
Chapter 2
Tabu Search

Michel Gendreau and Jean-Yves Potvin

Abstract This chapter presents the fundamental concepts of tabu search (TS) in a
tutorial fashion. Special emphasis is put on showing the relationships with classical
local search methods and on the basic elements of any TS heuristic, namely the
definition of the search space, the neighborhood structure, and the search memory.
Other sections cover other important concepts such as search intensification and
diversification and provide references to significant work on TS. Recent advances
in TS are also briefly discussed.

2.1 Introduction

Over the last 20 years, hundreds of papers presenting applications of tabu search
(TS), a heuristic method originally proposed by Glover in 1986 [29], to various
combinatorial problems have appeared in the operations research literature. In sev-
eral cases, the methods described provide solutions very close to optimality and are
among the most effective, if not the best, to tackle the difficult problems at hand.
These successes have made TS extremely popular among those interested in finding
good solutions to the large combinatorial problems encountered in many practical
settings. Several papers, book chapters, special issues, and books have surveyed

Michel Gendreau
Département de mathématiques et de génie industriel, École Polytechnique de Montréal, and
Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et le transport,
Montréal, QC, Canada
email: michel.gendreau@cirrelt.ca

Jean-Yves Potvin
Département d’informatique et de recherche opérationnelle, Université de Montréal, and Centre
interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et le transport, Montréal,
QC, Canada
email: potvin@iro.umontreal.ca

M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics, 41
International Series in Operations Research & Management Science 146,
DOI 10.1007/978-1-4419-1665-5 2, c© Springer Science+Business Media, LLC 2010

42 Michel Gendreau and Jean-Yves Potvin

the rich TS literature (a list of some of the most important references is provided
in a later section). In spite of this abundant literature, there still seem to be many
researchers who, while they are eager to apply TS to new problem settings, find
it difficult to properly grasp the fundamental concepts of the method, its strengths
and its limitations, and to come up with effective implementations. The purpose
of this chapter is to address this situation by providing an introduction in the form
of a tutorial focusing on the fundamental concepts of TS. Throughout the chapter,
a relatively straightforward, yet challenging and relevant, problem will be used to
illustrate these concepts: the classical vehicle routing problem (CVRP). This prob-
lem will be introduced in the following section. The remainder of the chapter is
organized as follows. The basic concepts of TS, like the search space, neighbor-
hood structure, and short-term tabu lists, are described and illustrated in Section 2.3.
Intermediate, yet critical, concepts, such as intensification and diversification, are
described in Section 2.4. This is followed in Section 2.5 by a brief discussion of
advanced topics and recent trends in TS, and in Section 2.6 by a short list of key
references on TS and its applications. Section 2.7 provides practical tips for new-
comers struggling with unforeseen problems as they first try to apply TS to their
favorite problem. Section 2.8 concludes the chapter with some general advice on
the application of TS to combinatorial problems.

2.2 The Classical Vehicle Routing Problem

Vehicle routing problems have very important applications in the area of distribution
management. As a consequence, they have become some of the most studied prob-
lems in the combinatorial optimization literature and a large number of papers and
books (see [62], for example) deal with the numerous procedures that have been
proposed to solve them. These include several TS implementations that currently
rank among the most effective. The CVRP is the basic variant in that class of prob-
lems. It can formally be defined as follows. Let G = (V , A) be a graph where V is
the vertex set and A is the arc set. One of the vertices represents the depot at which a
fleet of m identical vehicles of capacity Q is based, and the other vertices represent
customers that need to be serviced. With each customer vertex vi are associated a
demand qi and a service time ti. With each arc (vi,v j) of A are associated a cost ci j

and a travel time ti j. The CVRP consists in finding a set of routes such that

• Each route begins and ends at the depot;
• Each customer is visited exactly once by exactly one route;
• The total demand of the customers assigned to each route does not exceed Q;
• The total duration of each route (including travel and service times) does not

exceed a specified value L;
• The total cost of the routes is minimized.

A feasible solution for the problem thus consists in a partition of the customers
into m groups, each of total demand no larger than Q, that are sequenced to yield

2 Tabu Search 43

routes (starting and ending at the depot) of duration no larger than L. This problem
will be used in the following to illustrate how various TS concepts can be applied in
practice.

2.3 Basic Concepts

Before introducing the basic concepts of TS, the next section first goes back in
time to try to better understand the genesis of the method and how it relates to
previous work.

2.3.1 Historical Background

Heuristics, i.e., approximate solution techniques, have been used since the begin-
nings of operations research to tackle difficult combinatorial problems. With the
development of complexity theory in the early 1970s, it became clear that, since
most of these problems were NP-hard, there was little hope of ever finding effi-
cient exact solution procedures for them. This realization emphasized the role of
heuristics for solving the combinatorial problems that were encountered in real-
life applications and that needed to be tackled, whether or not they were NP-hard.
While many different approaches were proposed and experimented with, the most
popular one was based on local search (LS) improvement techniques. LS can be
roughly summarized as an iterative search procedure that, starting from an initial
feasible solution, progressively improves it by applying a series of local modifica-
tions (or moves). At each iteration, the search moves to an improving feasible solu-
tion that differs only slightly from the current one (in fact, the difference between
the previous and the new solutions amounts to one of the local modifications men-
tioned above). The search terminates when it encounters a local optimum with re-
spect to the transformations that it considers, an important limitation of the method:
unless one is extremely lucky, this local optimum is often a fairly mediocre solution.
In LS, the quality of the solution obtained and computing times are usually highly
dependent on the richness of the set of transformations (moves) considered at each
iteration of the heuristic.

In 1983, the world of combinatorial optimization was shattered by the appearance
of a paper [43] where it was shown that a new heuristic approach called simulated
annealing (SA) could converge to an optimal solution of a combinatorial problem,
albeit in infinite computing time. Based on an analogy with statistical mechanics, SA
can be interpreted as a form of controlled random walk in the space of feasible so-
lutions. The emergence of SA indicated that one could look for other ways to tackle
combinatorial optimization problems and spurred the interest of the research com-
munity. In the following years, many other new approaches were proposed, mostly
based on analogies with natural phenomena (like TS, ant colony optimization,

44 Michel Gendreau and Jean-Yves Potvin

particle swarm optimization, artificial immune systems) which, together with some
older ones, such as genetic algorithms [40], gained an increasing popularity. Now
collectively known under the name of metaheuristics (a term originally coined by
Glover in [29]), these methods have become over the last 20 years the leading edge
of heuristic approaches for solving combinatorial optimization problems.

2.3.2 Tabu Search

Building upon some of his previous work, Fred Glover proposed a new approach,
which he called tabu search, to allow local search methods to overcome local op-
tima [29]. In fact, many elements of this first TS proposal and some elements of
later TS elaborations were introduced in [28], including short-term memory to pre-
vent the reversal of recent moves, and longer term frequency memory to reinforce
attractive components. The basic principle of TS is to pursue LS whenever it en-
counters a local optimum by allowing non-improving moves; cycling back to pre-
viously visited solutions is prevented by the use of memories, called tabu lists,
that record the recent history of the search, a key idea that can be linked to ar-
tificial intelligence concepts. It is also important to remark that Glover did not
see TS as a proper heuristic, but rather as a metaheuristic, i.e., a general strategy
for guiding and controlling inner heuristics specifically tailored to the problems at
hand.

2.3.3 Search Space and Neighborhood Structure

As we just mentioned, TS is an extension of classical LS methods. In fact, a basic TS
can be seen as simply the combination of LS with short-term memories. It follows
that the two first basic elements of any TS heuristic are the definition of its search
space and its neighborhood structure.

The search space of an LS or TS heuristic is simply the space of all possible so-
lutions that can be considered (visited) during the search. For instance, in the CVRP
example described in Section 2.2, the search space could simply be the set of feasi-
ble solutions to the problem, where each point in the search space corresponds to a
set of vehicles routes satisfying all the specified constraints. While in that case the
definition of the search space seems quite natural, it is not always so. In the capac-
itated plant location problem (CPLP), for instance, customers must be served from
plants located in a subset of potential sites. In this context, one could use the full
feasible search space made of binary location variables (a site is open or closed) and
continuous flow variables. A more attractive search space, though, is obtained by re-
stricting the search space to the binary location variables, from which the complete
solution can be obtained by solving the associated transportation problem to get the
optimal flow variables. One could also decide to search for the extreme points of the

2 Tabu Search 45

set of feasible flow variable vectors, retrieving the associated location variables by
noting that a plant must be open whenever some flow is allocated to it [13]. It is also
important to note that it is not always a good idea to restrict the search space to fea-
sible solutions; in many cases, allowing the search to move to infeasible solutions is
desirable and sometimes necessary (see Section 2.4.3 for further details).

Closely linked to the definition of the search space is that of the neighbor-
hood structure. At each iteration of LS or TS, the local transformations that can be
applied to the current solution, denoted S, define a set of neighboring solutions in
the search space, denoted N(S) (the neighborhood of S). Formally, N(S) is a sub-
set of the search space made of all solutions obtained by applying a single local
transformation to S. In general, for any specific problem at hand, there are many
more possible (and even, attractive) neighborhood structures than search space defi-
nitions. This follows from the fact that there may be several plausible neighborhood
structures for a given definition of the search space. This is easily illustrated on our
CVRP example that has been the object of several TS implementations. To simplify
the discussion, we suppose in the following that the search space is the feasible
space. Simple neighborhood structures for the CVRP involve moving at each itera-
tion a single customer from its current route; the selected customer is inserted in the
same route or in another route with sufficient residual capacity. An important fea-
ture of these neighborhood structures is the way in which insertions are performed:
one could use random insertion or insertion at the best position in the target route;
alternately, one could use more complex insertion schemes that involve a partial re-
optimization of the target route, such as GENI insertions [24]. Before proceeding
any further it is important to stress that while we say that these neighborhood struc-
tures involve moving a single customer, the neighborhoods they define contain all
the feasible route configurations that can be obtained from the current solution by
moving any customer and inserting it in the stated fashion. Examining the neighbor-
hood can thus be fairly demanding.

More complex neighborhood structures for the CVRP, such as the λ -interchange
[47], are obtained by allowing simultaneously the movement of customers to dif-
ferent routes and the swapping of customers between routes. In [50], moves are
defined by ejection chains that are sequences of coordinated movements of cus-
tomers from one route to another; for instance, an ejection chain of length 3 would
involve moving a customer v1 from route R1 to route R2, a customer v2 from R2

to route R3, and a customer v3 from R3 to route R4. Other neighborhood structures
involve the swapping of sequences of several customers between routes, as in the
cross-exchange [60]. These types of neighborhoods have seldom been used for the
CVRP, but are common in TS heuristics for its time-windows extension, where cus-
tomers must be visited within a pre-specified time interval. We refer the interested
reader to [6, 25] for a more detailed discussion of TS implementations for the CVRP
and the vehicle routing problem with time windows.

When different definitions of the search space are considered for a given prob-
lem, neighborhood structures will inevitably differ to a considerable degree. In the
case of the CPLP, alluded to above, if the search space corresponds to the loca-
tion variables only, one could use operators to change the status of these variables

46 Michel Gendreau and Jean-Yves Potvin

(from open to closed and conversely). If, however, the search space is made of the
extreme points of the set of feasible flow variable vectors, one could instead consider
moves defined by the application of pivots to the linear programming formulation
of the transportation problem to move the current solution to an adjacent extreme
point. Thus, choosing a search space and a neighborhood structure is by far the
most critical step in the design of any TS heuristic. It is at this step that one must
make the best use of the understanding and knowledge he/she has of the problem
at hand.

2.3.4 Tabus

Tabus are one of the distinctive elements of TS when compared to LS. As we already
mentioned, tabus are used to prevent cycling when moving away from local optima
through non-improving moves. The key realization here is that when this situation
occurs, something needs to be done to prevent the search from tracing back its steps
to where it came from. This is achieved by declaring tabu (disallowing) moves that
reverse the effect of recent moves. For instance, in the CVRP example, if customer
v1 has just been moved from route R1 to route R2, one could declare tabu moving
back v1 from R2 to R1 for some number of iterations (this number is called the
tabu tenure of the move). Tabus are also useful to help the search move away from
previously visited portions of the search space and thus perform more extensive
exploration.

Tabus are stored in a short-term memory of the search (the tabu list) and usually
only a fixed and fairly limited quantity of information is recorded. In any given
context, there are several possibilities regarding the specific information that is
recorded. One could record complete solutions, but this requires a lot of storage
and makes it expensive to check whether a potential move is tabu or not; it is there-
fore seldom used. The most commonly used tabus involve recording the last few
transformations performed on the current solution and prohibiting reverse transfor-
mations (as in the example above); others are based on key characteristics of the
solutions themselves or of the moves.

To better understand how tabus work, let us go back to our reference problem. In
the CVRP, one could define tabus in several ways. To continue our example where
customer v1 has just been moved from route R1 to route R2, one could declare tabu
specifically moving back v1 from R2 to R1 and record this in the short-term memory
as the triplet (v1,R2,R1). Note that this type of tabu will not constrain the search
much and that cycling may occur if v1 is then moved to another route R3 and then
from R3 to R1. A stronger tabu would involve prohibiting moving back v1 to R1,
without consideration for its current route and be recorded as (v1,R1). An even
stronger tabu would be to disallow moving v1 to any other route and would simply
be noted as (v1).

Multiple tabu lists can be used simultaneously and are sometimes advisable. For
example, when different types of moves are used to generate the neighborhood,

2 Tabu Search 47

it might be a good idea to keep a separate tabu list for each type. Standard tabu
lists are usually implemented as circular lists of fixed length. It has been shown,
however, that fixed-length tabus cannot always prevent cycling, and some authors
have proposed varying the tabu list length during the search [30, 31, 55, 58, 59].
Another solution is to randomly generate the tabu tenure of each move within some
specified interval; using this approach requires a somewhat different scheme for
recording tabus that are then usually stored as tags in an array (the entries in this
array will usually record the iteration number until which a move is tabu; see [24],
for more details).

2.3.5 Aspiration Criteria

While central to TS, tabus are sometimes too powerful: they may prohibit attrac-
tive moves, even when there is no danger of cycling, or they may lead to an overall
stagnation of the searching process. It is thus necessary to use algorithmic devices
that will allow one to revoke (cancel) tabus. These are called aspiration criteria. The
simplest and most commonly used aspiration criterion, which is found in almost all
TS implementations, consists in allowing a move, even if it is tabu, if it results in
a solution with an objective value better than that of the current best-known solu-
tion (since the new solution has obviously not been previously visited). Much more
complicated aspiration criteria have been proposed and successfully implemented
(see, for instance [39, 65]), but they are rarely used. The key rule in this respect is
that if cycling cannot occur, tabus can be disregarded.

2.3.6 A Template for Simple Tabu Search

We are now in the position to give a general template for TS, integrating the elements
we have seen so far. We suppose that we are trying to minimize a function f (S) over
some domain and we apply the so-called best improvement version of TS, i.e., the
version in which one chooses at each iteration the best available move (this is the
most commonly used version of TS).

Notation

• S, the current solution,
• S∗, the best-known solution,
• f ∗, the value of S∗,
• N(S), the neighborhood of S,
• Ñ(S), the admissible subset of N(S) (i.e., non-tabu or allowed by aspiration),
• T , the tabu list.

48 Michel Gendreau and Jean-Yves Potvin

Initialization

Choose (construct) an initial solution S0.
Set S ← S0, f ∗ ← f (S0), S∗ ← S0, T ← /0.

Search

While termination criterion not satisfied do

select S in argminS′∈Ñ(S)[f (S′)];
if f (S) < f ∗, then set f ∗ ← f (S), S∗ ← S;
record tabu for the current move in T (delete oldest entry if necessary).

2.3.7 Termination Criteria

One may have noticed that we have not specified in our template above a termination
criterion. In theory, the search could go on forever, unless the optimal value of the
problem at hand is known beforehand. In practice, obviously, the search has to be
stopped at some point. The most commonly used stopping criteria in TS are as
follows:

• after a fixed number of iterations (or a fixed amount of CPU time);
• after some number of iterations without an improvement in the objective function

value (the criterion used in most implementations);
• when the objective reaches a pre-specified threshold value.

In complex tabu schemes, the search is usually stopped after completing a
sequence of phases, the duration of each phase being determined by one of the
above criteria.

2.3.8 Probabilistic TS and Candidate Lists

In regular TS, one must evaluate the objective for every element of the neighborhood
N(S) of the current solution. This can prove extremely expensive from the computa-
tional standpoint. An alternative is to instead consider only a random sample N′(S)
of N(S), thus reducing significantly the computational burden. Another attractive
feature of this alternative is that the added randomness can act as an anti-cycling
mechanism; this allows one to use shorter tabu lists than would be necessary if a
full exploration of the neighborhood was performed. One the negative side, it must
be noted that, in that case, one may miss excellent solutions (more on this topic in
Section 2.7.3). Probabilities may also be applied to activating tabu criteria.

2 Tabu Search 49

Another way to control the number of moves examined is by means of candidate
list strategies, which provide more strategic ways of generating a useful subset N′(S)
of N(S) (the probabilistic approach can be considered to be one instance of a can-
didate list strategy and may also be used to modify such a strategy). Failure to ade-
quately address the issues involved in creating effective candidate lists is one of the
more conspicuous shortcomings that differentiates a naive TS implementation from
one that is more solidly grounded. Relevant designs for candidate list strategies are
discussed in [34]. We also discuss a useful type of candidate generation approach in
Section 2.4.4. Another interesting approach for the CVRP is the granular TS [63],
where only arcs that are likely to be found in good solutions (i.e., short ones) are
considered, thus reducing the size of the underlying graph.

2.4 Intermediate Concepts

Simple TS as described above can sometimes successfully solve difficult problems,
but in most cases, additional elements have to be included in the search strategy to
make it fully effective. We now briefly review the most important of these.

2.4.1 Intensification

The idea behind the concept of search intensification is that, as an intelligent human
being would probably do, one should explore more thoroughly the portions of the
search space that seem promising to make sure that the best solutions in these areas
are indeed found. From time to time, one would thus stop the normal searching
process to perform an intensification phase. In general, intensification is based on
some intermediate-term memory, such as a recency memory, in which one records
the number of consecutive iterations that various solution components have been
present in the current solution without interruption. For instance, in a CVRP ap-
plication, one could record how long an arc has been used. A typical approach to
intensification is to restart the search from the best currently known solution and to
fix the components that seem more attractive. To continue the CVRP example, one
could fix the arcs that have been used for the largest number of iterations and per-
form a restricted search on the remaining arcs. Another technique that is often used
consists in changing the neighborhood structure to one allowing more powerful or
more diverse moves. In the CVRP example, one could therefore allow more com-
plex insertion moves or switch to an ejection chain neighborhood structure [32]. In
probabilistic TS, one could increase the sample size or switch to searching without
sampling.

Intensification is used in many TS implementations, but it is not always neces-
sary. This is because there are many situations where the search performed by the
normal process is thorough enough. There is thus no need to spend time exploring

50 Michel Gendreau and Jean-Yves Potvin

more carefully the portions of the search space that have already been visited, and
this time can be used more effectively as we shall see right now.

2.4.2 Diversification

One of the main problems of all methods based on local search approaches, and
this includes TS in spite of the beneficial impact of tabus, is that they tend to be
too local (as their name implies), i.e., they tend to spend most, if not all, of their
time in a restricted portion of the search space. The negative consequence of this
fact is that, although good solutions may be obtained, one may fail to explore the
most interesting parts of the search space and thus end up with solutions that are
still pretty far from the optimal ones. Diversification is an algorithmic mechanism
that tries to alleviate this problem by forcing the search into previously unexplored
areas of the search space. It is usually based on some form of long-term memory of
the search, such as a frequency memory, in which one records the total number of
iterations (since the beginning of the search) that various solution components have
been present in the current solution or have been involved in the selected moves. For
instance, in the CVRP application, one could note how many times each customer
has been moved from its current route. In cases where it is possible to identify
useful regions of the search space, the frequency memory can be refined to track the
number of iterations spent in these different regions.

There are two major diversification techniques. The first, called restart diversifi-
cation, involves forcing a few rarely used components in the current solution (or the
best-known solution) and restarting the search from this point. In a CVRP heuristic,
customers that have not yet been moved frequently could be forced into new routes.
The second diversification method, continuous diversification, integrates diversifi-
cation considerations directly into the regular searching process. This is achieved
by biasing the evaluation of possible moves by adding to the objective a small term
related to component frequencies (see [56] for an extensive discussion on these two
techniques). A third way of achieving diversification is strategic oscillation as we
will see in the next section.

Before closing this section, we would like to stress that ensuring proper search
diversification is possibly the most critical issue in the design of TS heuristics.
It should be addressed with extreme care fairly early in the design phase and
revisited if the results obtained are not up to expectations.

2.4.3 Allowing Infeasible Solutions

Accounting for all problem constraints in the definition of the search space
often restricts the searching process too much and can lead to mediocre solu-
tions. This occurs, for example, in CVRP instances where the route capacity or

2 Tabu Search 51

duration constraints are too tight to allow moving customers effectively between
routes. In such cases, constraint relaxation is an attractive strategy, since it creates
a larger search space that can be explored with simpler neighborhood structures.
Constraint relaxation is easily implemented by dropping selected constraints from
the search space definition and adding to the objective weighted penalties for con-
straint violations.

This, however, raises the issue of finding correct weights for constraint violations.
An interesting way of circumventing this problem is to use self-adjusting penalties,
i.e., weights are adjusted dynamically on the basis of the recent history of the search:
weights are increased if only infeasible solutions were encountered in the last few
iterations and decreased if all recent solutions were feasible (see, for instance, [24]
for further details). Penalty weights can also be modified systematically to drive the
search to cross the feasibility boundary of the search space and thus induce diversi-
fication. This technique, known as strategic oscillation, was introduced as early as
1977 in [28] and used since in several successful TS procedures (an important early
variant oscillates among different types of moves, hence neighborhood structures,
while another oscillates around a selected value for a critical function).

2.4.4 Surrogate and Auxiliary Objectives

There are many problems for which the true objective function is quite costly to
evaluate. When this occurs, the evaluation of moves may become prohibitive, even if
sampling is used. An effective approach to handle this issue is to evaluate neighbors
using a surrogate objective, i.e., a function that is correlated to the true objective, but
is less computationally demanding, in order to identify a (small) set of promising
candidates (potential solutions achieving the best values for the surrogate). The true
objective is then computed for this small set of candidate moves and the best one
selected to become the new current solution; an example of this approach is found
in [15].

Another frequently encountered difficulty is that the objective function may not
provide enough information to effectively drive the search to more interesting areas
of the search space. A typical illustration of this situation is the variant of the CVRP
in which the fleet size is not fixed, but is rather the primary objective (i.e., one is
looking for the minimal fleet size allowing a feasible solution). In this problem,
except for solutions where a route has only one or a few customers assigned to it,
most neighborhood structures will lead to the situation where all elements in the
neighborhood score equally with respect to the primary objective (i.e., all allowable
moves produce solutions with the same number of vehicles). In such a case, it is
absolutely necessary to define an auxiliary objective function to orient the search.
Such a function must measure in some way the desirable attributes of solutions. In
our example, one could, for instance, use a function that would favor solutions with
routes having just a few customers, thus increasing the likelihood that a route can be
totally emptied in a subsequent iteration. It should be noted that coming up with an

52 Michel Gendreau and Jean-Yves Potvin

effective auxiliary objective is not always easy and may require a lengthy trial and
error process. In some other cases, fortunately, the auxiliary objective is obvious for
anyone familiar with the problem at hand (see [27], for an illustration).

2.5 Advanced Concepts and Recent Trends

The concepts and techniques described in the previous sections are sufficient to
design effective TS heuristics for many combinatorial problems. Most early TS im-
plementations, several of which were extremely successful, relied indeed almost
exclusively on these algorithmic components. Nowadays, however, most leading
edge research in TS makes use of more advanced concepts and techniques. While
it is clearly beyond the scope of an introductory tutorial, such as this one, to review
this type of advanced material, we would like to give readers some insight into it
by briefly describing some current trends in TS research. Readers who wish to learn
more about this topic should read our survey paper [21] and some of the references
provided in the next section.

A large part of the recent research in TS deals with various techniques for mak-
ing the search more effective. These include methods for exploiting better the in-
formation that becomes available during search and creating better starting points,
as well as more powerful neighborhood operators and parallel search strategies (on
this last topic, see the taxonomy in [16] and the survey in [17]). The numerous tech-
niques for making better use of the information are of particular significance since
they can lead to dramatic performance improvements. Many of these rely on elite
solutions (the best solutions previously encountered) or on parts of these to create
new solutions, the rationale being that fragments or elements of excellent solutions
are often identified quite early in the searching process, but that the challenge is
to complete these fragments or to recombine them [32–34, 53, 61]. Other meth-
ods, such as the reactive TS [4], attempt to find ways of making the search move
away from local optima that have already been visited. An important issue is the
general approach for exploiting the search framework provided by TS. Some favor
simplicity, that is, a search strategy with only a few parameters and based on simple
neighborhood operators, as illustrated by the unified TS [10, 11, 20]. Others propose
complex neighborhood operators, thus leading to large or very large neighborhood
searches [1].

Another important trend in TS (this is, in fact, a pervasive trend in the whole
metaheuristics field) is hybridization, i.e., using TS in conjunction with other
solution approaches such as genetic algorithms [12, 19], Lagrangean relaxation [37],
constraint programming [3, 7, 49], column generation [13], and integer program-
ming techniques (there is a whole chapter on this topic in [34]).

TS research has also started moving away from its traditional application areas
(graph theory problems, scheduling, vehicle routing) to new ones: continuous opti-
mization [5, 8, 9, 42, 54], multi-criteria optimization [38, 42], stochastic program-
ming [2, 46], mixed integer programming [13, 47], real-time decision problems

2 Tabu Search 53

[22, 24], etc. These new areas confront researchers with new challenges that, in
turn, call for novel and original extensions of the method.

2.6 Key References

Readers who wish to read other introductory papers on TS can choose among several
ones [26, 33, 36, 39, 57, 65]. The book by Glover and Laguna [34] is the ultimate ref-
erence on TS: apart from the fundamental concepts of the method, it presents a con-
siderable amount of advanced material as well as a variety of applications. It is inter-
esting to note that this book contains several ideas applicable to TS that yet remain
to be fully exploited. The issues of Annals of Operations Research, respectively de-
voted to Tabu Search [35] and Metaheuristics in Combinatorial Optimization [44],
are extremely valuable as well as the books made up from selected papers presented
at the Metaheuristics International Conferences (MIC) in 1995 [48], 1997 [64],
1999 [52], 2001 [51], 2003 [41], and 2005 [18]. A book for the 2009 conference
in Hamburg is also planned. Finally, a special issue of Journal of Heuristics was
devoted to the MIC conference held in Montreal in 2007 [14].

2.7 Tricks of the Trade

Newcomers to TS trying to apply the method to a problem that they wish to solve
are often confused about what they need to do to come up with a successful imple-
mentation. This section is aimed at providing some help in this regard.

2.7.1 Getting Started

The following step-by-step procedure should provide a useful framework for getting
started.

A step-by-step procedure is given as follows:

1. Read one or two good introductory papers to gain some knowledge of the con-
cepts and of the vocabulary.

2. Read several papers describing in detail applications in various areas to see how
the concepts have been actually implemented by other researchers.

3. Think a lot about the problem at hand, focusing on the definition of the search
space and the neighborhood structure.

4. Implement a simple version based on this search space definition and this neigh-
borhood structure.

54 Michel Gendreau and Jean-Yves Potvin

5. Collect statistics on the performance of this simple heuristic. It is usually useful
at this point to introduce a variety of memories, such as frequency and recency
memories, to really track down what the heuristic does.

6. Analyze results and adjust the procedure accordingly. It is at this point that one
should eventually introduce mechanisms for search intensification and diversifi-
cation or other intermediate features. Special attention should be paid to diversi-
fication, since this is often where simple TS procedures fail.

2.7.2 More Tips

It is not unusual that, in spite of following carefully the preceding procedure, one
ends up with a heuristic that nonetheless produces mediocre results. If this occurs,
the following tips may prove useful:

1. If there are constraints, consider penalizing them. Letting the search move to
infeasible solutions is often necessary in highly constrained problems to allow
for a meaningful exploration of the search space (see Section 2.4).

2. Reconsider the neighborhood structure and change it if necessary. Many TS im-
plementations fail because the neighborhood structure is too simple. In partic-
ular, one should make sure that the chosen neighborhood structure allows for a
purposeful evaluation of possible moves (i.e., the moves that seem intuitively to
move the search in the right direction should be the ones that are likely to be se-
lected); it might also be a good idea to introduce a surrogate objective to achieve
this (see Section 2.4).

3. Collect more statistics.
4. Follow the execution of the algorithm step by step on some reasonably sized

instances.
5. Reconsider diversification. As mentioned earlier, this is a critical feature in most

TS implementations.
6. Experiment with parameter settings. Many TS procedures are extremely sensi-

tive to parameter settings; it is not unusual to see the performance of a procedure
dramatically improve after changing the value of one or two key parameters (un-
fortunately, it is not always obvious to determine which parameters are the key
ones in a given procedure).

2.7.3 Additional Tips for Probabilistic TS

While it is an effective way of tackling many problems, probabilistic TS creates
problems of its own that need to be carefully addressed. The most important of these
is the fact that, more often than not, the best solutions returned by probabilistic TS
will not be local optima with respect to the neighborhood structure being used. This

2 Tabu Search 55

is particularly annoying since, in that case, better solutions can be easily obtained,
sometimes even manually. An easy way to come around this is to simply perform
a local improvement phase (using the same neighborhood operator) from the best
found solution at the end of the TS itself. One could alternately switch to TS without
sampling (again from the best found solution) for a short duration before completing
the algorithm. A possibly more effective technique is to add throughout the search
an intensification step without sampling; in this fashion, the best solutions available
in the various regions of the search space explored by the method will be found and
recorded (similar special aspiration criteria for allowing the search to reach local
optima at useful junctures are proposed in [33]).

2.7.4 Parameter Calibration and Computational Testing

Parameter calibration and computational experiments are key steps in the develop-
ment of any algorithm. This is particularly true in the case of TS, since the number
of parameters required by most implementations is fairly large and since the perfor-
mance of a given procedure can vary quite significantly when parameter values are
modified. The first step in any serious computational experimentation is to select a
good set of benchmark instances (either by obtaining them from other researchers
or by constructing them), preferably with some reasonable measure of their diffi-
culty and with a wide range of size and difficulty. This set should be split into two
subsets, the first one being used at the algorithmic design and parameter calibration
steps, and the second reserved for performing the final computational tests that will
be reported in the paper(s) describing the heuristic under development. The reason
for doing so is quite simple: when calibrating parameters, one always run the risk of
overfitting, i.e., finding parameter values that are excellent for the instances at hand,
but poor in general, because these values provide too good a fit (from the algorith-
mic standpoint) to these instances. Methods with several parameters should thus be
calibrated on much larger sets of instances than ones with few parameters to ensure
a reasonable degree of robustness. The calibration process itself should proceed in
several stages:

1. Perform exploratory testing to find good ranges of parameters. This can be done
by running the heuristic with a variety of parameter settings.

2. Fix the value of parameters that appear to be robust, i.e., which do not seem to
have a significant impact on the performance of the procedure.

3. Perform systematic testing for the other parameters. It is usually more efficient
to test values for only a single parameter at a time, the others being fixed at what
appear to be reasonable values. One must be careful, however, for cross effects
between parameters. Where such effects exist, it can be important to jointly test
pairs or triplets of parameters, which can be an extremely time-consuming task.

The work in [15] provides a detailed description of the calibration process for a
fairly complex TS procedure and can be used as a guideline for this purpose.

56 Michel Gendreau and Jean-Yves Potvin

2.8 Conclusion

Tabu search is a powerful algorithmic approach that has been applied with great
success to many difficult combinatorial problems. A particularly nice feature of TS
is that, like all approaches based on local search, it can quite easily handle compli-
cating constraints that are typically found in real-life applications. It is thus a really
practical approach. It is not, however, a panacea: every reviewer or editor of a scien-
tific journal has seen more than his/her share of failed TS heuristics. These failures
stem from two major causes: an insufficient understanding of fundamental concepts
of the method (and we hope that this tutorial will help in alleviating this shortcom-
ing), but also, more often than not, a crippling lack of understanding of the problem
at hand. One cannot develop a good TS heuristic for a problem that he/she does not
know well! This is because significant problem knowledge is absolutely required to
perform the most basic steps of the development of any TS procedure, namely the
choice of a search space and of an effective neighborhood structure. If the search
space and/or the neighborhood structure are inadequate, no amount of TS expertise
will be sufficient to save the day. A last word of caution: to be successful, all meta-
heuristics need to achieve both depth and breadth in their searching process; depth
is usually not a problem for TS, which is quite aggressive in this respect (TS heuris-
tics generally find pretty good solutions very early in the search), but breadth can
be a critical issue. To handle this, it is extremely important to develop an effective
diversification scheme.

Acknowledgments The authors are grateful to the Canadian Natural Sciences and Engineering
Research Council for their financial support. The authors also wish to thank Fred Glover for his
insightful comments on an earlier version of this chapter.

References

1. Ahuja, R.K., Ergun, O., Orlin, J.B., Punnen A.P.: A survey of very large-scale neighborhood
search techniques. Discrete Appl. Math. 123, 75–102 (2002)

2. Aringhieri, R.: Solving chance-constrained programs combining tabu search and simulation.
Lect. Notes Comput. Sci. 3059, 30–41 (2004)

3. de Backer, B., Furnon, V., Shaw, P., Kilby P., Prosser P.: Solving vehicle routing problems
using constraint programming and metaheuristics. J. Heuristics 6, 501–523 (2000)

4. Battiti, R., Tecchiolli, G.: The reactive tabu search. ORSA J. Comput. 6, 126–140 (1994)
5. Battiti, R., Tecchiolli, G.: The continuous reactive tabu search: blending combinatorial opti-

mization and stochastic search for global optimization. Ann. Oper. Res. 63, 151–188 (1996)
6. Bräysy, O., Gendreau, M.: Tabu search heuristics for the vehicle routing problem with time

windows. TOP 10, 211–237 (2002)
7. Caseau Y., Laburthe, F., Le Pape, C., Rottembourg, B.: Combining local and global search in

a constraint programming environment. Knowl. Eng. Rev. 16, 41–68 (2001)
8. Chelouah, R., Siarry, P.: Tabu Search applied to global optimization. Eur. J. Oper. Res. 123,

256–270 (2000)
9. Chelouah, R., Siarry, P.: A hybrid method combining continuous tabu search and

Nelder-Mead simplex algorithms for the global optimization of multiminima functions. Eur.
J. Oper. Res. 161, 636–654 (2005)

2 Tabu Search 57

10. Cordeau, J.-F., Gendreau, M., Laporte, G.: A tabu search heuristic for periodic and multi-
depot vehicle routing problems. Networks 30, 105–119 (1997)

11. Cordeau, J.-F., Laporte, G., Mercier, A.: A unified tabu search heuristic for
vehicle routing problems with time windows. J. Oper. Res. Soc. 52, 928–936
(2001)

12. Crainic, T.G., Gendreau, M.: Towards an evolutionary method—Cooperative multi-thread
parallel tabu search heuristic hybrid. In: Voss, S., Martello, S., Osman, H.I., Roucairol, C.
(eds.) Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization,
pp. 331–344. Kluwer, Boston (1999)

13. Crainic, T.G., Gendreau, M., Farvolden, J.M.: Simplex-based tabu search for the multicom-
modity capacitated fixed charge network design problem. INFORMS J. Comput. 12, 223–236
(2000)

14. Crainic, T.G., Gendreau, M., Rousseau, L.-M. (eds.): Special issuse on Recent advances in
metaheuristics. J. Heuristics 16(3), 235–535 (2010)

15. Crainic, T.G., Gendreau, M., Soriano, P., Toulouse, M.: A tabu search procedure for mul-
ticommodity location/allocation with balancing requirements. Ann. Oper. Res. 41, 359–383
(1993)

16. Crainic, T.G., Toulouse, M., Gendreau, M.: Toward a taxonomy of parallel tabu search heuris-
tics. INFORMS J. Comput. 9, 61–72 (1997)

17. Cung, V.-D., Martins, S.L., Ribeiro, C.C., Roucairol, C.: Strategies for the parallel imple-
mentation of metaheuristics. In: Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys in Meta-
heuristics, pp. 263–308. Kluwer, Boston (2002)

18. Doerner, K.F., Gendreau, M., Greistorfer, P., Gutjahr, W., Hartl, R.F., Reimann, M.:
Metaheuristics—Progress in Complex Systems Optimization, Springer, New York, NY
(2007)

19. Fleurent, C., Ferland, J.A.: Genetic and hybrid algorithms for graph colouring. Ann. Oper.
Res. 63, 437–461 (1996)

20. Fu, Z., Eglese, R., Li, L.Y.O.: A unified tabu search algorithm for vehicle routing problems
with soft time windows. J. Oper. Res. Soc. 59, 663–673 (2008)

21. Gendreau, M.: Recent advances in tabu search. In: Ribeiro, C.C., Hansen, P. (eds.) Essays and
Surveys in Metaheuristics, pp. 369–377. Kluwer, Boston (2002)

22. Gendreau, M., Guertin, F., Potvin, J.-Y., Séguin, R.: Neighborhood search heuristics for a dy-
namic vehicle dispatching problem with pick-ups and deliveries. Transp. Res. Part C: Emerg.
Technol. 14, 157–174 (2006)

23. Gendreau, M., Guertin, F., Potvin, J.-Y., Taillard, É.D.: Parallel tabu search for real-time ve-
hicle routing and dispatching. Transp. Sci. 33, 381–390 (1999)

24. Gendreau, M., Hertz, A., Laporte, G.: A tabu search heuristic for the vehicle routing problem.
Manage. Sci. 40, 1276–1290 (1994)

25. Gendreau, M., Laporte, G., Potvin, J.-Y.: Metaheuristics for the capacitated VRP. In: Toth, P.,
Vigo, D. (eds.) The Vehicle Routing Problem, SIAM Monographs on Discrete Mathematics
and Applications, pp. 129–154. SIAM, Philadelphia (2002)

26. Gendreau, M., Potvin, J.-Y.: Tabu search. In: Burke, E.K., Kendall, G. (eds.) Search
Methodologies—Introductory Tutorials in Optimization and Decision Support Techniques,
pp. 165–186. Springer, New York, NY (2005)

27. Gendreau, M., Soriano, P., Salvail, L.: Solving the maximum clique problem using a tabu
search approach. Ann. Oper. Res. 41, 385–403 (1993)

28. Glover, F.: Heuristics for integer programming using surrogate constraints. Decis. Sci. 8,
156–166 (1977)

29. Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput.
Oper. Res. 13, 533–549 (1986)

30. Glover, F.: Tabu search—Part I. ORSA J. Comput. 1, 190–206 (1989)
31. Glover, F.: Tabu search—Part II. ORSA J. Comput. 2, 4–32 (1990)
32. Glover, F.: Ejection chains, reference structures and alternating path methods for traveling

salesman problems. Discrete Appl. Math. 65, 223–253 (1996)

58 Michel Gendreau and Jean-Yves Potvin

33. Glover, F., Laguna, M.: Tabu search. In: Reeves, C.R. (ed.) Modern Heuristic Techniques for
Combinatorial Problems, pp. 70–150. Blackwell Scientific Publications, Oxford (1993)

34. Glover, F., Laguna, M.: Tabu Search. Kluwer, Boston (1997)
35. Glover, F., Laguna, M., Taillard, É.D., de Werra, D. (eds.): Tabu search. Ann. Oper. Research

41, J.C. Baltzer AG Science Publishers, Basel (1993)
36. Glover, F., Taillard, É.D., de Werra, D.: A user’s guide to tabu search. Ann. Oper. Research

41, 3–28 (1993)
37. Grünert, T.: Lagrangean tabu search. In: Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys

in Metaheuristics, pp. 379–397. Kluwer, Boston (2002)
38. Hansen, M.P.: Tabu search in multiobjective optimisation: MOTS. In: Proceedings of the 13th

International Conference on Multiple Criteria Decision Making, pp. 574–586, Cape Town,
South Africa (1997)

39. Hertz, A., de Werra, D.: The tabu search metaheuristic: how we used it. Ann. Math. Artif.
Intell. 1, 111–121 (1991)

40. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor (1975)

41. Ibaraki, T., Nonobe, K., Yagiura, M. (eds.): Metaheuristics: Progress as Real Problem Solvers,
Springer, New York, NY (2005)

42. Jaeggi, D.M., Parks, G.T., Kipouros, T., Clarkson, P.J.: The development of a multi-
objective tabu search algorithm for continuous optimisation problems. Eur. J. Oper. Res. 185,
1192–1212 (2008)

43. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optim. Simulated Annealing. Science 220,
671–680 (1983)

44. Laporte, G., Osman, I.H. (eds.): Metaheuristics in combinatorial optimization. Ann. Oper.
Res. 63, J.C. Baltzer AG Science Publishers, Basel (1996)

45. Løkketangen, A., Glover, F.: Probabilistic move selection in tabu search for 0/1 mixed inte-
ger programming problems. In: Osman, I.H., Kelly, J.P. (eds.) Meta-Heuristics: Theory and
Applications, pp. 467–488. Kluwer, Boston (1996)

46. Løkketangen, A., Woodruff, D.L.: Progressive hedging and tabu search applied to mixed in-
teger (0,1) multistage stochastic programming. J. Heuristics 2, 111–128 (1996)

47. Osman, I.H.: Metastrategy simulated annealing and tabu search algorithms for the vehicle
routing problem. Ann. Oper. Res. 41, 421–451 (1993)

48. Osman, I.H., Kelly, J.P. (eds.): Meta-heuristics: Theory and Applications. Kluwer, Boston
(1996)

49. Pesant, G., Gendreau, M.: A constraint programming framework for local search methods.
J. Heuristics 5, 255–280 (1999)

50. Rego, C., Roucairol, C.: A parallel tabu search algorithm using ejection chains for the vehicle
routing problem. In: Osman, I.H., Kelly, J.P. (eds.) Meta-heuristics: Theory and Applications,
pp. 661–675. Kluwer, Boston (1996)

51. Resende, M.G.C., de Sousa, J.P. (eds.): Metaheuristics—Computer Decision Making.
Kluwer, Boston (2004)

52. Ribeiro, C.C., Hansen, P. (eds.): Essays and Surveys in Metaheuristics. Kluwer, Boston (2002)
53. Rochat, Y., Taillard, É.D.: Probabilistic diversification and intensification in local search for

vehicle routing. J. Heuristics 1, 147–167 (1995)
54. Rolland, E.: A tabu search method for constrained real-number search: Applications to port-

folio selection. Technical Report, Department of Accounting and Management Information
Systems, Ohio State University, Columbus (1997)

55. Skorin-Kapov, J.: Tabu search applied to the quadratic assignment problem. ORSA J. Comput.
2, 33–45 (1990)

56. Soriano, P., Gendreau, M.: Diversification strategies in tabu search algorithms for the maxi-
mum clique problem. Ann. Oper. Res. 63, 189–207 (1996)

57. Soriano, P., Gendreau, M.: Fondements et applications des méthodes de recherche avec
tabous. RAIRO (Recherche opérationnelle) 31, 133–159 (1997) (in French)

2 Tabu Search 59

58. Taillard, É.D.: Some efficient heuristic methods for the flow shop sequencing problem. Eur.
J. Oper. Res. 47, 65–74 (1990)

59. Taillard, É.D.: Robust taboo search for the quadratic assignment problem. Parallel Comput.
17, 443–455 (1991)

60. Taillard, É.D., Badeau, P., Gendreau, M., Guertin, F., Potvin, J.-Y.: A tabu search heuristic for
the vehicle routing problem with soft time windows. Transp. Sci. 31, 170–186 (1997)

61. Tarantilis, C.D., Kiranoudis, C.T.: BoneRoute—An adaptive memory-based method for
effective fleet management. Ann. Oper. Res. 115, 227–241 (2002)

62. Toth, P., Vigo, D. (eds.): The vehicle routing problem. SIAM Monographs on Discrete
Mathematics and Applications. SIAM, Philadelphia (2002)

63. Toth, P., Vigo, D.: The granular tabu search and its application to the vehicle routing problem.
INFORMS J. Comput. 15, 333–346 (2003)

64. Voss, S., Martello, S., Osman, I.H., Roucairol, C. (eds.): Meta-heuristics: Advances and
Trends in Local Search Paradigms for Optimization. Kluwer, Boston (1999)

65. de Werra, D., Hertz, A.: Tabu search techniques: a tutorial and an application to neural net-
works. OR Spektrum 11, 131–141 (1989)

	2 Tabu Search
	Michel Gendreau and Jean-Yves Potvin
	2.1 Introduction
	2.2 The Classical Vehicle Routing Problem
	2.3 Basic Concepts
	2.3.1 Historical Background
	2.3.2 Tabu Search
	2.3.3 Search Space and Neighborhood Structure
	2.3.4 Tabus
	2.3.5 Aspiration Criteria
	2.3.6 A Template for Simple Tabu Search
	2.3.7 Termination Criteria
	2.3.8 Probabilistic TS and Candidate Lists

	2.4 Intermediate Concepts
	2.4.1 Intensification
	2.4.2 Diversification
	2.4.3 Allowing Infeasible Solutions
	2.4.4 Surrogate and Auxiliary Objectives

	2.5 Advanced Concepts and Recent Trends
	2.6 Key References
	2.7 Tricks of the Trade
	2.7.1 Getting Started
	2.7.2 More Tips
	2.7.3 Additional Tips for Probabilistic TS
	2.7.4 Parameter Calibration and Computational Testing

	2.8 Conclusion
	References

