�

P

n

i=1

g

i

(~x) +

P

p

j=1

h

j

(~x)

�

otherwise

(39)

f(~x) is saled into the interval (�1,1), g

i

(~x) and h

j

(~x) are saled into the interval (1, 1), and r is a onstant.

Notie that in this approah the objetive funtion and the amount of onstraint violation are not ombined when

an individual is infeasible (as when using penalty funtions).

Powell and Skolnik [134℄ used linear ranking seletion [6, 7, 40℄ in suh a way that at early generations there

would be slow onvergene, and later on onvergene ould be fored by inreasing the number of opies of the

highest ranked individuals.

Deb [44℄ proposed more reently a similar approah in whih an individual is evaluated using:

�tness(~x) =

�

f(~x) if g

i

(~x) � 0; 8i = 1; 2; : : : ; n

f

worst

+

P

n

i=1

g

i

(~x) otherwise

(40)

where f

worst

is the objetive funtion value of the worst feasible solution in the population, and g

i

(~x) refers only

to inequality onstraints (Deb transformed equality onstraints to inequality onstraints using eq. (2)). If there are

no feasible solutions in the population, then f

worst

is set to zero.

Using binary tournament seletion, Deb applies the following rules to ompare two individuals [44℄:

1. A feasible solution is always preferred over an infeasible one.

2. Between two feasible solutions, the one having a better objetive funtion value is preferred.

3. Between two infeasible solutions, the one having smaller onstraint violation is preferred.

No penalty fator is required, sine the seletion proedure only performs pairwise omparisons. Therefore,

feasible solutions have a �tness equal to their objetive funtion value, and the use of onstraint violation in the

omparisons aims to push infeasible solutions towards the feasible region. Due to the fat that onstraints are

normally non-ommensurable (i.e., they are expressed in di�erent units), Deb normalized them to avoid any sort

of bias toward any of them.

The main di�erene between these two approahes (Powell & Skolnik's and Deb's) is that the seond does not

require a penalty fator r, beause of the pairwise omparisons performed during the seletion proess. However,

Deb's approah requires nihing to maintain diversity in the population [100℄. This means that in this approah the

searh is foused initially on �nding feasible solutions and then uses tehniques to maintain diversity to approah

the optimum.

Another similar approah alled CONGA (COnstraint based Numeri Geneti Algorithm) was proposed by

Hinterding and Mihalewiz [75℄. The idea is to perform the searh in two phases, as Shoenauer and Xanthakis'

behavioral memory algorithm [154℄. In the �rst phase, the searh onentrates on �nding feasible individuals

(assuming that there is none in the initial population) and the objetive funtion value is not used (only the

information about onstraint violation of eah individual). As the amount of feasible individuals inreases, the

searh fouses on �ne-tuning the best of them. Hinterding and Mihalewiz [75℄ use two seletion funtions: one

that selets an individual for mutation or the �rst parent for rossover (only one operator an be applied) using

the same riteria as Deb [44℄ (an individual is randomly hosen when there is a tie). The seond seletion funtion

�nds a mate for a parent seleted with the �rst funtion. This seond seletion funtion hooses the individual

with the least number of satis�ed onstraints in ommon with the parent already seleted. The idea is to selet the
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mate who best \omplements" the parent previously seleted. This mate should satisfy the onstraints than the

�rst seleted parent does not satisfy. Therefore, the aim is that rossover will reate new individuals who satisfy

more onstraints than any of their parents. The idea of omplementary mathing was borrowed from Ronald [148℄,

only that in his ase, the seletion of the seond parent did not depend on the �rst one but on a di�erent global

riterion.

Advantages and Disadvantages

Although some might think that the de�nition of r in Powell and Skolnik's approah introdues the traditional

problems of using a penalty funtion, this is not true, sine the linear ranking seletion sheme used makes irrelevant

the value of this onstant. The approah has, however, other problems.

The key onept of this approah is the assumption of the superiority of feasible solutions over infeasible ones,

and as long as suh assumption holds, the tehnique is expeted to behave well [134℄. However, in ases where the

ratio between the feasible region and the whole searh spae is too small (for example, when there are onstraints

very diÆult to satisfy), this tehnique will fail unless a feasible point is introdued in the initial population [104℄.

Deb's results [44℄ are very enouraging, but his tehnique seems to have problems to maintain diversity in the

population, and the use of nihing methods [45℄ ombined with higher than usual mutation rates is apparently

neessary to avoid stagnation. Sharing is an expensive proess (O(n

2

)), and its use introdues an extra parameter

(�

share

), whose de�nition is normally determined using an empirial proedure similar to the one used with the

other parameters of an EA (e.g., rossover and mutation rates, population size, et.).

Hinterding andMihalewiz's approah relies on the same assumption as Powell and Skolnik's tehnique: feasible

individuals are always better than infeasible ones. Therefore, it shares its same problems. The other problem with

this approah is how to keep diversity in the population, sine the tournament seletion strategy adopted might

introdue a high seletion pressure (e.g., if there is only one feasible individual in the population, it will drive the

others to a possible loal optimum). The authors used a very high replaement rate (the 97% worst individuals

from eah generation are replaed by new individuals, and dupliates are not allowed in the population). This tries

to keep a large number of infeasible individuals in the population when at least one feasible individual has been

found, as to derease the seletion pressure. However, the approah still needs further re�nement and validation

(it was tested only with �ve benhmark funtions and ompared against GENOCOP II and III).

5.3 Behavioral memory

Shoenauer and Xanthakis [154℄ proposed to extend a tehnique alled behavioral memory, whih was originally

proposed for unonstrained optimization [41℄. The main idea of this approah is that onstraints are handled in a

partiular order. The algorithm is the following [154℄:

� Start with a random population of individuals

� Set j = 1 (j is the onstraint ounter)

� Evolve this population to minimize the violation of the j-th onstraint, until a given perentage of the

population (this is alled the ip threshold �) is feasible for this onstraint. In this ase

�tness(~x) =M � g

1

(~x) (41)

where M is a suÆiently large positive number whih is dynamially adjusted at eah generation.

� j = j + 1

� The urrent population is the starting point for the next phase of the evolution, minimizing the violation of

the j-th onstraint,

�tness(~x) =M � g

j

(~x) (42)

During this phase, points that do not satisfy at least one of the 1st, 2nd, : : : (j � 1)-th onstraints are

eliminated from the population. The ondition required to stop this stage of the algorithm is again the

satisfation of the j-th onstraint by the ip threshold perentage � of the population.
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� If j < m, repeat the last two steps, otherwise (j = m) optimize the objetive funtion f rejeting infeasible

individuals.

The idea of this tehnique is to satisfy sequentially (one by one) the onstraints imposed on the problem. This

is similar to an approah alled \lexiographi ordering" that is used in multiobjetive optimization [21℄. One

a ertain perentage of the population (de�ned by the ip threshold) satis�es the �rst onstraint, an attempt to

satisfy the seond onstraint (while still satisfying the �rst) will be made. Notie that in the last step of the

algorithm, Shoenauer and Xanthakis [154℄ use death penalty, beause infeasible individuals are eliminated from

the population.

Advantages and Disadvantages

This method requires that there is a linear order of all onstraints, and the order in whih the onstraints are

proessed inuenes the results provided by the algorithm (in terms of total running time and preision ahieved)

[104℄.

Shoenauer and Xanthakis also reommended the use of a sharing sheme (to keep diversity in the population),

whih adds to the ip threshold � and the order of the onstraints as extra parameters required by the algorithm.

Furthermore, sine this approah violates the minimum penalty rule [145, 147℄, it has a high omputational ost

(inreased by the use of sharing to keep diversity in the population). As Shoenauer and Xanthakis [154℄ admit,

the extra omputational ost of this approah is not justi�ed when the feasible region is quite large. However, it is

partiularly suitable for appliations in whih onstraints have a natural hierarhy of evaluation, like the problem

of generating software test data used by the authors of this tehnique [154℄.

5.4 Multiobjetive Optimization Tehniques

The main idea is to rede�ne the single-objetive optimization of f(~x) as a multiobjetive optimization problem

in whih we will have m + 1 objetives, where m is the total number of onstraints. Then, we an apply any

multiobjetive optimization tehnique [60℄ to the new vetor �v = (f(~x); f

1

(~x); : : : ; f

m

(~x)), where f

1

(~x); : : : ; f

m

(~x)

are the original onstraints of the problem. An ideal solution ~x would thus have f

i

(~x)=0 for 1 � i � m and

f(~x) � f(~y) for all feasible ~y (assuming minimization).

Surry et al. [168, 167℄ proposed the use of Pareto ranking [59℄ and VEGA [151℄ to handle onstraints using this

tehnique. In their approah, alled COMOGA, the population was ranked based on onstraint violations (ounting

the number of individuals dominated by eah solution). Then, one portion of the population was seleted based

on onstraint ranking, and the rest based on real ost (�tness) of the individuals.

Parmee and Purhase [129℄ implemented a version of VEGA [151℄ that handled the onstraints of a gas turbine

problem as objetives to allow an EA to loate a feasible region within the highly onstrained searh spae of this

appliation. However, VEGA was not used to further explore the feasible region, and instead Parmee and Purhase

[129℄ opted to use speialized operators that would reate a variable-size hyperube around eah feasible point to

help the EA to remain within the feasible region at all times.

Camponogara & Talukdar [16℄ proposed the use of a proedure based on an evolutionary multiobjetive opti-

mization tehnique. Their proposal was to restate a single objetive optimization problem in suh a way that two

objetives would be onsidered: the �rst would be to optimize the original objetive funtion and the seond would

be to minimize

�(~x) =

n

X

i=1

max[0; g

i

(~x)℄ (43)

One the problem is rede�ned, non-dominated solutions with respet to the two new objetives are generated.

The solutions found de�ne a searh diretion d = (x

i

� x

j

)=jx

i

� xjj, where x

i

2 S

i

, x

j

2 S

j

, and S

i

and S

j

are

Pareto sets. The diretion searh d is intended to simultaneously minimize all the objetives [16℄. Line searh is

performed in this diretion so that a solution x an be found suh that x dominates x

i

and x

j

(i.e., x is a better

ompromise than the two previous solutions found). Line searh takes the plae of rossover in this approah, and

mutation is essentially the same, where the diretion d is projeted onto the axis of one variable j in the solution
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spae [16℄. Additionally, a proess of eliminating half of the population is applied at regular intervals (only the less

�tted solutions are replaed by randomly generated points).

Jim�enez and Verdegay [81℄ proposed the use of a min-max approah [19℄ to handle onstraints. The main idea

of this approah is to apply a set of simple rules to deide the seletion proess:

1. If the two individuals being ompared are both feasible, then selet based on the minimum value of the

objetive funtion.

2. If one of the two individuals being ompared is feasible and the other one is infeasible, then selet the feasible

individual.

3. If both individuals are infeasible, then selet based on the maximum onstraint violation (max g

j

(~x); for j =

1; : : : ;m, and m is the total number of onstraints). The individual with the lowest maximum violation wins.

Notie the great similarity between this approah and the tehnique proposed by Deb [44℄ that was desribed

in setion 5.2. The main di�erene is that in this ase, no extra mehanism is used to preserve diversity in the

population.

Coello [24℄ proposed the use of a population-based multiobjetive optimization tehnique suh as VEGA [151℄ to

handle eah of the onstraints of a single-objetive optimization problem as an objetive. At eah generation, the

population is split into m+1 sub-populations (m is the number of onstraints), so that a fration of the population

is seleted using the (unonstrained) objetive funtion as its �tness and another fration uses the �rst onstraint

as its �tness and so on.

For the sub-population guided by the objetive funtion, the evaluation of suh objetive funtion for a given

vetor ~x is used diretly as the �tness funtion (multiplied by (-1) if it is a minimization problem), with no penalties

of any sort. For all the other sub-populations, the algorithm used is the following [24℄:

if g

j

(~x) < 0:0 then �tness = g

j

(~x)

else if v 6= 0 then �tness = �v

else �tness = f(~x)

where g

j

(~x) refers to the onstraint orresponding to sub-population j + 1 (this is assuming that the �rst sub-

population is assigned to the objetive funtion f(~x)), and v refers to the number of onstraints that are violated

(� m).

There are a few interesting things that an be observed from this proedure. First, eah sub-population assoiated

with a onstraint will try to redue the amount in whih that onstraint is violated. If the solution evaluated does

not violate the onstraint orresponding to that sub-population, but it is infeasible, then the sub-population will

try to minimize the total number of violations, joining then the other sub-populations in the e�ort of driving the

EA to the feasible region. This aims at ombining the distane from feasibility with information about the number

of violated onstraints, whih is the same heuristi normally used with penalty funtions.

Finally, if the solution enoded is feasible, then this individual will be `merged' with the �rst sub-population,

sine it will be evaluated with the same �tness funtion (i.e., the objetive funtion).

It is interesting to notie that the use of the unonstrained objetive funtion in one of the sub-populations

may assign good �tness values to infeasible individuals. However, sine the number of onstraints will normally be

greater than one, the other sub-populations will drive the EA to the feasible region. In fat, the sub-population

evaluated with the objetive funtion will be useful to keep diversity in the population, making then unneessary

the use of sharing tehniques. The behavior expeted under this sheme is to have few feasible individuals at

the beginning, and then gradually produe solutions that may be feasible with respet to some onstraints but

not with respet to others. Over time, these solutions will ombine to produe individuals that are feasible, but

not neessarily optimum. At that point the diret use of the objetive funtion will help the EA to approah

the optimum, but sine some infeasible solutions will still be present in the population, those individuals will be

responsible to keep the diversity required to avoid stagnation.

More reently, Coello [23℄ proposed another approah based on nondominane. In this ase, �tness is assigned

to an individual using the following algorithm:

Let the vetor ~x

i

(i = 1; : : : ; pop size) be an individual in the urrent population whose size is pop size. The

proposed algorithm is the following:
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� To ompute the rank of an individual ~x

i

is feasible, following proedure is used:

rank(~x

i

) = ount(~x

i

) + 1 (44)

where ount(~x

i

) is omputed aording to the following rules:

1. Compare ~x

i

against every other individual in the population. Assuming pairwise omparisons, we will

all ~x

j

(j = 1; : : : ; pop size and j 6= i) the other individual against whih x

i

is being ompared at any

given time.

2. Initialize ount(~x

i

)(for i = 1; : : : ; pop size) to zero.

3. If both ~x

i

and ~x

j

are feasible, then both are given a rank of zero and ount(~x

i

) remains without hanges.

4. If ~x

i

is infeasible and ~x

j

is feasible, then ount(~x

i

) is inremented by one.

5. If both ~x

i

and ~x

j

are infeasible, but ~x

i

violates more onstraints than ~x

j

, then ount(~x

i

) is inremented

by one.

6. If both ~x

i

and ~x

j

are infeasible, and both violate the same number of onstraints, but ~x

i

has a total

amount of onstraint violation larger than the onstraint violation of ~x

j

, then ount(~x

i

) is inremented

by one.

If any onstraint g

k

(~x) (k = 1; : : : ;m, where m is the total amount of onstraints) is onsidered satis�ed

if g

i

(~x) � 0, then, the total amount of onstraint violation for an individual ~x

i

(denoted as oef(~x

i

)) is

given by:

oef(~x

i

) =

p

X

k=1

g

k

(~x

i

) for all g

k

(~x

i

) > 0 (45)

� Compute �tness using the following rules:

1. If ~x

i

is feasible, then rank(~x

i

) = fitness(~x

i

), else

2. rank(~x

i

) =

1

rank(~x

i

)

� Individuals are seleted based on rank(~x

i

) (stohasti universal sampling is used).

� Values produed by fitness(~x

i

) must be normalized to ensure that the rank of feasible individuals is always

higher than the rank of infeasible ones.

This approah uses a real-oded GA with a simple self-adaptive mehanism for rossover and mutation (see

[23℄ for details) and it does not require any additional parameters to maintain diversity in the population (as is

normally the ase of evolutionary multiobjetive optimization tehniques [21℄).

Ray et al. [140℄ proposed an approah in whih solutions are ranked separately based on the value of their

objetive funtions and their onstraints. Then, a set of mating restritions are applied based on the information

that eah individual has of its own feasibility (this idea was inspired on an earlier approah by Hinterding and

Mihalewiz [75℄), so that the global optimum an be reahed through ooperative learning.

Finally, Runarsson & Yao [149℄ proposed a onstraint-handling approah based on stohasti ranking that has

some resemblane with Surry & Radli�e's tehnique [168℄. In this ase, however, the population is ranked using a

stohasti version of bubble sort in whih individuals are ompared to their adjaent neighbors through a ertain

number of sweeps (this number is probabilistially determined). The approah aims to �nd whether the objetive

funtion or the penalty funtion is dominanting the searh so that an appropriate balane an be found and the

evolutionary algorithm an be guided to the global optimum in an eÆient way. The authors used a multi-member

evolution strategy with this approah and were able to math (and even improve in some ases) the results produed

by Koziel & Mihalewiz [92℄ in the benhmark funtions of Mihalewiz [104℄, at a lower omputational ost.
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Advantages and Disadvantages

COMOGA ompared fairly with a penalty-based approah in a pipe-sizing problem, sine the resulting EA was

less sensitive to hanges in the parameters. However, the results ahieved were not better than those found with a

penalty funtion [167℄. It should be added that COMOGA [168, 167℄ requires several extra parameters, although

its authors argue that the tehnique is not partiularly sensitive to their values [167℄. This tehnique uses Pareto

ranking based on onstraint violation [168℄. From Operations Researh we know that determining whih solutions

in some set are Pareto optimal is a omputationally expensive proess (it is O(k �M

2

), where k is the number of

objetives and M is the population size)).

Parmee and Purhase's [129℄ approah was developed for a heavily onstrained searh spae and it proved to be

appropriate to reah the feasible region. However, this appliation of a multiobjetive optimization tehnique does

not aim at �nding the global optimum of the problem, and the use of speial operators suggested by the authors

ertainly limits the appliability of their approah.

Camponogara & Talukdar's approah [16℄ has obvious problems to keep diversity (a ommon problem when

using evolutionary multiobjetive optimization tehniques [21℄). This is indiated by the fat that the tehnique

disards the worst individuals at eah generation. Also, the use of line searh inreases the ost (omputationally

speaking) of the approah. Finally, it is not lear what is the impat of the segment hosen to searh in the overall

performane of the algorithm.

Jim�enez and Verdegay's approah [81℄ an hardly be said to be using a multiobjetive optimization tehnique

sine it only ranks infeasible individuals based on onstraint violation. A subtle problem with this approah is that

the evolutionary proess �rst onentrates only on the onstraint satisfation problem and therefore it samples

points in the feasible region essentially at random [168℄. This means that in some ases (e.g., when the feasible

region is disjoint) we might land in an inappropriate part of the feasible region from whih we will not be able to

esape. However, this approah (as in the ase of Parmee and Purhase's [129℄ tehnique) may be a good alternative

to �nd a feasible point in a heavily onstrained searh spae.

The main drawbak of Coello's population-based approah [24℄ is the number of sub-populations that may

be needed in larger problems, sine they will inrease linearly with the number of onstraints. However, it is

possible to deal with that problem in two di�erent ways: �rst, some onstraints ould be tied; that means that two

or more onstraints ould be assigned to the same sub-population. That would signi�antly redue the number

of sub-populations in highly onstrained problems. Seond, the approah ould be parallelized, in whih ase a

high number of sub-populations would not be a serious drawbak, sine they ould be proessed onurrently.

The urrent algorithm would however need modi�ations as to deide the sort of interations between a master

proess (responsible for atually optimizing the whole problem) and the slave sub-proesses (all the sub-populations

responsible for the onstraints of the problem).

Speialists in evolutionary multiobjetive optimization may indiate that VEGA is not a very good hoie

beause of its well-known limitations (it tries to �nd individuals that exel only in one dimension regardless of

the others [151, 60℄). However, that drawbak turns out to be an advantage in the ontext of onstraint-handling,

beause what we want to �nd are preisely solutions that are feasible, instead of good ompromises that may not

satisfy one of the onstraints.

Coello's approah based on nondominane [25℄ tends to perform well. However, as it is normally the ase of

onstraint-handling tehniques based on evolutionary multiobjetive optimization onepts, this approah tends

to generate good trade-o�s that may be more bene�tial in highly onstrained searh spaes (sine they will allow

us to approah the feasible region more eÆiently). This implies that this approah may have more diÆulties to

reah the global optimum eÆiently.

Ray et al.'s approah [140℄ is a promising venue of future researh in onstraint-handling, sine it uses not only

onepts from multiobjetive optimization, but it also inorporates spei� domain knowledge into the onstraint-

handling mehanism of their GA. This makes the approah very eÆient (omputationally speaking) with respet

to other onstraint-handling tehniques, although there are some sari�es (as in Coello's approah) in terms of

quality of the solutions produed.

The approah of Runarsson & Yao [149℄ onstitutes another promising path of future researh in onstraint-

handling. Their approah is eÆient and highly ompetitive with other (more sophistiated) tehniques. Its only

urrent drawbak is the need of a parameter (alled P

f

by the authors of the tehnique) that de�nes the probability
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of using only the objetive funtion for omparisons in the ranking proess (when lying in the infeasible region).

The authors of the tehnique, however, have provided some guidelines to ompute the most appropriate value of

this parameter

1

[149℄.

6 Hybrid methods

Within this ategory we are onsidering methods that are oupled with another tehnique (normally a numerial

optimization approah) to handle onstraints in an EA.

6.1 Lagrangian multipliers

Adeli and Cheng [1℄ proposed a hybrid EA that integrates the penalty funtion method with the primal-dual

method. This approah is based on sequential minimization of the Lagrangian method, and uses a �tness funtion

of the form:

�tness = f(~x) +

1

2

m

X

j=1



j

�

[g

j

(~x) + �

j

℄

+

	

2

(46)

where 

i

> 0, �

i

is a parameter assoiated with the ith onstraint, and m is the total number of onstraints. Also:

[g

j

(~x) + �

j

℄

+

= max[0; g

j

(~x) + �

j

℄ (47)

The proposal of Adeli and Cheng [1℄ was to de�ne �

j

in terms of the previously registered maximum violation

of its assoiated onstraint and sale it using a parameter �. This parameter is de�ned by the user and has to

be greater than one. 

j

is inreased using also the parameter �, whose value (kept onstant through the entire

proess) is multiplied by the previous value adopted for 

j

. This is to ensure that the penalty is inreased over

generations.

This approah follows Powell's early proposal [135℄ of ombining the penalty funtion method with the primal

dual method. By using an outer loop we an update the Lagrange multiplier �

i

= 

i

�

i

automatially aording

to the information obtained in previous iterations. This makes unneessary that penalty funtion oeÆients or

Lagrange multipliers go to in�nity to ensure onvergene.

Additionally, no derivatives of the objetive funtion or the onstraints are required to update the oeÆients

used by the Lagrange multipliers [1℄.

Kim and Myung [88, 117℄ proposed the use of an evolutionary optimization method ombined with an augmented

Lagrangian funtion that guarantees the generation of feasible solutions during the searh proess. This proposal

is an extension of a system alled Evolian [118, 116℄, whih uses evolutionary programming with a multi-phase

optimization proedure in whih the onstraints are saled. During the �rst phase of the algorithm, the objetive

is to optimize:

�tness(~x) = f(~x) +

C

2

0

�

n

X

i=1

(max[0; g

i

℄)

2

(~x) +

p

X

j=1

jh

j

(~x)j

2

1

A

(48)

where C is a onstant. One this phase is �nished (i.e., one onstraint violations have been dereased as muh

as the user wants), the seond phase starts. During this seond phase, the optimization algorithm of Maa and

Shanblatt [99℄ is applied to the best solution found during the �rst phase.

The seond phase uses Lagrange multipliers to adjust the penalty funtion aording to the feedbak information

reeived from the environment during the evolutionary proess, in a way akin to the proposal of Adeli and Cheng

[1℄.

1

The tehnique also requires another parameter (the number of sweeps to be performed) whih, however, an be �xed.
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Advantages and Disadvantages

Adeli and Cheng's tehnique [1℄ provided them with good results, but the additional parameters needed to make

it work properly do not seem to overome the most serious drawbaks of a traditional penalty funtion. They

initialize these parameters following Belegundu and Arora's [11℄ reommendations, but it is not lear what is the

impat of these parameters when hosen in an arbitrary manner.

The main drawbak of Kim and Myung's approah [88, 117℄ is the same as before: despite the fat that they

provide more guidelines regarding the de�nition of some of the extra parameters needed by their proedure, there

are still several values that have to be adjusted using an empirial proedure.

6.2 Constrained optimization by random evolution

Belur [12℄ proposed a hybrid tehnique alled Constrained Optimization by Random Evolution (CORE). The main

idea of this approah is to use random evolutionary searh ombined with a mathematial programming tehnique

for unonstrained optimization (the author used the Nelder and Mead's simplex method [120℄, but any other

similar tehnique should work as well). Whenever a solution is not feasible, the following onstraint funtional is

minimized:

C(~x) =

X

i2C

1

h

2

i

(~x)�

X

j2C

2

g

j

(~x) (49)

where

C

1

= fi = 1; : : : ; n=jh

i

(~x)j > "



g (50)

C

2

= fj = 1; : : : ; q=g

j

(~x) < 0g (51)

and "



is the tolerane allowed in the equality onstraints h

i

(~x).

Advantages and Disadvantages

This minimization proess an be seen as a repair algorithm for numerial optimization, whih implies that this

tehnique has the same problems of the repair algorithms desribed in setion 4.

6.3 Fuzzy logi

T. Van Le [95℄ proposed a ombination of fuzzy logi and evolutionary programming to handle onstraints. The

main idea was to replae onstraints of the form g

i

(~x) � b

i

by a set of fuzzy onstraints C

1

; : : : ; C

m

, i = 1; : : : ;m

de�ned as:

�C

i

(~x) = �

�(b

i

;�

i

)

(g

i

(~x)); i = 1; : : : ;m (52)

where �

i

is a positive real number that represents the tolerable violation of the onstraints, and:

�

�(a;s)

(~x) =

8

>

<

>

:

1 if x � a;

e

�p

(

x�a

s

)

2

�e

�p

1�e

�p

if a < x � a+ s

0 if x > a+ s

(53)

The rationale behind this fuzzi�ation proess is to allow a higher degree of tolerane if g

i

(~x) is (greater than b

i

but) lose to b

i

and then the tolerane dereases rapidly when the error inreases.

The �tness funtion is then rede�ned as:

�tness(~x) = f(~x)�min(�

C

1

(~x); : : : ; �

C

m

(~x)) (54)
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Advantages and Disadvantages

The idea of using degrees of onstraint satisfation as weight fators for the �tness of potential solutions is interesting

and the use of fuzzy logi to determine the aeptability of a ertain solution seems a natural way of proessing

onstraints. However, the main problem with this approah is that it requires the de�nition of �

i

(the tolerable

violation of onstraints) and p for eah partiular problem. Furthermore, Van Le provides very little empirial

evidene of the performane of his tehnique, although this is ertainly a researh path that is worth exploring.

6.4 Immune system

Forrest and Perelson [61℄ and Smith et al. [163, 164℄ explored the use of a omputational model of the immune

system in whih a population of antibodies is evolved to over a set of antigens. In this proposal, binary strings

were proposed to model both antibodies and antigens, and an antibody was said to math an antigen if their bit

strings were omplementary (maximally di�erent).

Although Smith el al. [163, 164℄ proposed this approah as a way to keep diversity in multimodal optimization

problems, Hajela and Lee [70, 71℄ extended it to handle onstraints.

The algorithm proposed by Hajela and Lee is the following [70℄:

1. Generate a random population. Compute objetive funtion values and a umulative measure of onstraint

violation.

2. Separate feasible and infeasible individuals. Rank individuals within eah group based on their objetive

funtion values. Compute an average objetive funtion value of a subset of feasible individuals.

3. Choose a number of feasible individuals with objetive funtion value losest to the average value omputed

in the previous step. Sort these individuals. They are alled the antigen population.

4. Infeasible individuals are subjet to an immune system simulation, generating antibodies to the antigen

population of the previous step. This simulation yields a subpopulation of designs with a redution in the

level of onstraint violations.

5. Condut a traditional simulation of an EA with the objetive funtion as the only measure of �tness. The

population is seeded with all urrently feasible individuals from step 2), and enough opies of onstraint

onditioned individuals obtained in step 4). Several approahes are possible to introdue these onstraint

onditioned individuals. Hajela and Lee used two: a) introdue multiple opies of the best onstraint on-

ditioned individual, and b) introdue multiple opies, drawn at random from the best 25% of onstraint

onditioned individuals.

The immune system simulation onsists of using a simple mathing funtion that omputes the similarity (on

a bit-per-bit basis, assuming binary enoding) between two hromosomes. Then, the population of antibodies is

o-evolved until they beome suÆiently similar to their antigens by maximizing their degree of mathing.

The idea is to adapt infeasible solutions to the urrent feasible individuals. The performane of the approah

depends on the seletion of antibodies (infeasible individuals) that are exposed to the antigens during the simulation.

There are several hoies. For example, all the infeasible individuals ould be inluded in the antibody group that is

exposed to the antigens from step 3). In this ase, we would try to adapt infeasible individuals to the harateristis

of the average feasible population. Another approah ould be to use only those infeasible individuals that are

lose to the average objetive funtion value of the antigen population. Suh an approah would be based on the

premise that individual features that determine objetive funtion value are similar for the antibodies and antigens.

Therefore the antibodies would inherit those features from the antigens that promote onstraint satisfation [70, 71℄.

A simpler instane of this tehnique, alled expression strategies was proposed by Hajela and Yoo [72℄. In

this ase, feasible and infeasible individuals are ombined using uniform rossover [169℄ in suh a way that their

hromosomi material is exhanged.

It is worth mentioning that Hajela and Yoo [72℄ proposed the use of the Kreisselmeir-Steinhauser funtion [165℄

to handle equality onstraints. The idea is that if h

i

(~x) is the ith equality onstraint, then it an be represented

by a pair of inequality onstraints as:
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h

i

(~x) � 0 � h

i

(~x) � 0 (55)

The Kreisselmeir-Steinhauser funtion an then be used to fold these onstraints into a umulative measure 
:


 = (1=�) ln(e

�h

i

(~x)

+ e

��h

i

(~x)

)� (1=�) ln 2 + 

1

(56)

where 

1

represents the width of a band that replaes the original strit equaliy onstraint, and � is a user-de�ned

onstant that sales the amount of onstraint violation (� must take a non-zero non-negative value). As � grows,

the saling fator beomes one (i.e., there is no saling of the onstraint violation). If the equality onstraint h

i

(~x)

is satis�ed, then h

i

(~x) = 0, and thus 
 = 

1

. By reduing 

1

the solutions are fored to move loser to the equality

onstraint. Therefore, we an see 

1

as a tolerane value. The idea then, is to replae onstraints of the form

h

i

(~x) = 0, by onstraints of the form 
 � 

1

.

Advantages and Disadvantages

Sine the bit mathing proess used by this approah does not require evaluating the �tness funtion, its ompu-

tational ost is not really signi�ant. However, some other issues remain to be solved. For example, it is not lear

what is the e�et (in terms of performane) of mixing di�erent proportions of eah population (antibodies and

antigens). It is also unlear what is the behavior of the algorithm when there are no feasible individuals in the

initial population.

The underlying assumption of this approah might rise some ontroversy: by making the genotype of an infeasible

individual more similar to the genotype of a feasible individual we an atually derease its amount of onstraint

violation. Smith et al. [164℄ provide some theoretial analysis regarding the expeted �tness of an individual

when either perfet or partial mathing is required. However, their work was done in the ontext of �tness sharing

(where the emphasis is to keep diversity in the population), and is not neessarily appliable to onstraint handling.

Therefore, the only support to this hypothesis are the empirial results reported by Hajela and Lee [70, 71℄.

Finally, although it is always possible to ompute genotypi distanes regardless of the enoding used by the

EA, it is not entirely lear if it is possible to use this approah with non-binary representations.

6.5 Cultural algorithms

Some soial researhers have suggested that ulture might be symbolially enoded and transmitted within and

between populations, as another inheritane mehanism [49, 141℄. Using this idea, Reynolds [142℄ developed a

omputational model in whih ultural evolution is seen as an inheritane proess that operates at two levels: the

miro-evolutionary and the maro-evolutionary levels.

At the miro-evolutionary level, individuals are desribed in terms of \behavioral traits" (whih ould be soially

aeptable or unaeptable). These behavioral traits are passed from generation to generation using several soially

motivated operators. At the maro-evolutionary level, individuals are able to generate \mappa" [141℄, or generalized

desriptions of their experienes. Individual mappa an be merged and modi�ed to form \group mappa" using a

set of generi or problem spei� operators. Both levels share a ommuniation link.

Reynolds [142℄ proposed the use of geneti algorithms to model the miro-evolutionary proess, and Version

Spaes [112℄ to model the maro-evolutionary proess of a ultural algorithm.

The main idea behind this approah is to preserve beliefs that are soially aepted and disard (or prune)

unaeptable beliefs. The aeptable beliefs an be seen as onstraints that diret the population at the miro-

evolutionary level [103℄. Therefore, onstraints an inuene diretly the searh proess, leading to an eÆient

optimization proess. In fat, Reynolds et al. [143℄ and Chung & Reynolds [20℄ have explored this area of

researh with very enouraging results in numerial optimization. A ultural algorithm models the evolution of

the ulture omponent of an evolutionary omputational system over time. This ulture omponent provides an

expliit mehanism for aquisition, storage and integration of individual and group's problem solving experiene and

behavior [82℄. In ontrast, traditional EAs only use impliit mehanisms for representing and storing individual's

global aquired knowledge, whih is passed from generation to generation.

The approah taken by Chung and Reynolds [20℄ was to use a hybrid of evolutionary programming and GENO-

COP [107℄ in whih they inorporated an interval onstraint-network [38, 80℄ to represent the onstraints of the
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problem at hand. An individual is onsidered as \aeptable" when it satis�es all the onstraints of the problem.

When that does not happen, then the belief spae is adjusted (the intervals assoiated with the onstraints are

adjusted). This approah is really a more sophistiated version of a repair algorithm in whih an infeasible solution

is made feasible by replaing its genes by a di�erent value between its lower and upper bounds. Sine GENOCOP

assumes a onvex searh spae, it is relatively easy to design operators that an exploit a searh diretion towards

the boundary between the feasible and infeasible regions.

In more reent work, Jin and Reynolds [82℄ proposed an n-dimensional regional-based shema, alled belief-

ell, as an expliit mehanism that supports the aquisition, storage and integration of knowledge about non-

linear onstraints in a ultural algorithm. This belief-ell an be used to guide the searh of an EA (evolutionary

programming in this ase) by pruning the instanes of infeasible individuals and promoting the exploration of

promising regions of the searh spae. The key aspet of this work is preisely how to represent and save the

knowledge about the problem onstraints in the belief spae of the ultural algorithm.

The idea of Jin and Reynolds' approah is to build a map of the searh spae similar to the \Divide-and-Label"

approahes used for robot motion planning [94℄. This map is built using information derived from evaluating the

onstraints of eah individual in the population of the EA. The map is formed by dividing the searh spae in

sub-areas alled ells. Eah ell an be lassi�ed as: feasible (if it lies ompletely on a feasible region), infeasible (if

it lies ompletely on an infeasible region), semi-feasible (if it oupies part of the feasible and part of the infeasible

regions), or unknown (if that region has not been explored yet). This map is used to derive rules about how to

guide the searh of the EA (avoiding infeasible regions and promoting the exploration of feasible regions). In other

words, these ells are used to form a \navigation map" for the EA.

Advantages and Disadvantages

This approah presents an interesting hybrid of knowledge-based approahes and evolutionary omputation teh-

niques. However, it does not require the expliit de�nition of rules by the user, sine the algorithm is able to learn

its own rules over time. The approah has been re�ned in the last few years, and proposals suh as the one on-

tained in Jin and Reynolds' paper [82℄ are appliable even to problems with disjoint feasible regions (normally quite

diÆult for most onstraint-handling tehniques). However, the tehnique requires more re�nement and validation.

For example, in Jin and Reynolds' paper, only one test funtion was used. Also, they had to experiment with

di�erent strategies to update the onstraint knowledge of the problem. The other issue that deserves onsideration

is the eÆieny of the method. Jin and Reynolds' do not disuss the omputation ost of building belief maps in

the presene of non-linear optimization onstraints, and their approah might be sensitive to high dimensionality.

6.6 Ant olony optimization

This tehnique was proposed by Dorigo et al. [30, 48, 47, 46℄ and it onsists of a meta-heuristi intended for hard

ombinatorial optimization problems suh as the traveling salesperson. The main algorithm is really a multi-agent

system where low level interations between single agents (i.e., arti�ial ants) result in a omplex behavior of the

whole ant olony. The idea was inspired by olonies of real ants, whih deposit a hemial substane on the ground

alled pheromone [46℄. This substane inuenes the behavior of the ants: they will tend to take those paths where

there is a larger amount of pheromone.

Reently, some researhers [13, 173℄ have extended this tehnique to numerial optimization problems, with very

promising results. The main issue when extending the basi approah to deal with ontinuous searh spaes is how

to model a ontinuous nest neighborhood with a disrete struture. Bilhev and Parmee [14℄ for example, proposed

to represent a �nite number of diretions whose origin is a ommon base point alled the nest. Sine the idea is to

over eventually all the ontinuous searh spae, these vetors evolve over time aording to the �tness values of

the ants.

To handle onstraints, Bilhev and Parmee [13, 14℄ proposed to make a food soure \unaeptable" in ase

it violated a onstraint regardless of the value of its objetive funtion (i.e., death penalty). As evolution pro-

gresses, some food soures that were aeptable before, will vanish, as onstraints are tightened (i.e., the amount

of \aeptable" onstraint violation is dereased).
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To make this model e�etive, three di�erent levels of abstration were onsidered: (a) the individual searh

agent (the lowest level in whih any loal searh tehnique ould be used), (b) the ooperation between agents (the

middle level, whih onsists of a joint searh e�ort in a ertain diretion), and () the meta-ooperation between

agents (the highest level, whih determines ooperation among di�erent paths rather than just among di�erent

individuals).

The results obtained by Bilhev & Parmee [13, 14℄ were very enouraging and showed learly the high potential

of this tehnique in multimodal and/or heavily onstrained searh spaes.

Advantages and Disadvantages

The �rst drawbak of this approah is that it needs several parameters to work: �rst, an additional proedure

has to be used to loate the nest (Bilhev and Parmee [13℄ suggest the use of a nihing EA), whih implies extra

omputational e�ort. Seond, it requires a searh radius R, whih de�nes the portion of the searh spae that will

be explored by the ants and has an obvious impat on the performane of the algorithm. Third, it is neessary

to provide a model for the exhaustion of the food soure to avoid that the ants pass through the same (already

exhausted) path more than one.

Finally, it is neessary to be very areful about the equilibrium between loal and global exploration, beause

in some ases (e.g., highly multimodal landsapes), too muh CPU time ould be spent in loal searhes.

7 Some Experimental Results

To have an idea of the di�erenes among some of the tehniques disussed in this paper, we have onduted a

small experimental study in whih we implemented and tested six di�erent penalty-based approahes oupled to a

geneti algorithm and an approah based on nondominane. The tehniques seleted are the following:

� Stati penalty [78℄ (see Setion 2.1)

� Dynami penalty [83℄ (see Setion 2.2)

� Annealing penalty [105℄ (see Setion 2.3)

� Adaptive penalty [10, 69℄ (see Setion 2.4)

� Death penalty (see Setion 2.7)

� Co-evolutionary penalty [25℄ (see Setion 2.5)

� Use of nondominane [23℄ (see Setion 5.4)

Additionally, we will ompare results against those found by other researhers using mathematial programming

tehniques and/or other types of GAs.

The �rst �ve penalty-based approahes previously indiated are representative of the tehniques most ommonly

used in the standard literature on evolutionary optimization. The sixth and seventh approahes are proposals of

the author. The o-evolutionary penalty uses two nested GAs so that one tries to adjust the penalty fators that

the other one uses to optimize the objetive funtion. The last approah (whih we will denote as MGA, for

multiobjetive geneti algorithm) was proposed as an alternative to the manual �ne tuning of the penalty fators.

This last approah onsists of a real-oded GA with arithmetial rossover [104℄, non-uniform mutation, elitism,

tournament seletion, and a simple self-adaptation mehanism for de�ning the rossover and mutation rates along

the evolutionary proess (see [23℄ for details).

All the penalty-based approahes indiated above (exept for the o-evolutionary penalty) were implemented

using a GA with binary representation, two-point rossover, tournament seletion, and uniform mutation. The

o-evolutionary penalty was implemented using a GA with �xed point representation [26℄, uniform rossover and

non-uniform mutation [104℄.

Three test funtions were seleted to perform our small omparative study. Their orresponding desription

together with our omparison of results follows.
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7.1 Example 1 : Himmelblau's Nonlinear Optimization Problem

This problem was originally proposed by Himmelblau [74℄, and it has been used before as a benhmark for several

other GA-based tehniques that use penalties [64℄. In this problem, there are �ve design variables (x

1

; x

2

; x

3

; x

4

; x

5

),

6 nonlinear inequality onstraints and ten boundary onditions. The problem an be stated as follows:

Minimize f(~x) = 5:3578547x

2

3

+ 0:8356891x

1

x

5

+ 37:293239x

1

� 40792:141 (57)

Subjet to:

g

1

(~x) = 85:334407+ 0:0056858x

2

x

5

+ 0:00026x

1

x

4

� 0:0022053x

3

x

5

(58)

g

2

(~x) = 80:51249+ 0:0071317x

2

x

5

+ 0:0029955x

1

x

2

+ 0:0021813x

2

3

(59)

g

3

(~x) = 9:300961+ 0:0047026x

3

x

5

+ 0:0012547x

1

x

3

+ 0:0019085x

3

x

4

(60)

0 � g

1

(~x) � 92 (61)

90 � g

2

(~x) � 110 (62)

20 � g

3

(~x) � 25 (63)

78 � x

1

� 102 (64)

33 � x

2

� 45 (65)

27 � x

3

� 45 (66)

27 � x

4

� 45 (67)

27 � x

5

� 45 (68)

The omparison of results for several onstraint-handling approahes for the �rst example are shown in Tables 1

and 2. This problem was originally solved using the Generalized Redued Gradient method (GRG) [74℄. Gen and

Cheng [64℄ solved this problem using a geneti algorithm based on both loal and global referene (they used a

population size of 400 individuals, a rossover rate of 0.8, and a mutation rate of 0.088

2

). The solutions reported

for the penalty-based approahes (stati penalty, dynami penalty, annealing penalty, adaptive penalty and death

penalty) in Table 1 were produed after performing 30 runs, using the following parameters: population size =

50, rossover rate = 0.8, mutation rate = 0.005, maximum number of generations = 100. Spei� parameters for

the dynami penalty are: C = 0:5, � = � = 2:0 (equation (12) was used to assign �tness). Spei� parameters

for annealing penalties are: �

0

= 1:0, �

f

= 0:000001, and � is updated every 20 generations (equation (18) is used

to assign �tness). Spei� parameters for the adaptive penalty are: �

1

= 1:0, �

2

= 2:0, k = 20, �(0) = 100:0

(equation (24) is used to assign �tness). For the stati penalty, loal and global penalty fators were de�ned as

indiated by Homaifar et al. for this example [p. 253℄[78℄.

The o-evolutionary penalty used the following parameters: rossover rate = 0.8, initial mutation rate = 0.1,

Pop size

1

= 60, Pop size

2

= 30, Gmax

1

= 25, Gmax

2

= 20.

The solutions shown for the MGA were produed after performing 30 runs, and using the following parameters:

population size = 50, and maximum number of generations = 100 (rossover and mutation rates were obtained

through self-adaptation along the evolutionary proess).

As expeted, the death penalty, whih does not use any onstraint-violation information, had a poorer perfor-

mane than the other GA-based approahes. Also, the dynami penalty approah was better than a stati penalty,

and there was not muh di�erene between using an adaptive penalty funtion and the dynami penalty suggested

by Joines & Houk [83℄. The annealing penalty, however, had a poorer performane than the dynami and adaptive

penalties.

2

The maximum number of generations used is unknown.
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Results MGA [23℄ Gen [64℄ stati penalty [78℄ GRG [74℄ o-evolutionary penalty [25℄

Best -31005.7966 -30183.576 -30790.27159 -30373.949 -31020.859

Mean -30862.8735 N=A -30446.4618 N=A -30984.2407

Worst -30721.0418 N=A -29834.3847 N=A -30792.4077

Std. dev. 73.240 N=A 226.3428 N=A 73.6335

Table 1: Comparison of several onstraint-handling tehniques for the �rst example (Himmelblau's funtion)(N=A

= Not Available)(PART I).

Results dynami [83℄ annealing [105℄ adaptive [10, 69℄ death penalty

Best -30903.877 -30829.201 -30903.877 -30790.271

Mean -30539.9156 -30442.126 -30448.007 -30429.371

Worst -30106.2498 -29773.085 -29926.1544 -29834.385

Std. dev. 200.035 244.619 249.485 234.555

Table 2: Comparison of several onstraint-handling tehniques for the �rst example (Himmelblau's fun-

tion)(PART II).

The best approahes were the o-evolutionary penalty and the MGA, with the �rst reporting slightly better

results than the seond. Note however that while all penalty-based approahes and the MGA performed only

5,000 �tness funtion evaluations, the o-evolutionary penalty tehnique performed a onsiderably higher number

of �tness funtion evaluations (900,000). One of the main advantages of the MGA is that no �ne-tuning of the

penalty fators are required. The o-evolutionary penalty also presents this advantage, but its use implies a

signi�antly higher omputational ost.

Also, note that the other penalty-based approahes an provide better results if some �ne-tuning of their param-

eters (inluding their penalty fators) takes plae. Finally, it should be lear from these results that all GA-based

approahes performed better than the mathematial programming tehnique used in this ase (GRG).

7.2 Example 2 : Welded Beam Design

A welded beam is designed for minimum ost subjet to onstraints on shear stress (�), bending stress in the beam

(�), bukling load on the bar (P



), end deetion of the beam (Æ), and side onstraints [138℄. There are four design

variables as shown in Figure 1 [138℄: h (x

1

), l (x

2

), t (x

3

) and b (x

4

).

The problem an be stated as follows:

Minimize:

f(~x) = 1:10471x

2

1

x

2

+ 0:04811x

3

x

4

(14:0 + x

2

) (69)

b

b

P

l

L

t

h

Figure 1: The welded beam used for the seond example.

32



R

Th

R

sTL

Figure 2: Center and end setion of the pressure vessel used for the �rst example.

Subjet to :
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g
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2
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g
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� 0 (75)

g
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0

�
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x
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�

x
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+ x
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2

�

2
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p

2x

1

x
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"

x
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2
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x
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+ x
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�

2

#)

(80)

�(~x) =

6PL

x

4

x

2

3
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4PL

3

Ex

3

3

x

4

(81)

P



(~x) =

4:013E

q

x

2

3

x

6

4
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P = 6000 lb; L = 14 in; Æ

max

= 0:25 in

E = 30� 10

6

psi; G = 12� 10

6

psi

�

max

= 13; 600 psi; �

max

= 30; 000 psi
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Results MGA [23℄ Deb [42℄ Siddall [158℄ Ragsdell [137℄ o-evolutionary penalty [25℄

Best 1.8245 2.4331 2.3815 2.3859 1.7483

Mean 1.9190 N=A N=A N=A 1.7720

Worst 1.9950 N=A N=A N=A 1.7858

Std. dev. 0.05377 N=A N=A N=A 0.01122

Table 3: Comparison of several onstraint-handling tehniques for the seond example (welded beam)(N=A = Not

Available)(PART I).

Results stati [78℄ dynami [83℄ annealing [105℄ adaptive [10, 69℄ death penalty

Best 2.0469 2.1062 2.0713 1.9589 2.0821

Mean 2.9728 3.1556 2.9533 2.9898 3.1158

Worst 4.5741 5.0359 4.1261 4.84036 4.5138

Std. dev. 0.6196 0.7006 0.4902 0.6515 0.6625

Table 4: Comparison of several onstraint-handling tehniques for the seond example (welded beam)(PART II).

For this example, we used the same parameters for all the approahes, exept the stati penalty, for whih we

used a value of 50.0 for all ases (loal and global penalty fators).

The omparison of results for several onstraint-handling approahes for the seond example are shown in Tables 3

and 4. This problem has been solved before by Deb [42℄ using a simple geneti algorithm with binary representation,

and a traditional penalty funtion as suggested by Goldberg [67℄, and by Ragsdell and Phillips [137℄ using geometri

programming. Ragsdell and Phillips also ompared their results with those produed by the methods ontained

in a software pakage alled \Opti-Sep" [158℄, whih inludes the following numerial optimization tehniques:

ADRANS (Gall's adaptive random searh with a penalty funtion), APPROX (GriÆth and Stewart's suessive

linear approximation), DAVID (Davidon-Flether-Powell with a penalty funtion), MEMGRD (Miele's memory

gradient with a penalty funtion), SEEK1 & SEEK2 (Hooke and Jeeves with two di�erent penalty funtions),

SIMPLX (Simplex method with a penalty funtion) and RANDOM (Rihardson's random method). In the ase of

Siddall's tehniques [158℄, only the best solution produed by the tehniques ontained in \Opti-Sep" is displayed.

In this ase, the results were somewhat more surprising. The dead penalty turned out to be better than the

dynami penalty. This may due to the use of an inappropriate penalty fator, but it illustrates well the idea of why

the �ne tuning of the penalty fators beomes an important issue when using penalty-based onstraint-handling

tehniques. Regarding the other approahes, the use of a stati penalty was again no better than using an adaptive

penalty or a death penalty. However, the stati penalty was better than the annealing penalty in this example.

This is due to an inappropriate ooling shedule for the annealing penalty. The best results were produed by the

o-evolutionary penalty (even its worst results was better than the best result of the MGA). Note however that the

omputational ost of this tehnique remains signi�antly higher (900,000 �tness funtion evaluations vs. 5,000 of

the other approahes). One again, all the mathematial programming tehniques provided muh poorer results

than any of the GA-based approahes.

7.3 Example 3 : Design of a Pressure Vessel

A ylindrial vessel is apped at both ends by hemispherial heads as shown in Figure 2. The objetive is to

minimize the total ost, inluding the ost of the material, forming and welding. There are four design variables:

T

s

(thikness of the shell), T

h

(thikness of the head), R (inner radius) and L (length of the ylindrial setion of the

vessel, not inluding the head). T

s

and T

h

are integer multiples of 0.0625 inh, whih are the available thiknesses

of rolled steel plates, and R and L are ontinuous. Using the same notation given by Kannan and Kramer [84℄, the

problem an be stated as follows:
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Results MGA [23℄ Deb [43℄ Kannan [84℄ Sandgren [150℄ o-evolutionary penalty [25℄

Best 6069.3267 6410.3811 7198.0428 8129.1036 6288.7445

Mean 6263.7925 N=A N=A N=A 6293.8432

Worst 6403.4500 N=A N=A N=A 6308.1497

Std. dev. 97.9445 N=A N=A N=A 7.4133

Table 5: Comparison of several onstraint-handling tehniques for the third example (pressure vessel)(N=A = Not

Available)(PART I).

Results stati [78℄ dynami [83℄ annealing [105℄ adaptive [10, 69℄ death penalty

Best 6110.8117 6213.6923 6127.4143 6110.8117 6127.4143

Mean 6656.2616 6691.5606 6660.8631 6689.6049 6616.9333

Worst 7242.2035 7445.6923 7380.4810 7411.2532 7572.6591

Std. dev. 320.8196 322.7647 330.7516 330.4483 358.8497

Table 6: Comparison of several onstraint-handling tehniques for the third example (pressure vessel)(PART II).

Minimize :
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4

(~x) = x

4
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The omparison of results for several onstraint-handling approahes for the seond example are shown in Tables 5

and 6. This problem has been solved before by Deb [43℄ using GeneAS (Geneti Adaptive Searh), by Kannan and

Kramer using an augmented Lagrangian Multiplier approah [84℄, and by Sandgren [150℄, using Branh & Bound.

All the penalty-based tehniques (exept for the o-evolutionary penalty that kept the same parameters indiated

before) used a population size of 500 and a maximum number of generations of 5,000 for this example. This

hange was required so that these approahes ould provide ompetitive results (the population size and maximum

number of generations were empirially determined). All their other parameters remained the same (loal and

global penalties were de�ned with a value of 50 for the stati penalty approah, as in the previous example). For

the MGA, we only extended the maximum number of generations to 1,000 (using the same population size of 50,

as before).

This example illustrates how the use of penalty-based approahes is highly dependant on the problem at hand.

Despite the fat that all the penalty-based approahes performed 2; 500; 000 �tness funtion evaluations (exept for

the o-evolutionary penalty approah that performed 900; 000 evaluations, as before), they were not able to math

the results of the dominane-based approah (MGA), whih only performed 50; 000 �tness funtion evaluations.

Note that the o-evolutionary penalty approah did not perform very well in this example, mainly due to its hoie

of parameters (allowing a larger number of �tness funtion evaluations ould slightly improve its performane).

Again, the mathematial programming tehniques produed poorer results than any of the GA-based approahes.

8 Some Reommendations

Having suh a wide variety of possible tehniques to handle onstraints in evolutionary optimization may be

overwhelming for a newomer. However, as suggested by our small omparative study, even the simple use of a
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death penalty may be suÆient in some appliations, if nothing about the problem is known. Our suggestion for

beginners in the use of evolutionary algorithms is therefore to use penalty-based approahes �rst (maybe a simple

stati or dynami penalty approah), sine they are the easiest to implement and are also quite eÆient. Later

on, and depending on the appliation at hand, other tehniques may be desirable. For example, if a ombinatorial

optimization problem has to be solved, then repair algorithms (see Setion 4) may be the best hoie. If dealing

with linear onstraints, then the use of speial representations and operators (see Setion 3) may beome neessary.

If dealing with highly onstrained searh spaes, then the use of tehniques that separate onstraints and objetives

(see Setion 5) may be useful. If something about the problem is known, or if there is a need of saving time �ne

tuning the penalty fators of a penalty funtion of any type, then one an onsider the use of approahes suh

as those disussed in Setion 5.4 or in Setion 6. More sophistiated tehniques are normally reserved for more

omplex problems in whih the results found by penalty-based approahes are far from satisfatory, or when the

omputational osts related to these tehniques are too high.

Also, it is important to add that most of the omparative studies of onstraint-handling tehniques reported in

the literature are inonlusive. Whereas some tehnique may perform better in a ertain lass of funtions (e.g.,

nonlinear optimization problems), it will tend to be inferior in a di�erent domain (e.g., ombinatorial optimization).

Despite the goal of generality that should haraterize new onstraint-handling tehniques, it is known that beause

of the No Free-Lunh Theorems [174℄, it is expeted that the best onstraint-handling tehniques for a ertain type

of problems will tend to exploit spei� domain knowledge.

9 Conlusions and future researh paths

In this paper we have given a very omprehensive review of the most important onstraint-handling tehniques

developed for evolutionary algorithms. We reviewed a wide variety of tehniques that go from several variations

of a simple penalty funtion to biologially inspired tehniques that emulate the behavior of the immune system,

ulture, or ant olonies. However, there is still plenty of room for new tehniques and more researh in this area.

For example, regarding the development of new approahes, the following issues deserve speial attention:

� Generality. Ideally, the same onstraint-handling approah should work with any kind of problem and

onstraints. If modi�ations are required, they should be minor. There are several approahes suh as

deoders and the use of speial representations, that depend on ertain harateristis of the problem and

annot be easily generalized. Although we should not aim to produe a single (universal) onstraint-handling

tehnique that will defeat any other [174℄, it is reasonable to aim to make it easier to be adapted to di�erent

types of problems/onstraints.

� Minimum �ne tuning. Finding an appropriate penalty funtion for an optimization problem in general

normally requires a lot of �ne tuning. Ideally, a good onstraint-handling tehnique should minimize the

requirement of this �ne tuning, or should not need it at all. When �ne tuning is neessary, the performane

of the algorithm tends to depend on it. Furthermore, this trial and error proess adds up to the parameter

tuning required by most EAs (i.e., how to de�ne the values of: population size, rossover and mutation rates,

maximum number of generations, et.).

� EÆieny. In many real-world appliations, a single evaluation of the �tness funtion might be very expen-

sive. Therefore, a good onstraint-handling tehnique should not require a high evaluation ost. In setion 2.5

we saw an example of a tehnique that requires a high number of �tness funtion evaluations to obtain the

information that will guide the searh. As we mentioned before, in some appliations, the problem of �nding

a feasible solution might be itself NP-hard [161℄.

� Well-known Limitations. If we assume that no single onstraint-handling tehnique will be the best for

all kinds of problems, then it is important to identify learly the limitations of eah available tehnique to

know when to use them. Mihalewiz and Shoenauer [109℄ disussed this issue, but the question remains

open regarding the harateristis that we ould use from a problem to deide what tehnique to use.
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� Inorporation of knowledge about the domain. Inorporating knowledge about an spei� domain

redues the generality of an evolutionary approah [67℄. However, in highly omplex problems (e.g., heavily

onstrained searh spaes) some knowledge about the domain an onsiderably improve performane of an

EA. Therefore, it is desirable that a good onstraint-handling approah has the apability to inorporate

eÆiently suh domain knowledge whenever is available.

The \utopial" onstraint-handling tehnique for EAs should ombine the best of these issues. The development

of suh a tehnique, however, might prove impossible in pratie [174℄. For example, if we emphasize eÆieny,

our onstraint-handling tehnique might lose generality. The onverse is also normally true. Nevertheless, even if

these issues are inompatible to a ertain extent, they should at least be taken into onsideration when developing

a new approah and aim to obtain reasonable trade-o�s among these objetives.

Regarding open areas of researh, the following are partiularly important:

� Comparisons of approahes: Despite the several omparative studies of onstraint-handling tehniques

used with EAs reported in the literature (see for example [109, 101, 102, 103℄), more work is required. It

is desirable, for example, to study in more detail the behavior of ertain approahes under di�erent sorts of

onstraints (linear, non-linear, et.), so that we an establish under what onditions is more onvenient to

use them.

Mihalewiz et al. [106℄ argue that any problem an be haraterized by a ertain set of parameters inluding

the following: number of linear and nonlinear onstraints, number of equality onstraints, number of ative

onstraints, ratio between the feasible searh spae and the whole searh spae, and the type of objetive

funtion (number of variables, number of loal optima, ontinuity of the funtion, et.). However, tests

performed in the past regarding eleven (now onsidered lassial) test funtions (see [109℄) have produed

inonlusive evidene about the behavior of several onstraint-handling tehniques. This means that the

appropriate hoie of a ertain tehnique in the absene of knowledge about the domain remains as an open

researh problem [109, 106℄.

� Test suites: A very important issue losely related to the previous one is the existene of good test suites

that are publily available. Regarding this issue, there is some literature that an be used (see for example

3

[56, 102℄). Chung and Reynolds [20℄ have provided a test suite for ultural algorithms. More reently,

Mihalewiz et al. [106℄ have proposed the design of a salable test suite of onstrained optimization problems

in whih many features an be easily tuned to allow the evaluation of the advantages and disadvantages of a

ertain onstraint-handling tehnique. The test ase generator proposed by Mihalewiz et al. [106℄ has six

parameters that an be tuned to investigate advantages and disadvantages of a ertain onstraint-handling

tehnique: dimensionality of the searh spae, multimodality of the searh spae, number of onstraints used,

onnetedness of the feasible subspaes, ratio between the feasible searh spae and the whole searh spae,

and funtion ruggedness. However, more work in this diretion is desirable.

� Metris: Closely related to the previous issue is the development of good metris that allow to ompare

di�erent tehniques in a quantitative way. Beyond the obvious omparative issues suh as quality of the

�nal solution found and amount of �tness funtion evaluations required, there are other aspets of a ertain

tehnique that might be relevant in ertain ases. For example, it would be interesting to have a metri that

traes down the behavior of a tehnique in terms of the number of feasible solutions found. Also, metris that

determine that robustness and onvergene rate of a ertain tehnique are highly desirable. These metris

would be very useful to determine the limitations of a onstraint-handling approah in quantitative form.

� Multiobjetive Optimization: Despite the onsiderably large amount of researh on evolutionary multiob-

jetive optimization (EMO) [21℄, little emphasis has been made on onstraint-handling. In fat, many of the

early EMO approahes onsidered only unonstrained problems. As we saw in Setion 5.4, EMO tehniques

an be used also to handle onstraints, but ironially, their use in multiobjetive optimization has been very

limited until now. Most EMO researhers tend to use traditional (stati) penalty funtions instead of trying

to exploit the power of EMO tehniques to handle onstraints as additional objetives.

3

The web page http://solon.ma.univie.a.at/~neum/glopt/test.html also ontains test problems for onstrained optimization

algorithms.
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