
Chapter 1
Simulated Annealing

Alexander G. Nikolaev and Sheldon H. Jacobson

Abstract Simulated annealing is a well-studied local search metaheuristic used to
address discrete and, to a lesser extent, continuous optimization problems. The key
feature of simulated annealing is that it provides a mechanism to escape local optima
by allowing hill-climbing moves (i.e., moves which worsen the objective function
value) in hopes of finding a global optimum. A brief history of simulated annealing
is presented, including a review of its application to discrete, continuous, and multi-
objective optimization problems. Asymptotic convergence and finite-time perfor-
mance theory for simulated annealing are reviewed. Other local search algorithms
are discussed in terms of their relationship to simulated annealing. The chapter also
presents practical guidelines for the implementation of simulated annealing in terms
of cooling schedules, neighborhood functions, and appropriate applications.

1.1 Background Survey

Simulated annealing is a local search algorithm (metaheuristic) capable of escap-
ing from local optima. Its ease of implementation and convergence properties and
its use of hill-climbing moves to escape local optima have made it a popular tech-
nique over the past two decades. It is typically used to address discrete and, to a
lesser extent, continuous optimization problems. Survey articles that provide a good
overview of simulated annealing’s theoretical development and domains of appli-
cation include [46, 55, 75, 90, 120, 144]. Aarts and Korst [1] and van Laarhoven
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and Aarts [155] devote entire books to the subject. Aarts and Lenstra [2] dedicate a
chapter to simulated annealing in their book on local search algorithms for discrete
optimization problems.

1.1.1 History and Motivation

Simulated annealing is so named because of its analogy to the process of physical
annealing with solids, in which a crystalline solid is heated and then allowed to cool
very slowly until it achieves its most regular possible crystal lattice configuration
(i.e., its minimum lattice energy state), and thus is free of crystal defects. If the
cooling schedule is sufficiently slow, the final configuration results in a solid with
such superior structural integrity. Simulated annealing establishes the connection
between this type of thermodynamic behavior and the search for global minima for
a discrete optimization problem. Furthermore, it provides an algorithmic means for
exploiting such a connection.

At each iteration of a simulated annealing algorithm applied to a discrete opti-
mization problem, the values for two solutions (the current solution and a newly
selected solution) are compared. Improving solutions are always accepted, while a
fraction of non-improving (inferior) solutions are accepted in the hope of escaping
local optima in search of global optima. The probability of accepting non-improving
solutions depends on a temperature parameter, which is typically non-increasing
with each iteration of the algorithm.

The key algorithmic feature of simulated annealing is that it provides a means to
escape local optima by allowing hill-climbing moves (i.e., moves which worsen the
objective function value). As the temperature parameter is decreased to zero, hill-
climbing moves occur less frequently, and the solution distribution associated with
the inhomogeneous Markov chain that models the behavior of the algorithm con-
verges to a form in which all the probability is concentrated on the set of globally
optimal solutions (provided that the algorithm is convergent; otherwise the algo-
rithm will converge to a local optimum, which may or may not be globally optimal).

1.1.2 Definition of Terms

To describe the specific features of a simulated annealing algorithm for discrete
optimization problems, several definitions are needed. Let Ω be the solution space
(i.e., the set of all possible solutions). Let f : Ω→ℜ be an objective function defined
on the solution space. The goal is to find a global minimum, ω∗ (i.e., ω∗ ∈ Ω such
that f (ω∗)≤ (ω) for all ω ∈ Ω). The objective function must be bounded to ensure
that ω∗ exists. Define N(ω) to be the neighborhood function for ω ∈ Ω. Therefore,
associated with every solution, ω ∈ Ω, are neighboring solutions, N(ω), that can be
reached in a single iteration of a local search algorithm.
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Simulated annealing starts with an initial solution ω ∈ Ω. A neighboring solu-
tion ω ′ ∈N(ω) is then generated (either randomly or using some pre-specified rule).
Simulated annealing is based on the Metropolis acceptance criterion [101], which
models how a thermodynamic system moves from the current solution (state) ω ∈Ω
to a candidate solution ω ′ ∈ N(ω), in which the energy content is being minimized.
The candidate solution, ω ′, is accepted as the current solution based on the accep-
tance probability

P{Accept ω ′ as next solution}=

{
exp[−( f (ω ′)− f (ω))/tk] if f (ω ′)− f (ω) > 0

1 if f (ω ′)− f (ω)≤ 0.

(1.1)

Define tk as the temperature parameter at (outer loop) iteration k, such that

tk > 0 for all k and lim
k→∞

tk = 0. (1.2)

This acceptance probability is the basic element of the search mechanism in simu-
lated annealing. If the temperature is reduced sufficiently slowly, then the system can
reach an equilibrium (steady state) at each iteration k. Let f (ω) and f (ω ′) denote the
energies (objective function values) associated with solutions ω ∈Ω and ω ′ ∈N(ω),
respectively. This equilibrium follows the Boltzmann distribution, which can be de-
scribed as the probability of the system being in state ω ∈ Ω with energy f (ω) at
temperature T such that

P{System is in state ω at temperature T} =
exp(− f (ω)/tk)

∑ω ′′∈Ω exp(− f (ω ′′)/tk)
. (1.3)

If the probability of generating a candidate solution ω ′ from the neighbors of solu-
tion ω ∈ Ω is gk(ω,ω ′), where

∑
ω ′∈N(ω)

gk(ω,ω ′) = 1, for all ω ∈ Ω, k = 1,2, ..., (1.4)

then a non-negative square stochastic matrix Pk can be defined with transition prob-
abilities

Pk(ω,ω ′) =

⎧⎪⎨
⎪⎩

gk(ω,ω ′)exp(−Δω,ω ′/tk) ω ′ ∈ N(ω), ω ′ �= ω
0 ω ′ /∈ N(ω), ω ′ �= ω

1−∑ω ′′∈N(ω),ω ′′ �=ω Pk(ω,ω ′′) ω ′ = ω
(1.5)

for all solutions ω ∈Ω and all iterations k = 1,2, ... and with Δω,ω ′ ≡ f (ω ′)− f (ω).
These transition probabilities define a sequence of solutions generated from an in-
homogeneous Markov chain [120]. Note that boldface type indicates matrix/vector
notation, and all vectors are row vectors.
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1.1.3 Statement of Algorithm

Simulated annealing is outlined in pseudo-code (see [46]).

Select an initial solution ω ∈ Ω
Select the temperature change counter k = 0
Select a temperature cooling schedule, tk
Select an initial temperature T = t0 ≥ 0
Select a repetition schedule, Mk, that defines the number of iterations executed at
each temperature, tk
Repeat

Set repetition counter m = 0
Repeat

Generate a solution ω ′ ∈ N(ω)
Calculate Δω,ω ′ = f (ω ′)− f (ω)
If Δω,ω ′ ≤ 0, then ω ← ω ′
If Δω,ω ′ > 0, then ω ← ω ′ with probability exp(−Δω,ω ′/tk)
m ← m+1

Until m = Mk

k ← k +1
Until stopping criterion is met

This simulated annealing formulation results in M0 + M1 + · · ·+ Mk total itera-
tions being executed, where k corresponds to the value for tk at which some stopping
criterion is met (for example, a pre-specified total number of iterations has been ex-
ecuted or a solution of a certain quality has been found). In addition, if Mk = 1 for
all k, then the temperature changes at each iteration.

1.1.4 Discrete Versus Continuous Problems

The majority of the theoretical developments and application work with simulated
annealing has been for discrete optimization problems. However, simulated anneal-
ing has also been used as a tool to address problems in the continuous domain. There
is considerable interest in using simulated annealing for global optimization over
regions containing several local and global minima (due to an inherent non-linearity
of objective functions). Fabian [48] studies the performance of simulated annealing
methods for finding a global minimum of a given objective function. Bohachevsky
et al. [15] propose a generalized simulated annealing algorithm for function opti-
mization for use in statistical applications, and Locatelli [96] presents a proof of
convergence for the algorithm. Optimization of continuous functions involves find-
ing a candidate solution by picking a direction from the current (incumbent) so-
lution and a step size to take in this direction and evaluating the function at the
new (candidate) location. If the function value of this candidate location is an im-
provement over the function value of the incumbent location, then the candidate
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becomes the incumbent. This migration through local minima in search of a global
minimum continues until the global minimum is found or some termination criteria
are reached. Belisle [12] presents a special simulated annealing algorithm for global
optimization, which uses a heuristically motivated cooling schedule. This algorithm
is easy to implement and provides a reasonable alternative to existing methods.

Belisle et al. [13] discuss convergence properties of simulated annealing
algorithms applied to continuous functions and apply these results to hit-and-run
algorithms used in global optimization. The presented convergence properties are
consistent with those presented in [72] and provide a good contrast between con-
vergence in probability and (the stronger) almost sure convergence. This work is
further extended in [166] to an improved hit-and-run algorithm used for global
optimization.

Fleischer and Jacobson [57] propose cybernetic optimization by simulated an-
nealing as a method of parallel processing that accelerates the convergence of simu-
lated annealing to the global optima. This theory is extended by Fleischer [56] into
the continuous domain by applying probabilistic feedback control to the genera-
tion of candidate solutions. The probabilistic feedback control method of generating
candidate solutions effectively accelerates convergence to a global optimum using
parallel simulated annealing on continuous variable problems.

Locatelli [94] presents convergence properties for a class of simulated anneal-
ing algorithms for continuous global optimization by removing the restriction that
the next candidate point must be generated according to a probability distribution
whose support is the whole feasible set. A study on simulated annealing algorithms
for globally minimizing functions of multiple continuous variables is conducted by
Siarry et al. [131]. The study focuses on how high dimensionality can be addressed
using variables discretization and addresses the design and implementation issues
for several complementary stopping criteria. Convergence results and criteria for
simulated annealing applied to continuous global optimization problems are also
provided in [163] and [95]. A general-purpose simulated annealing algorithm that
solves mixed integer linear programs is introduced by Kiatsupaibul and Smith [88].
The simulated annealing algorithm is constructed using a Markov chain sampling
algorithm to generate uniformly distributed points on an arbitrary bounded region
of a high-dimensional integer lattice. They show that the algorithm converges in
probability to a global optimum. Romeijn et al. [119] study a simulated anneal-
ing algorithm that uses a reflection generator for mixed integer/continuous global
optimization problems. Locatelli [96] establishes the convergence of simulated an-
nealing algorithms for continuous global optimization and an upper bound for the
expected first hitting time, i.e., the expected number of iterations before reaching
the global optimum value within accuracy ε .

1.1.5 Single-objective Versus Multi-objective Problems

Originally used as an optimization tool for combinatorial optimization problems,
simulated annealing has recently been adapted to address multi-objective problems
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(see [144]). Its framework is easy to implement and simulated annealing-based
algorithms are capable of producing a Pareto set of solutions in a single run with
very little computational cost. Additionally, its performance is not influenced by
the shape of the Pareto set, which is a concern for mathematical programming
techniques.

The first multi-objective version of simulated annealing has been proposed by
Serafini [128, 129]. The method closely follows the guidelines of regular single-
objective simulated annealing and uses a modification of the solution acceptance
criteria in the original algorithm. Various alternative criteria have been investigated,
with the objective to increase the probability of accepting non-dominated solutions.
A special selection rule produced by the combination of several criteria has been
proposed in order to concentrate the search almost exclusively on the non-dominated
solutions. This idea has also been used by Ulungu and Teghem [152] and Serafini
[130], with the latter utilizing a target-vector approach to solve a bi-objective opti-
mization problem. Ulungu et al. [154] propose a complete MOSA algorithm, where
a weighted aggregating function is used to evaluate and compare the obtained solu-
tions. The MOSA algorithm works with only one current solution but keeps a record
of the population of non-dominated solutions found during the search. A further im-
proved, interactive version of MOSA is presented in [153] and is referred to as
the UMOSA method. Suppapitnerm and Parks [145] propose a different simulated
annealing-based approach proposed to tackle multi-objective problems (SMOSA
method). At each iteration, the algorithm does the search based on one solution and
the annealing process adjusts the temperature adaptively, using the objective func-
tion value of the obtained solution in each of the multiple objectives. An archive is
created to store all the non-dominated solutions.

The idea of introducing the “new-acceptance” probability formulation based on
an annealing schedule with multiple temperatures (one for each objective) has also
been proposed. The acceptance probability of a “new solution” depends on whether
or not it is added to the set of potentially Pareto-optimal solutions. If it is added to
the Pareto set, then it is accepted as the current solution with probability equal to 1.
Otherwise, a multi-objective acceptance rule is used. Czyzak et al. [36] and Czyzak
and Jaszkiewicz [37] propose another way to adapt simulated annealing to a multi-
objective context, which combines the ideas of unicriterion simulated annealing and
genetic algorithms to provide efficient solutions for a multi-criteria shortest path
problem. A classical neighborhood search has been used to explore the population
of solutions, with the weight for each objective function adjusted in each iteration.
This technique increases the probability of escaping local optima, in a way similar
to multi-objective tabu search.

Suman [141–143] proposes different simulated annealing-based approaches to
tackle constrained multi-objective optimization problems. In [142], a comparative
analysis of five simulated annealing algorithms is conducted for the system relia-
bility optimization problem. The goal of these methods is to generate a set of solu-
tions that are a good approximation to the entire set of efficient (non-dominated or
Pareto-optimal) solutions over a fixed time period.
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Villalobos-Arias et al. [159, 160] study asymptotic convergence of simulated
annealing algorithms for multi-objective optimization problems in comparison with
other algorithms such as an Artificial Immune System and a General Evolution-
ary Algorithm. Tekinalp and Karsli [146] present a simulated annealing algorithm
for continuous multi-objective optimization that has an adaptive cooling schedule
and uses a population of fitness functions to accurately generate the Pareto front.
Whenever an improvement with a fitness function is encountered, the trial point is
accepted and the temperature parameters associated with the improving fitness func-
tions are cooled down. In addition to well-known linear fitness functions, special
elliptic and ellipsoidal fitness functions, suitable for the generation on non-convex
fronts, are used.

1.2 Convergence Results

1.2.1 Asymptotic Performance

Asymptotic convergence results for simulated annealing have typically taken one
of two directions: the algorithm has been modeled either as a sequence of homoge-
neous Markov chains or as a single inhomogeneous Markov chain.

1.2.1.1 Homogeneous Markov Chain Approach

The homogeneous Markov chain approach [3, 49, 70, 84, 85, 97, 104, 123] as-
sumes that each temperature tk is held constant for a sufficient number of iterations
m such that the stochastic matrix Pk can reach its stationary (steady-state) distribu-
tion πk. Note that in the interest of simplifying notation, the inner loop index m is
suppressed. However, the index k should be interpreted as the double index k,m,
where a sequence of m = 1,2, ...,Mk simulated annealing iterations occur for each
fixed k. The existence of a stationary distribution at each iteration k follows from
Theorem 1. (Note: To ensure that Theorem 1 is consistent with the simulated an-
nealing algorithm depicted in Section 1.1.3, without loss of generality, let tk be a
function only of each outer loop iteration k, and let the respective number of inner
loop iterations Mk and outer loop iterations k each approach infinity).

Theorem 1 Let Pk(ω,ω ′) be the probability of moving from solution ω to solution

ω ′ in one inner iteration at outer loop k, and let P(m)
k (ω,ω ′) be the probability of

going from solution ω to solution ω ′ in m inner loops. If the Markov chain associ-

ated with P(m)
k (ω,ω ′) is irreducible and aperiodic with finitely many solutions, then

limm→∞ P(m)
k (ω,ω ′) = πk(ω ′) exists for all ω,ω ′ ∈Ω and iterations k. Furthermore,

πk(ω ′) is the unique strictly positive solution of
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πk(ω ′) = ∑
ω∈Ω

πk(ω)Pk(ω,ω ′), for all ω ′ ∈ Ω, (1.6)

and

∑
ω∈Ω

πk(ω) = 1. (1.7)

Proof See [33].
The key requirements for the existence of the stationary distributions and for the

convergence of the sequence of πk vectors include the following:

1. transition matrix irreducibility (for every finite outer loop k, the transition matrix
can assign a path of non-zero probability between any two solutions ω,ω ′ ∈ Ω),

2. aperiodicity (starting at solution ω ′ ∈ Ω), it is possible to return to ω,ω ′ with
period 1; see [78],

3. A non-zero stationary probability distribution, as the number of outer loops k
approaches infinity.

Note that all simulated annealing proofs of convergence in the literature based on
homogeneous Markov chain theory, either explicitly or implicitly, use the sufficient
condition of reversibility (also called detailed balance; see [122]) defined as

πk(ω)Pk(ω,ω ′) = πk(ω ′)Pk(ω ′,ω), for all ω,ω ′ ∈ Ω, and all iterations k. (1.8)

Reversibility is a sufficient condition for a unique solution to exist for Equa-
tions (1.6) and (1.7) at each outer loop iteration k. A necessary condition for re-
versibility is multiplicativity. That is, for any three solutions ω,ω ′,ω ′′ ∈ Ω such
that f (ω)≤ f (ω ′)≤ f (ω ′′) and for all iterations k,

κk(Δω,ω ′′) = κk(Δω,ω ′)κk(Δω ′,ω ′′), (1.9)

where κk(Δω,ω ′) is the probability of accepting the transition from solution ω to
solution ω ′ at outer loop iteration k. Reversibility is enforced by assuming condi-
tions of symmetry on the solution generation probabilities gk and either by directly
expressing the acceptance probability using an exponential form or by requiring the
multiplicative condition in Equation (1.9).

The homogeneous Markov chain proofs of convergence in the literature (implic-
itly or explicitly) require the condition in Equation (1.9) to hold for the acceptance
function and then address the sufficient conditions on the solution generation ma-
trix Pk. For example, the original homogeneous proofs of convergence [3, 97] re-
quire the multiplicative condition for the acceptance function, and then assume that
the solution generation matrix is symmetric and constant for all outer loop itera-
tions k. Rossier et al. [123] partition the solution space into blocks composed of
neighboring solutions of equal objective function value and then require that only
the solution generation probabilities be symmetric between these blocks. Rossier
et al. then express the acceptance function as a ratio of the stationary distribu-
tion probabilities. Faigle and Schrader [51] and Faigle and Kern [49] use a graph
theoretic approach to relax the solution generation matrix symmetry condition.
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However, they require that the solution acceptance probability function satisfies
Equation (1.9).

Granville et al. [70] propose a simulated annealing procedure for filtering binary
images, where the acceptance function is based on the probability of the current
solution, instead of the change in objective function value. The probability function
that Granville et al. [70] present for accepting a candidate solution at (outer loop) it-
eration k is based on the ratio of the stationary probability of the incumbent solution
from iteration k−1 versus the stationary probability of an initial solution (which is
based on a maximum likelihood estimate). The acceptance probability is

ξk = qπ0(ω)/πφ(k)
k−1 (ω ′) (1.10)

where q = infω∈Ω π(ω)/supω ′∈Ω π(ω ′) (q must also be estimated), and φ(k) is a
slowly increasing function. Therefore, the probability of a solution transition does
not consider the objective function value of the candidate solution. Granville et al.
[70] provide a proof of asymptotic convergence of this approach, but note that the
proof methodology does not show that the set of globally optimal solutions are
asymptotically uniformly distributed.

Simulated annealing and the homogeneous convergence theory are based on the
work of Metropolis et al. [101], which addresses problems in equilibrium statistical
mechanics [74]. To see this relationship, consider a system in thermal equilibrium
with its surroundings, in solution (state) S with energy F(S). The probability density
in phase space of the point representing S is proportional to

exp(−F(S)/bT ), (1.11)

where b is the Boltzmann constant, and T is the absolute temperature of the sur-
roundings. Therefore the proportion of time that the system spends in solution S is
proportional to Equation (1.11) (see [74]), hence the equilibrium probability density
for all S ∈ Ω is

πs =
exp(−F(S)/bT )∫
exp(−F(S)/bT )dS

. (1.12)

The expectation of any valid solution function f (S) is thus

E[ f ] =
∫

f (S)exp(−F(S)/bT )dS∫
exp(−F(S)/bT )dS

. (1.13)

Unfortunately, for many solution functions, Equation (1.13) cannot be evaluated
analytically. Hammersley and Handscomb [74] note that one could theoretically
use naive Monte Carlo techniques to estimate the value of the two integrals in
Equation (1.13). However, this often fails in practice since the exponential factor
means that a significant portion of the integrals is concentrated in a very small
region of the solution space Ω. This problem can be overcome using importance
sampling (see [18], Chapter 2), by generating solutions with probability density
Equation (1.12). This approach would also seem to fail, because of the integral in
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the denominator of Equation (1.12). However, Metropolis et al. [101] solve this
problem by first discretizing the solution space, such that the integrals in Equa-
tions (1.12) and (1.13) are replaced by summations over the set of discrete solutions
ω ′ ∈ Ω, and then by constructing an irreducible, aperiodic Markov chain with tran-
sition probabilities P(ω,ω ′) such that

π(ω ′) = ∑
ω∈Ω

π(ω)P(ω,ω ′) for all ω ′ ∈ Ω, (1.14)

where

π(ω ′) =
exp(−F(ω ′)/bT )

∑ω∈Ω exp(−F(ω)/bT )dS
for all ω ′ ∈ Ω. (1.15)

Note that to compute the equilibrium distribution π , the denominator of Equa-
tion (1.13) (a normalizing constant) does not need to be calculated. Instead, the
ratios π(ω ′)/π(ω) need only be computed and a transition matrix P defined that
satisfies Equation (1.14). Hammersley and Handscomb [74] show that Metropolis
et al. [101] accomplish this by defining P as the product of symmetric solution gen-
eration probabilities g(ω,ω ′), and the equilibrium ratios π(ω ′)/π(ω),

P(ω,ω ′) =

⎧⎨
⎩

g(ω,ω ′)π(ω ′)/π(ω) if π(ω ′)/π(ω) < 1, ω ′ �= ω
g(ω,ω ′) if π(ω ′)/π(ω)≥ 1, ω ′ �= ω

g(ω,ω ′)+Δ if ω ′ = ω
(1.16)

with Δ = ∑ω ′′∈Ω,π(ω ′′)<π(ω) g(ω,ω ′′)(1− (π(ω ′′)/π(ω))), where

g(ω,ω ′)≥ 0, ∑
ω ′∈Ω

g(ω,ω ′) = 1, and g(ω,ω ′) = g(ω ′,ω) for all ω,ω ′ ∈ Ω.

(1.17)

The use of stationary probability ratios to define the solution acceptance probabili-
ties, combined with symmetric solution generation probabilities, enables Metropolis
et al. [101] to use the reversibility condition in Equation (1.8) to show that
Equations (1.16) and (1.17) satisfy Equation (1.14).

Homogeneous proofs of convergence for simulated annealing become more dif-
ficult to establish when the reversibility condition is not satisfied. Note that the ex-
istence of a unique stationary distribution for each outer loop iteration k is easily
shown by specifying that each transition matrix Pk be irreducible and aperiodic.
On the other hand, it becomes very difficult to derive an explicit closed-form ex-
pression for each stationary distribution πk that remains analytically tractable as the
problem’s solution space becomes large. One can no longer use Equation (1.8) to
describe each stationary distribution, since, in general, the multiplicative condition
is not met. Instead, one must directly solve the system of equations formed with
Equations (1.6) and (1.7). For example, in [38], Davis attempts to obtain a closed-
form expression for πk by using Cramer’s rule and rewriting Equation (1.6) and
(1.7) as
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πk(I−Pk) = 0 (1.18)

and
πkeT = 1, (1.19)

respectively, where boldface type indicates vector/matrix notation, I is the identity
matrix, and eT is a column vector of ones. Note that the card(Ω)× card(Ω) transi-
tion matrix Pk associated with Equation (1.18) is of rank card(Ω)−1 [33]. There-
fore, by deleting any one equation from Equation (1.18) and substituting Equation
(1.19), the result is the set of card(Ω) linearly independent equations

πk(I−Pk)[i] = ei, (1.20)

where the square matrix (I−Pk)[i] is obtained by substituting the ith column of ma-
trix (I−Pk) with a column vector of ones. The vector ei is a row vector of zeroes,
except for a one in the ith position. Since (I−Pk)[i] is of full rank, then its determi-
nant (written as det((I−Pk)[i])) is non-zero. Define (I−Pk)ω to be the same matrix
as (I−Pk) except that the elements of the ωth row of (I−Pk) are replaced by the
vector eω . Therefore, for all iterations k,

πk(ω) =
det((I−Pk)[i]

ω
)

det((I−Pk)[i])
, for all ω ∈ Ω. (1.21)

In [38], an attempt is made to solve Equation (1.21) for each ω ∈Ω via a multivariate
Taylor series expansion of each determinant, but the method failed to produce a
closed-form analytical expression.

Overall, the difficulty of explicitly expressing the stationary distributions for
large solution spaces, combined with bounding the transition matrix condition num-
ber for large k, suggests that it is very difficult to prove asymptotic convergence of
the simulated annealing algorithm by treating Equations (1.5) and (1.6) as a linear
algebra problem.

Lundy and Mees [97] note that for each fixed outer loop iteration k, conver-
gence to the solution equilibrium probability distribution vector πk (in terms of the

Euclidean distance between P(m)
k and πk, as m→+∞) is geometric since the solution

space is finite, and the convergence factor is given by the second largest eigenvalue
of the transition matrix Pk. This result is based on a standard convergence theorem
for irreducible, aperiodic homogeneous Markov chains (see [33]). Note that a large
solution space precludes practical calculation of this eigenvalue. Lundy and Mees
[97] conjecture that when the temperature tk is near zero, the second largest eigen-
value will be close to one for problems with local optima, and thus convergence to
the equilibrium distribution will be very slow (recall that the dominant eigenvalue
for Pk is 1, with algebraic multiplicity 1 [78]). Lundy and Mees [97] use the con-
jecture to justify why simulated annealing should be initiated with a relatively high
temperature. For an overview of current methods for assessing non-asymptotic rates
of convergence for general homogeneous Markov chains, see [121].

The assumption of stationarity for each outer loop iteration k limits practi-
cal application of homogeneous Markov chain theory. Romeo and Sangiovanni-
Vincentelli [120] show that if equilibrium (for a Markov chain that satisfies the
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reversibility condition) is reached in a finite number of steps, then it can be achieved
in one step. Thus, Romeo and Sangiovanni-Vincentelli [120] conjecture that there
is essentially no hope for the most used versions of simulated annealing to reach
equilibrium in a finite number of iterations.

1.2.1.2 Inhomogeneous Markov Chain Approach

The second convergence approach for simulated annealing is based on inhomoge-
neous Markov chain theory [10, 65, 104]. In this approach, the Markov chain need
not reach a stationary distribution (e.g., the simulated annealing inner loop need not
be infinitely long) for each outer loop k. On the other hand, an infinite sequence of
(outer loop) iterations k must still be examined, with the condition that the temper-
ature parameter tk cool sufficiently slowly. The proof given by Mitra et al. [104] is
based on satisfying the inhomogeneous Markov chain conditions of weak and strong
ergodicity [78, 127]. The proof requires four conditions:

1. The inhomogeneous simulated annealing Markov chain must be weakly er-
godic (i.e., dependence on the initial solution vanishes in the limit).

2. An eigenvector πk with eigenvalue 1 must exist such that Equations (1.6) and
(1.7) hold for every iteration k.

3. The Markov chain must be strongly ergodic (i.e., the Markov chain must be
weakly ergodic and the sequence of eigenvectors πk must converge to a limit-
ing form), i.e.,

∞

∑
k=0

‖πk −πk+1‖< +∞. (1.22)

4. The sequence of eigenvectors must converge to a form where all probability
mass is concentrated on the set of globally optimal solutions ω∗. Therefore,

lim
k→∞

πk = πopt, (1.23)

where πopt is the equilibrium distribution with only global optima having prob-
abilities greater than 0. (Note that weak and strong ergodicity are equivalent for
homogeneous Markov chain theory.)

Mitra et al. [104] satisfy condition 1 (weak ergodicity) by first forming a lower
bound on the probability of reaching any solution from any local minimum and
then showing that this bound does not approach zero too quickly. For example,
they define the lower bound for the simulated annealing transition probabilities in
Equation (1.5) as

P(m)(ω,ω ′)≥ wm exp(−mΔL/tkm−1), (1.24)

for any integer k greater than or equal to some fixed integer k0, where m is the num-
ber of transitions needed to reach any solution from any solution of non-maximal
objective function value, w > 0 is a lower bound on the one-step solution genera-
tion probabilities, ΔL is the maximum one-step increase in objective function value
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between any two solutions, and tkm−1 is a temperature at iteration km− 1. Mitra
et al. [104] show that the Markov chain is weakly ergodic if for any fixed integer k0

∞

∑
k=k0

exp(−mΔL/tkm−1) = +∞. (1.25)

Therefore, weak ergodicity is obtained if the temperature tk is reduced sufficiently
slowly to zero such that Equation (1.25) is satisfied. In general, the (infinite) se-
quence of temperatures {tk}, k = 1,2, ..., must satisfy

tk ≥ β
log(k)

, (1.26)

where limk→∞ tk = 0, β is a problem-dependent constant and k is the number of it-
erations. Mitra et al. [104] show that conditions (1.2), (1.3), and (1.4) are satisfied
by using the homogeneous Markov chain theory developed for the transition proba-
bilities Equation (1.5), provided that the solution generation function is symmetric.

Romeo and Sangiovanni-Vincentelli [120] note that while the logarithmic cool-
ing schedule in Equation (1.26) is a sufficient convergence condition, there are only
a few values for β which make the logarithmic rule also necessary. Furthermore,
there exists a unique choice for β which makes the logarithmic rule both neces-
sary and sufficient for the convergence of simulated annealing to the set of global
optima. In [72], Hajek was the first to show that the logarithmic cooling schedule
(Equation (1.26)) is both necessary and sufficient, by developing a tight lower bound
for β , namely the depth of the deepest local minimum which is not a global mini-
mum, under a weak reversibility assumption (note that Hajek requires the depth of
global optima to be infinitely large). Hajek defines a Markov chain to be weakly
reversible if, for any pair of solutions ω,ω ′ ∈ Ω and for any non-negative real num-
ber h, ω is reachable at height h from ω ′ if and only if ω ′ is reachable at height h
from ω . Note that Hajek [72] does not attempt to satisfy the conditions of weak and
strong ergodicity, but rather uses a more general probabilistic approach to develop
a lower bound on the probability of escaping local, but not global, optima. Connors
and Kumar [35] substantiate the necessary and sufficient conditions in Hajek [72]
using the orders of recurrence,

Bi ≡ sup

{
x ≥ 0:

∞

∑
k=0

exp(−x/tk)πk(ω) = +∞

}
for all i ∈ Ω. (1.27)

Connors and Kumar [35] show that these orders of recurrence quantify the asymp-
totic behavior of each solution’s probability in the solution distribution. The key
result is that the simulated annealing inhomogeneous Markov chain converges in
a Cesaro sense to the set of solutions having the largest recurrence orders. Borkar
[16] improves this convergence result by using a convergence/oscillation dichotomy
result for martingales. Tsitsiklis [150] uses bounds and estimates for singularly per-
turbed, approximately stationary Markov chains to develop a convergence theory
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that subsumes the condition of weak reversibility in [72]. Note that Tsitsiklis [150]
defines N(h) ⊂ Ω as the set of all local minima (in terms of objective function
value) of depth h + 1 or more. Therefore β is the smallest h such that all local (but
not global) minima have depth h or less. Tsitsiklis conjectures that without some
form of reversibility, there does not exist any h such that the global optima are
contained in the set of local optima. Note that in [16, 28, 30, 35, 72, 104], the multi-
plicative condition (1.9) is required (either explicitly or implicitly) for the proofs of
convergence.

Anily and Federgruen [10] use perturbation analysis techniques (e.g., see [102])
to prove convergence of a particular stochastic hill-climbing algorithm by bounding
the deviations of the sequence of stationary distributions of the particular hill-
climbing algorithm against the sequence of known stationary distributions corre-
sponding to a simulated annealing algorithm. In general, this convergence proof
approach is only useful for a restrictive class of simulated annealing algorithms,
since the transition matrix condition number grows exponentially as the number of
iterations k becomes large.

Anily and Federgruen [10] also present a proof of convergence for simulated
annealing with general acceptance probability functions. Using inhomogeneous
Markov chain theory, they prove convergence under the following necessary and
sufficient conditions:

1. The acceptance probability function must, for any iteration k, allow any hill-
climbing transition to occur with positive probability.

2. The acceptance probability function must be bounded and asymptotically mono-
tone, with limit zero for hill-climbing solution transitions.

3. In the limit, the stationary probability distribution must have 0 probability mass
for every non-globally optimal solution.

4. The probability of escaping from any locally (but not globally) optimal solution
must not approach 0 too quickly.

Anily and Federgruen [10] use condition (3) to relax the acceptance function mul-
tiplicative condition (1.9). However, in practice, condition (3) would be very dif-
ficult to check without assuming that Equation (1.9) holds. Condition (4) provides
the necessary condition for the rate that the probability of hill-climbing transitions
approaches 0. Condition (4) is expressed quantitatively as follows: let tk be defined
by Equation (1.2) and define the minimum one-step acceptance probability as

ak = minω∈Ω,ω ′∈N(ω) atk(ω,ω ′). (1.28)

Define the set of local optima L ⊂ Ω such that ω ∈ L implies that f (ω)≤ f (ω ′) for
all ω ′ ∈ N(ω), and let

ak = minω∈L,ω ′∈N(ω)\L atk(ω,ω ′). (1.29)

Finally, let any solution ω ′ ∈Ω be reachable from any solution ω ∈Ω in q transitions
or less. If (non-globally) locally optimal solutions exist,
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∞

∑
k=1

(ak)
q = +∞, (1.30)

and conditions (1), (2), and (3) hold, then the simulated annealing algorithm will
asymptotically converge to the set of global optima with probability 1. However, if
(non-globally) locally optimal solutions exist and

∞

∑
k=1

ak < +∞, (1.31)

then the simulated annealing algorithm will not always converge to the set of global
optima with probability 1. Johnson and Jacobson [85] relax the sufficient conditions
found in [10] by using a path argument between global optima and local (but not
global) optima.

Yao and Li [165] and Yao [164] also discuss simulated annealing algorithms with
general acceptance probabilities, though their primary contribution is with respect to
general neighborhood generation distributions. In [126], Schuur provides a descrip-
tion of acceptance functions ensuring the convergence of the associated simulated
annealing algorithm to the set of global optima.

The inhomogeneous proof concept is stronger than the homogeneous approach
in that it provides necessary conditions for the rate of convergence, but its asymp-
totic nature suggests that practical implementation may not be feasible. Romeo and
Sangiovanni-Vincentelli [120] note that “there is no reason to believe that truncating
the logarithmic temperature sequence would yield a good configuration, since the
tail of the sequence is the essential ingredient in the proof.” In addition, the loga-
rithmic cooling schedule dictates a very slow rate of convergence. Therefore, most
recent work has focused on methods of improving simulated annealing’s finite-time
behavior and modifying or blending the algorithm with other search methods such
as genetic algorithms [92], tabu search [66], or both [59].

1.2.2 Finite-Time Performance

Over the past decade, a growing body of work has been devoted to finite-time behav-
ior of simulated annealing. Jacobson and Yucesan [82] present necessary and suffi-
cient (asymptotic) convergence conditions for generalized hill climbing algorithms
that include simulated annealing as a special case. They also introduce new perfor-
mance measures that can be used to evaluate and compare both convergent and non-
convergent generalized hill-climbing algorithms with random restart local search
[79]. Such a comparison provides insights into both asymptotic and finite-time per-
formance of discrete optimization algorithms. For example, they use the global visit
probability to evaluate the performance of simulated annealing using random restart
local search as a benchmark. These results suggest that random restart local search
may outperform simulated annealing provided that a sufficiently large number of
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restarts are executed. In [60], Fox notes that a similar result that compares random
restart local search with simulated annealing can be true but only if both the num-
ber of accepted and rejected moves are counted. A clever example is also provided
in [60] to illustrate this point, which illustrates that comparing random restart local
search and simulating annealing may not be prudent. In [59] and [61], Fox presents
modifications of simulated annealing that circumvent the counting issue described
in [60], hence yielding superior performing simulated annealing algorithm imple-
mentations. The primary value of using simulated annealing may therefore be for
finite-time executions that obtain near-optimal solutions reasonably quickly. This,
in turn, suggests that studying the finite-time behavior of simulated annealing is
equally important as its asymptotic convergence.

Chiang and Chow [29] and Mazza [100] investigate the statistical properties of
the first visit time to a global optimum, which provides insight into asymptotic prop-
erties of the algorithm as the outer loop counter k→+∞. In [20], Catoni investigates
optimizing a finite-horizon cooling schedule to maximize the number of visits to a
global optimum after a finite number of iterations. In [44], Desai focuses on finite-
time performance by incorporating size-asymptotic information supplied by certain
eigenvalues associated with the transition matrix. Desai [44] also provides some
quantitative and qualitative information about the performance of simulated anneal-
ing after a finite number of steps, by observing the quality of solutions is related to
the number of steps that the algorithm has taken.

Srichander [133] examines the finite-time performance of simulated annealing
using spectral decomposition of matrices. He proposes that an annealing schedule
on the temperature is not necessary for the final solution of the simulated annealing
algorithm to converge to the global minimum with probability 1. Srichander shows
that initiating the simulated annealing algorithm with high initial temperatures pro-
duces an inefficient algorithm in the sense that the number of function evaluations
required to obtain a global minima is very large. A modified simulated anneal-
ing algorithm is presented with a low initial temperature and an iterative schedule
on the size of the neighborhood sets that leads to a more efficient algorithm. The
new algorithm is applied to a real-world example and computational performance is
reported.

Fleischer and Jacobson [58] use a reverse approach to establish theoretical
relationships between the finite-time performance of an algorithm and the charac-
teristics of problem instances. They observe that the configuration space created by
an instance of a discrete optimization problem determines the efficiency of simu-
lated annealing when applied to that problem. The entropy of the Markov chain
embodying simulated annealing is introduced as a measure that captures the entire
topology of the configuration space associated with the particular instance of the
discrete optimization problem. By observing the expected value of the final state in
a simulated annealing algorithm as it relates to the entropy value of the underlying
Markov chain, they present measures of performance that determine how well the
simulated annealing algorithm performs in finite time. Their computational results
suggest that superior finite time performance of a simulated annealing algorithm are
associated with higher entropy measures.
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Nolte and Schrader [111] give a proof of the convergence of simulated annealing
by applying results about rapidly mixing Markov chains. With this proof technique,
it is possible to obtain better bounds for the finite-time behavior of simulated an-
nealing than previously known.

To evaluate the expected run-time required by a simulated annealing algorithm
to reach solution of a pre-specified quality, Wood et al. [161] present an approach
to model and analyze a generic stochastic global optimization algorithm using a se-
quence of stochastic processes, culminating in a backtracking adaptive search pro-
cess. The theory developed for this backtracking adaptive search procedure is then
used to analyze the classic simulated annealing algorithm.

In [118], Rajasekaran presents an analysis of simulated annealing that provides
a time bound for convergence with very high probability. Convergence of simulated
annealing in the limit then follows as a corollary to the established finite-time per-
formance results.

1.3 Relationship to Other Local Search Algorithms

The hill-climbing strategy inherent in simulated annealing has lead to the formu-
lation of other such algorithms (e.g., threshold accepting, the noising method).
Moreover, though different in how they traverse the solution space, both tabu search
and genetic algorithms share with simulated annealing the objective of using local
information to find global optima over solution spaces with multiple local optima.

1.3.1 Threshold Accepting

Questioning the very need for a randomized acceptance function, Dueck and Scheuer
[45] and, independently, Moscato and Fontanari [106] propose the threshold accept-
ing algorithm, where the acceptance probability function is

ak(Δω,ω ′) =
{

1 if Qk ≥ Δω,ω ′
0 otherwise

,

with Qk defined as the threshold value at iteration k. Qk is typically set to be a deter-
ministic, non-increasing step function in k. Dueck and Scheuer [45] report compu-
tational results that suggest dramatic improvements in traveling salesman problem
solution quality and algorithm run-time over basic simulated annealing. Moscato
and Fontanari [106] report more conservative results—they conjecture that simu-
lated annealing’s probabilistic acceptance function does not play a major role in the
search for near-optimal solutions.

Althofer and Koschnick [8] develop a convergence theory for threshold accept-
ing based on the concept that simulated annealing belongs to the convex hull of
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threshold accepting. The idea presented in [8] is that (for a finite Qk threshold
sequence) there can exist only finitely many threshold accepting transition matri-
ces, but simulated annealing can have infinitely many transition matrices because of
the real-valued nature of the temperature at each iteration. However, every simulated
annealing transition matrix for a given problem can be represented as a convex com-
bination of the finitely many threshold accepting transition matrices. Althofer and
Koschnick [8] are unable to prove that threshold accepting will asymptotically reach
a global minimum, but it does prove the existence of threshold schedules that pro-
vide convergence to within an ε-neighborhood of the optimal solutions. Jacobson
and Yucesan [81] prove that if the threshold value approaches 0 as k approaches
infinity, then the algorithm does not converge in probability to the set of globally
optimal solutions.

Hu et al. [77] modify threshold accepting to include a non-monotonic, self-tuning
threshold schedule in the hope of improving the algorithm’s finite-time perfor-
mance. Hu et al. allow the threshold Qk to change dynamically (either up or down),
based on the perceived likelihood of being near a local minimum. These changes
are accomplished using a principle they call dwindling expectation—when the algo-
rithm fails to move to neighboring solutions, the threshold Qk is gradually increased,
in the hope of eventually escaping a local optimum. Conversely, when solution tran-
sitions are successful, the threshold is reduced, in order to explore local optima. The
experimental results based on two traveling salesman problems presented in [77]
showed that the proposed algorithm outperformed previous hill-climbing methods
in terms of finding good solutions earlier in the optimization process.

Threshold accepting’s advantages over simulated annealing lie in its ease of im-
plementation and its generally faster execution time, due to the reduced computa-
tional effort in avoiding acceptance probability computations and the generation of
random numbers [106]. However, compared to simulated annealing, relatively few
threshold accepting applications are reported in the literature [93, 110, 125].

1.3.2 Noising Method

Charon and Hudry [23] advocate a simple descent algorithm called the noising
method. The algorithm first perturbs the solution space by adding random noise
to the problem’s objective function values. The noise is gradually reduced to 0 dur-
ing the algorithm’s execution, allowing the original problem structure to reappear.
Charon and Hudry provide computational results, but do not prove that the algo-
rithm will asymptotically converge to the set of globally optimal solutions. Charon
and Hudry [24] show how the noising method is a generalization of simulated an-
nealing and threshold accepting.

Storer et al. [136] propose an optimization strategy for sequencing problems, by
integrating fast, problem-specific heuristics with local search. Its key contribution is
to base the definition of the search neighborhood on a heuristic problem pair (h, p),
where h is a fast, known, problem-specific heuristic and p represents the problem
data. By perturbing the heuristic, the problem, or both, a neighborhood of solutions
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is developed. This neighborhood then forms the basis for local search. The hope
is that the perturbations will cluster good solutions close together, thus making it
easier to perform local search.

1.3.3 Tabu Search

Tabu search [66] is a general framework for a variety of iterative local search strate-
gies for discrete optimization. Tabu search uses the concept of memory by control-
ling the algorithm’s execution via a dynamic list of forbidden moves. This allows the
tabu search algorithm to intensify or diversify its search of a given problem’s solu-
tion space in an effort to avoid entrapment in local optima. See [67] for a discussion
on the convergence of tabu search algorithms.

Given that simulated annealing is completely memoryless (i.e., simulated anneal-
ing disregards all historical information gathered during the algorithm’s execution),
tabu search provides an alternative mechanism to hill-climb and escape local optima.
Faigle and Kern [50] propose a particular tabu search algorithm called probabilis-
tic tabu search as a meta-heuristic to help guide simulated annealing. Probabilistic
tabu search attempts to capitalize on both the asymptotic optimality of simulated
annealing and the memory feature of tabu search. In probabilistic tabu search, the
probabilities of generating and accepting each candidate solution are set as func-
tions of both a temperature parameter (as in simulated annealing) and information
gained in previous iterations (as in tabu search). Faigle and Kern [50] are then able
to prove asymptotic convergence of their particular tabu search algorithm by using
methods developed for simulated annealing [49, 52]. Note that the results in [50]
build upon work by Glover [67] where probabilistic tabu search was first introduced
and contrasted with simulated annealing.

Vaughan and Jacobson [158] develop a framework, termed tabu guided general-
ized hill climbing, that uses a tabu release parameter that probabilistically accepts
solutions currently on the tabu list. The presented algorithms are modeled as a set of
stationary Markov chains, where the tabu list is fixed for each outer loop iteration.
This framework provides practitioners with guidelines for developing tabu search
strategies to use in conjunction with generalized hill-climbing algorithms that pre-
serve some of the algorithms’ known performance properties. Sufficient conditions
are obtained that indicate how to design iterations for problem-specific tabu search
strategies.

1.3.4 Genetic Algorithms

Genetic algorithms [92] emulate the evolutionary behavior of biological systems.
They generate a sequence of populations of candidate solutions to the underlying
optimization problem by using a set of genetically inspired stochastic solution
transition operators to transform each population of candidate solutions into a
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descendent population. The three most popular transition operators are reproduction,
cross-over, and mutation [38]. Davis and Principe [39] and Rudolph [124] attempt
to use homogeneous finite Markov chain techniques to prove convergence of genetic
algorithms [21], but are unable to develop a theory comparable in scope to that of
simulated annealing.

Zolfaghari and Liang [167] undertake a comparative study of simulated an-
nealing, genetic algorithms, and tabu search for solving binary (considering only
machines and part types) machine-grouping problems of varying types (involving
machine/part types, processing times, lot sizes, and machine capacities). To test
the performance of the three metaheuristics, two binary performance indices and
two generalized performance indices are used for binary and comprehensive ma-
chine/part grouping problems, respectively. The comparisons are made in terms of
solution quality, search convergence behavior, and pre-search effort. The results in-
dicate that simulated annealing outperforms both genetic algorithm and tabu search,
particularly for large problems.

In [107], Muhlenbein presents a theoretical analysis of genetic algorithms based
on population genetics. He counters the popular notion that models that mimic nat-
ural phenomenon are superior to other models. The article argues that evolutionary
algorithms can be inspired by nature, but do not necessarily have to copy a natural
phenomenon. He addresses the behavior of transition operators and designs new ge-
netic operators that are not necessarily related to events in nature, yet still perform
well in practice.

One criticism of simulated annealing is the slow speed at which it converges.
In [41], Delport combines simulated annealing with evolutionary algorithms to im-
prove performance in terms of speed and solution quality. The benefit of this hybrid
system of simulated annealing and evolutionary selection is due to the adjustments
in the cooling schedule based on fast recognition of the thermal equilibrium in terms
of selection intensity, which results in much faster convergence of the algorithm.

Sullivan and Jacobson [139, 140] link genetic algorithms with simulated an-
nealing using generalized hill-climbing algorithms [80]. They first link genetic
algorithms to ordinal hill-climbing algorithms, which can then be used, through
its formulation within the generalized hill-climbing algorithm framework, to form
a bridge with simulated annealing. Though genetic algorithms have proven to be
effective for addressing intractable discrete optimization problems and can be clas-
sified as a type of hill-climbing approach, its link with generalized hill-climbing
algorithms (through the ordinal hill-climbing formulation) provides a means to es-
tablish well-defined relationships with other generalized hill-climbing algorithms
(like simulated annealing and threshold accepting). They also present two formula-
tions of genetic algorithms that provide a first step toward developing a bridge be-
tween genetic algorithms and other local search strategies like simulated annealing.

1.3.5 Generalized Hill-Climbing Algorithms

Generalized hill-climbing algorithms (GHC) (see [80]) provide a framework for
modeling local search algorithms used to address intractable discrete optimization
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problems. All generalized hill-climbing algorithms have the same basic structure,
but can be tailored to a specific instance of a problem by changing the hill-climbing
random variable (which is used to accept or reject inferior solutions) and neighbor-
hood functions. Generalized hill-climbing algorithms are described in pseudo-code
form:

Select an initial solution ω ∈ Ω
Set the outer loop counter bound K and the inner loop counter bounds Mk, k =
1,2, ...,K
Define a set of hill-climbing (random) variables Rk : Ω ×Ω → (−∞,+∞), k =
1,2, ...,K
Set the iteration indices k = m = 1
Repeat while k ≤ K

Repeat while m ≤ Mk

Generate a solution ω ′ ∈ N(ω)
Calculate Δω,ω ′ = f (ω ′)− f (ω)
If Rk(ω,ω ′)≥ Δω,ω ′ , then ω ← ω ′
m ← m+1

Until m = Mk

m ← 1, k ← k +1
Until k = K

Note that the outer and inner loop bounds, K and Mk, k = 1,2, ...,K, respectively,
may all be fixed, or K can be fixed with the Mk, k = 1,2, ...,K, defined as random
variables whose values are determined by the solution at the end of each set of inner
loop iterations satisfying some property (e.g., the solution is a local optima).

Generalized hill-climbing algorithms can be viewed as sampling procedures
over the solution space Ω. The key distinction between different generalized hill-
climbing algorithm formulations is in how the sampling is performed. For example,
simulated annealing produces biased samples, guided by the neighborhood func-
tion, the objective function, and the temperature parameter. More specifically, sim-
ulated annealing can be described as a generalized hill-climbing algorithm by set-
ting the hill-climbing random variable, Rk(ω,ω ′) = −tkln(uk), ω ∈ Ω, ω ′ ∈ N(ω),
k = 1,2, ...,K, with the {uk} independently and identically distributed U(0,1) ran-
dom variables. To formulate Monte Carlo search as a generalized hill-climbing al-
gorithm, set Rk(ω,ω ′) = +∞, ω ∈ Ω, ω ′ ∈ N(ω), k = 1,2, ...,K. Deterministic lo-
cal search, which accepts only neighbors of improving (lower) objective function
value, can be expressed as a generalized hill-climbing algorithm with Rk(ω,ω ′) = 0,
ω ∈ Ω, ω ′ ∈ N(ω), k = 1,2, ...,K. Other algorithms that can be described using
the generalized hill-climbing framework include threshold accepting, some simple
forms of tabu search, and Weibull accepting. For detailed discussions of these algo-
rithms and a description of how they fit into the generalized hill-climbing algorithm
framework, see [80, 85, 139].

Measures for assessing the finite-time performance of generalized hill-climbing
algorithms have been developed, including the expected number of iterations to
visit a predetermined objective function value level. Jacobson et al. [83] introduce
the cyclical simulated annealing algorithm and describe a procedure to estimate
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lower and upper bounds for the expected number of iterations to visit a near-optimal
solution for this algorithm. Computational results with four traveling salesman prob-
lem instances are reported.

1.4 Practical Guidelines

Implementation issues for simulated annealing can follow one of two paths—that of
specifying problem-specific choices (objective function and neighborhood) and that
of specifying generic choices (generation and acceptance probability functions and
the cooling schedule) (see [46]). These choices often depend on the domain of each
specific problem. The principal shortcoming of simulated annealing is that it often
requires extensive computer time. Implementation modifications generally strive to
retain simulated annealing’s asymptotic convergence character, but at reduced com-
puter run-time. The methods discussed here are mostly heuristic.

1.4.1 Problem-Specific Choices

1.4.1.1 Objective Functions

One problem-specific choice involves the objective function specification. In [135],
Stern recommends a heuristic temperature-dependent penalty function as a substi-
tute for the actual objective function for problems where low cost solutions have
neighbors of much higher cost or in cases of degeneracy (i.e., large neighborhoods
of solutions of equal, but high costs). The original objective function surfaces, as
the penalty and the temperature are gradually reduced to 0. This technique is similar
to the noising method presented by Charon and Hudrey in [23], where the penalty
function is described as noise and is reduced at each outer loop iteration of the algo-
rithm. One speed-up technique is to evaluate only the difference in objective func-
tions, Δω,ω ′ , instead of calculating both f (ω) and f (ω ′). In [148], Tovey suggests
several methods of approximating Δω,ω ′ by using surrogate functions (that are faster
to evaluate than Δω,ω ′ , but not as accurate) probabilistically for cases when evalu-
ation of Δω,ω ′ is expensive; this technique is referred to as the surrogate function
swindle.

Straub et al. [137] improve the performance of simulated annealing on problems
in chemical physics by using the continuous normal density distribution instead of
the molecular dynamics of single point particles to describe the potential energy
landscape. Ma and Straub [98] report that using this distribution has the effect of
smoothing the energy landscape by reducing both the number and depth of local
minima.

Yan and Mukai [162] consider the case when a closed-form formula for the ob-
jective function is not available. They use a probabilistic simulation (termed the
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stochastic ruler method) to generate a sample objective function value for an input
solution and then accept the solution if the sample objective function value falls
within a predetermined bound. They also provide a proof of asymptotic conver-
gence by extrapolating the convergence proofs for simulated annealing and analyze
the rate of convergence.

1.4.1.2 Neighborhoods

A key problem-specific choice concerns the neighborhood function definition. The
efficiency of simulated annealing is highly influenced by the neighborhood function
used [105]. The choice of neighborhood serves to enforce a topology. In [46], Eglese
reports that “a neighborhood structure which imposes a ‘smooth’ topology where
the local minima are shallow is preferred to a ‘bumpy’ topology where there are
many deep local minima.” Solla et al. [132] and Fleischer and Jacobson [58] report
similar conclusions. This also supports the result in [72] that shows that asymptotic
convergence to the set of global optima depends on the depth of the local minima.

Another factor to consider when choosing neighborhood functions is the neigh-
borhood size. No theoretical results are available, other than the necessity of reach-
ability (in a finite number of steps) from any solution to any other solution. Cheh
et al. [25] report that small neighborhoods are best, while Ogbu and Smith [113]
provide evidence that larger neighborhoods result in better simulated annealing per-
formance. Goldstein and Waterman [68] conjecture that if the neighborhood size is
small compared to the total solution space cardinality, then the Markov chain can-
not move around the solution space fast enough to find the minimum in a reasonable
time. On the other hand, a very large neighborhood has the algorithm merely sam-
pling randomly from a large portion of the solution space and thus is unable to focus
on specific areas of the solution space. It is reasonable to believe that neighborhood
size is heavily problem specific. For example, problems where the smoothness of its
solution space topology is moderately insensitive to different neighborhood defini-
tions may benefit from larger neighborhood sizes.

Concepts from information theory are used in [54] and [58] to show that the
neighborhood structure can affect the information rate or total uncertainty asso-
ciated with simulated annealing. In [54], Fleischer shows that simulated annealing
tends to perform better as the entropy level of the associated Markov chain increases
and thus conjectures that an entropy measure could be useful for predicting when
simulated annealing would perform well on a given problem. However, efficient
ways of estimating the entropy are needed to transform this result into a practical
tool.

Triki et al. [151] present an empirical study on the efficiency of the simulated
annealing algorithm, as impacted by the landscape and the choice of the neighbor-
hood function. The experiments they conducted follow the observation that it is
possible to compute the exact probability for the algorithm to reach any point in the
landscape, provided that the number of solutions and the number of neighbors per
solution are sufficiently small. A developed computational tool allows to study the
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influence of the tuning of all the main parameters of simulated annealing, as well as
theoretical concepts such as thermodynamic equilibrium and optimal temperature
decrement rules.

Bouffard and Ferland [17] propose a method to improve the simulated annealing
algorithm with a variable neighborhood search to solve the resource-constrained
scheduling problem. The method is compared numerically with other neighbor-
hood search techniques: threshold accepting methods and tabu search. Furthermore,
these techniques are combined with multi-start diversification strategies. The nu-
merical results indicate that using a variable neighborhood search technique indeed
improves the performance.

Another issue on neighborhood function definition addresses the solution space
itself. Chardaire et al. [22] propose a method for addressing 0−1 optimization prob-
lems, in which the solution space is progressively reduced by fixing the value of
strongly persistent variables (which have the same value in all optimal solutions).
They isolate the persistent variables during simulated annealing’s execution by pe-
riodically estimating the expectation of the random variable (a vector of binary ele-
ments) that describes the current solution and fixing the value of those elements in
the random variable that meet threshold criteria.

1.4.2 Generic Choices

1.4.2.1 Generation Probability Functions

Generation probability functions are usually chosen as uniform distributions with
probabilities proportional to the size of the neighborhood. The generation proba-
bility function is typically not temperature dependent. In [59], Fox suggests that
instead of blindly generating neighbors uniformly, adopt an intelligent generation
mechanism that modifies the neighborhood and its probability distribution to ac-
commodate search intensification or diversification, in the same spirit of the tabu
search metaheuristic. Fox also notes that simulated annealing convergence theory
does not preclude this idea. In [148], Tovey suggests an approach with a similar
effect, called the neighborhood prejudice swindle.

1.4.2.2 Acceptance Probability Functions

The literature reports considerable experimentation with acceptance probability
functions for hill-climbing transitions. The most popular is the exponential form
(1.1). Ogbu and Smith [113] consider replacing the basic simulated annealing ac-
ceptance function ak(Δω,ω ′) with a geometrically decreasing form that is indepen-
dent of the change in objective function value. They adopt a probabilistic-exhaustive
heuristic technique in which randomly chosen neighbors of a solution are examined
and all solutions that are accepted are noted, but only the last solution accepted
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becomes the new incumbent. The hope is that this scheme will explore a broader
area of the problem solution space. Their acceptance probability function is defined
for all solutions ω,ω ′ ∈ Ω and for k = 1,2, ...,K as

ak(Δω,ω ′) = ak =
{

a1xk−1 if f (ω ′) > f (ω)
1 otherwise

,

where a1 is the initial acceptance probability value, x ∈ (0,1) is a reducing factor,
and K is the number of stages (equivalent to a temperature cooling schedule). They
also experiment with this method (and a neighborhood of large cardinality) on a per-
mutation flow shop problem and report that its approach found comparable solutions
to the basic simulated annealing algorithm in one-third the computation time.

1.4.2.3 Cooling Schedules

The simulated annealing cooling schedule is fully defined by an initial temperature,
a schedule for reducing/changing the temperature, and a stopping criterion. Romeo
and Sangiovanni-Vincentelli [120] note that an effective cooling schedule is essen-
tial to reducing the amount of time required by the algorithm to find an optimal so-
lution. Therefore, much of the literature on cooling schedules (see [19, 34, 62, 112])
is devoted to this efficiency issue.

Homogeneous simulated annealing convergence theory has been used to design
effective cooling schedules. Romeo and Sangiovanni-Vincentelli [120] suggest the
following procedure for designing a cooling schedule:

1. Start with an initial temperature t0 for which a good approximation of the sta-
tionary distribution πt0 is quickly reached.

2. Reduce t0 by an amount δ (t) small enough such that πt0 is a good starting point
to approximate πt0−δ (t).

3. Fix the temperature at a constant value during the iterations needed for the solu-
tion distribution to approximate πt0−δ (t).

Repeat the above process of cooling and iterating until no further improvement
seems possible.

Generally, the initial temperature is set such that the acceptance ratio of bad
moves is equal to a certain value. In [14], Ben-Ameur proposes an algorithm to com-
pute a temperature which is compatible with a given acceptance ratio. The accep-
tance probability function is shown to be convex for low temperatures and concave
for high temperatures, and a lower bound is provided for the number of required
temperature changes based on a geometric cooling schedule.

Cooling schedules are grouped into two classes: static schedules, which must be
completely specified before the algorithm begins; and adaptive schedules, which
adjust the temperature’s rate of decrease from information obtained during the
algorithm’s execution. Cooling schedules are almost always heuristic; they seek to
balance moderate execution time with simulated annealing’s dependence on asymp-
totic behavior.
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Strenski and Kirkpatrick [138] present an exact (non-heuristic) characterization
of finite-length annealing schedules. They consider extremely small problems that
represent features (local optima and smooth/hilly topologies) and determine proba-
bility distribution of outcomes of annealing process in a finite number of iterations
to gain insights into some popular assumptions and intuition behind cooling sched-
ules. Their experiments suggest that optimal cooling schedules are not monotone
decreasing in temperature. They also show that for the test problem (a white noise
surface), geometric and linear cooling schedules perform better than inverse loga-
rithmic cooling schedules, when sufficient computing effort is allowed. Moreover,
their experiments do not show measurable performance differences between linear
and geometric cooling schedules. They also observe that geometric cooling sched-
ules are not greatly affected by excessively high initial temperatures. The results
presented suggest that even the most robust adaptive cooling schedule “produces
annealing trajectories which are never in equilibrium” [138]. However, they also
conclude that the transition acceptance rate is not sensitive to the degree of close-
ness to the equilibrium distribution.

Christoph and Hoffmann [31] also attempt to characterize optimal cooling sched-
ules. They derive a relationship between a finite sequence of optimal temperature
values (i.e., outer loops) and the number of iterations (i.e., inner loops) at each re-
spective temperature for several small test problems to reach optimality (i.e., the
minimal mean final energy). They find that this scaling behavior is of the form

xm = amν−bm , (1.32)

where a and b are scaling coefficients, xm = exp(−1/tk) is referred to as the temper-
ature, ν is the number of inner loop iterations at temperature xm, and m is the number
of outer loops at which the temperature xm is reduced. The proposed approach is to
solve for the coefficients a and b based on known temperature and iteration param-
eter values for an optimal schedule based on several replications of the algorithm
using (m × ν) iterations for each replication, and then use Equation (1.32) to inter-
polate the optimal cooling schedule for intermediate iterations. They however do not
make any suggestions on how to efficiently solve for the necessary optimal cooling
schedules for a (typically large) problem instance.

Romeo and Sangiovanni-Vincentelli [120] present a theoretical framework for
evaluating the performance of the simulated annealing algorithm. They discuss an-
nealing schedules in terms of initial temperature T = t0, the number of inner loops
for each value of tk, the decrease rate of the temperature (i.e., cooling schedule), and
the criteria for stopping the algorithm. They conclude that the theoretical results
obtained thus far have not been able to explain why simulated annealing is so suc-
cessful even when a diverse collection of static cooling schedule heuristics is used.
Many heuristic methods are available in the literature to find optimal cooling sched-
ules, but the effectiveness of these schedules can only be compared through exper-
imentation. They conjecture that the neighborhood and the corresponding topology
of the objective function are responsible for the behavior of the algorithm.

Cohn and Fielding [34] conduct a detailed analysis of various cooling schedules
and how they affect the performance of simulated annealing. Convergent simulated
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annealing algorithms are often too slow in practice, whereas a number of non-
convergent algorithms may be preferred for good finite-time performance. They
analyze various cooling schedules and present cases where repeated independent
runs using a non-convergent cooling schedule provide acceptable results in practice.
They provide examples of when it is both practically and theoretically justified to
use a very high, fixed temperature, or even fast cooling schedules which have a small
probability of reaching global minima and apply these cooling schedules to travel-
ing salesman problems of various sizes. Fielding [53] computationally studies fixed
temperature cooling schedules for the traveling salesman problem, the quadratic as-
signment problem and the graph partitioning problem and demonstrates that a fixed
temperature cooling schedule can yield superior results in locating optimal and near-
optimal solutions. Orosz and Jacobson [115, 116] present finite-time performance
measures for simulated annealing with fixed temperature cooling schedules. They
illustrate their measures using randomly generated instances of the traveling sales-
man problem.

Another approach to increasing the speed of simulated annealing is to implement
a two-staged simulated annealing algorithm. In two-staged simulated annealing
algorithms, a fast heuristic is used to replace simulated annealing at higher tem-
peratures, with a traditional simulated annealing algorithm implemented at lower
temperatures to improve on the fast heuristic solution. In addition to implement-
ing an intelligent cooling schedule, finding the initial temperature t0 to initialize the
traditional simulated annealing algorithm is important to the success of the two-
staged algorithm. Varanelli and Cohoon [157] propose a method for determining
an initial temperature t0 for two-staged simulated annealing algorithms using tra-
ditional cooling schedules. They note that if t0 is too low at the beginning of the
traditional simulated annealing phase, the algorithm can get trapped in an inferior
solution, while if the initial temperature t0 is too high, the algorithm can waste
too many iterations (hence computing time) by accepting too many hill-climbing
moves.

Azizi and Zolfaghari [11] propose two variations of simulated annealing, tested
on the minimum makespan job shop scheduling problems. In the conventional sim-
ulated annealing, the temperature declines monotonically, providing the search with
a higher transition probability in the beginning of the search and lower probability
toward the end of the search. In [11], an adaptive temperature control scheme with
a tabu list is used that changes temperature based on the number of consecutive
improving moves, resulting in an improved algorithm performance.

In [69], a sample adaptive simulated annealing algorithm, inspired by the idea of
Metropolis algorithm, is constructed on a finite state space. The algorithm can be
viewed as a substitute of the annealing of iterative stochastic schemes. In [108], the
optimal cooling schedule for simulated annealing is formulated to derive a differen-
tial equation for the time-dependent temperature T (t). Based on this equation, the
long-term behavior of T (t), entropy production, and the Kullback–Leibler entropy
are studied. For some simple examples, such as a many-level system and the small
scale traveling salesman problem, the explicit time dependence of the temperature
is obtained.
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1.4.3 Domains—Types of Problems with Examples

Over the past decade, simulated annealing has developed into a popular optimiza-
tion tool. It has been used to address numerous discrete optimization problems as
well as continuous variable problems. Several application articles and surveys have
been published on simulated annealing. Johnson et al. [86, 87] present a series of
articles on simulated annealing applied to certain well-studied discrete optimization
problems. The first in the series of articles uses the graph partitioning problem to
illustrate simulated annealing and highlight the effectiveness of several modifica-
tions to the basic simulated annealing algorithm. The second in the series focuses
on applying lessons learned from the first article to the graph coloring and num-
ber partitioning problems. Local optimization techniques were previously thought
to be unacceptable approaches to these two problems. In [87], it is also observed
that for long run lengths, simulated annealing outperforms the traditional tech-
niques used to solve graph coloring problems. However, simulated annealing did
not compare well with traditional techniques on the number partitioning problem
except for small problem instances. The third article in the series (not yet pub-
lished) uses simulated annealing to approach the well-known traveling salesman
problem.

Koulamas et al. [90] focus on simulated annealing applied to applications in pro-
duction/operations management and operations research. They discuss traditional
problems such as single machine, flow shop and job shop scheduling, lot sizing, and
traveling salesman problems as well as non-traditional problems to include graph
coloring and number partitioning. They conclude that simulated annealing is an ef-
fective tool for solving many problems in operations research and that the degree of
accuracy that the algorithm achieves can be controlled by the practitioner, in terms
of number of iterations and neighborhood functions (i.e., an increased number of
iterations (outer loops) combined with increased number of searches at each iter-
ation (inner loops) can result in solutions with a higher probability of converging
to the optimal solution). In [55], Fleischer discusses simulated annealing from a
historical and evolutionary point of view in terms of solving difficult optimization
problems. Fleischer also summarizes ongoing research and presents an application
of simulated annealing to graph problems.

Steinhofel et al. [134] also address flow shop scheduling problems by applying
logarithmic cooling schedules of simulated annealing-based algorithms to flow shop
scheduling. In the considered problem setting, the objective is to minimize the over-
all completion time (called the makespan). A lower bound is derived for the number
of steps that are needed to approach an optimum solution with a certain probability,
based on the maximum escape depth Γ from local minima of the underlying energy
landscape.

The simulated annealing algorithm has proved to be a good technique for solv-
ing difficult discrete optimization problems. In engineering optimization, simulated
annealing has emerged as an alternative tool to address problems that are difficult
to solve by conventional mathematical programming techniques. The algorithm’s
major disadvantage is that solving a complex system problem may be an extremely
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slow, albeit convergent process, using much more processor time than conventional
algorithms. Consequently, simulated annealing has not been widely embraced as
an optimization algorithm for engineering problems. Attempts have been made to
improve the performance of the algorithm either by reducing the annealing length
or changing the generation and the acceptance mechanisms. However, these faster
schemes, in general, do not inherit the property of escaping local minima. A more
efficient way to reduce the processor time and make simulated annealing a more
attractive alternative for engineering problems is to add parallelism (see [73]). How-
ever, the implementation and efficiency of parallel simulated annealing algorithms
are typically problem dependent. Leite et al. [91] consider the evaluation of parallel
schemes for engineering problems where the solution spaces may be very complex
and highly constrained, with function evaluations varying from medium to high cost.
In addition, they provide guidelines for selecting appropriate schemes for engineer-
ing problems. They also present an engineering problem with relatively low fitness
evaluation cost and strong time constraints to demonstrate the lower bounds of ap-
plicability of parallel schemes.

Many signal processing applications create optimization problems with multi-
modal and non-smooth cost functions. Gradient methods are ineffective in these
situations because of multiple local minima and the requirement to compute gra-
dients. Chen and Luk [27] propose an adaptive simulated annealing algorithm as a
viable optimization tool for addressing such difficult non-linear optimization prob-
lems. The adaptive simulated annealing algorithm maintains the advantages of sim-
ulated annealing, but converges faster. Chen and Luk demonstrate the effectiveness
of adaptive simulated annealing with three signal processing applications: maxi-
mum likelihood joint channel and data estimation, infinite-impulse-response filter
design, and evaluation of minimum symbol-error-rate decision feedback equalizer.
They conclude that the adaptive simulated annealing algorithm is a powerful global
optimization tool for solving such signal processing problems.

Abramson et al. [4] describe the use of simulated annealing for solving the school
timetabling problem. They use the scheduling problem to highlight the performance
of six different cooling schedules: the basic geometric cooling schedule, a scheme
that uses multiple cooling rates, geometric reheating, enhanced geometric reheating,
non-monotonic cooling, and reheating as a function of cost. The basic geometric
cooling schedule found in [156] is used as the baseline schedule for comparison
purposes. Experimental results suggest that using multiple cooling rates for a given
problem yields better quality solutions in less time than the solutions produced by a
single cooling schedule. The conclusion in [4] is that the cooling scheme that uses
the phase transition temperature (i.e., when sub-parts of the combinatorial optimiza-
tion problem are solved) in combination with the best solution to date produces the
best results.

Emden-Weinert and Proksch [47] present a study of a simulated annealing algo-
rithm for the flight pairing subproblem in crew scheduling, which models the match-
ing of flight segments as a preliminary phase to crew rostering. It is revealed that
the algorithm run-time can be decreased and solution quality can be improved by
using a problem-specific initial solution, relaxing constraints, combining simulated



30 Alexander G. Nikolaev and Sheldon H. Jacobson

annealing with a problem-specific local improvement heuristic, and conducting mul-
tiple independent runs.

There is no question that simulated annealing can demand significant compu-
tational time to reach global minima. Recent attempts to use parallel computing
schemes to speed up simulated annealing have provided promising results. Chu
et al. [32] present a new, efficient, and highly general-purpose parallel optimiza-
tion method based on simulated annealing that does not depend on the structure
of the optimization problem being addressed. Their algorithm is used to analyze a
network of interacting genes that control embryonic development and other funda-
mental biological processes. They use a two-stage procedure which monitors and
pools performance statistics obtained simultaneously from all processors and then
mixes states at intervals to maintain a Boltzmann-like distribution of costs. They
demonstrate that their parallel simulated annealing approach leads to nearly optimal
parallel efficiency for certain optimization problems. In particular, the approach is
appropriate when the relative effort required to compute the cost function is large
compared to the relative communication effort between parallel machines for pool-
ing statistics and mixing states.

Chen et al. [26] implement five variants of simulated annealing algorithm from
sequential-to-parallel forms on high-performance computers and applied them to
a set of standard function optimization problems in order to test their perfor-
mances. The experimental results indicate that the traditional approach to paral-
lelizing simulated annealing, namely executing algorithm runs simultaneously on
multiple communicating processors, does not enjoy much success in solving hard
problem instances. Divide-and-conquer decomposition strategy used to traverse the
search space sometimes might find the global optimum function value, but fre-
quently results in high computing times as the problem size increases. A hybrid
version of a genetic algorithm combined with simulated annealing has proven to be
most efficient.

Alrefaei and Andradottir [7] present a modified simulated annealing algorithm
with a constant temperature to address discrete optimization problems and use two
approaches to estimate an optimal solution to the problem. One approach estimates
the optimal solution based on the state most visited versus the state last visited,
while the other approach uses the best average estimated objective function value to
estimate the optimal solution. Both approaches are guaranteed to converge almost
surely to the set of global optimal solutions under mild conditions. They compare
the performance of the modified simulated annealing algorithm to other forms of
simulated annealing used to solve discrete optimization problems.

Creating effective neighborhood functions or neighborhood generation mecha-
nisms is a critical element in designing efficient and effective simulated annealing
algorithms for discrete optimization problems. Tian et al. [147] investigate the appli-
cation of simulated annealing to discrete optimization problems with a permutation
property, such as the traveling salesman problem, the flow shop scheduling problem,
and the quadratic assignment problems. They focus on the neighborhood function of
the discrete optimization problem and, in particular, the generation mechanism for
the algorithm used to address the problem. They introduce six types of perturbation
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schemes for generating random permutation solutions and prove that each scheme
satisfies asymptotic convergence requirements. The results of the experimental eval-
uations on the traveling salesman problem, the flow shop scheduling problem, and
the quadratic assignment problem suggest that the efficiencies of the perturbation
schemes are different for each problem type and solution space. Tian et al. con-
clude that with the proper perturbation scheme, simulated annealing can produce
efficient solutions to different discrete optimization problems that possess a permu-
tation property.

In [5], Ahmed proposes a modification of the simulated annealing algorithm for
solving discrete stochastic optimization problems where the objective function is
stochastic and can be evaluated only through Monte Carlo simulation (i.e., the objec-
tive function cannot be computed exactly or such an evaluation is computationally
expensive). In this modification, the temperature is held constant, and the Metropolis
criterion depends on whether the objective function values indicate a statistically
significant difference at each iteration. The obtained algorithm compares favorably
with three previously proposed methods (see [6, 63, 71]).

Research also continues on the application of simulated annealing to optimization
of continuous functions. Continuous global optimization is defined as the problem
of finding points on a bounded subset of ℜn where some real-valued function f as-
sumes its optimal (maximal or minimal) value. The application of simulated anneal-
ing to continuous optimization generally falls into two classes. The first approach
closely follows the original idea presented by Kirkpatrick et al. [89], where the al-
gorithm mimics the physical annealing process. The second approach describes the
annealing process with Langevin equations, where the global minimum is found
by solving a set of stochastic differential equations (see [9]). Gemen and Hwang
[64] prove that continuous optimization algorithms based on Langevin equations
converge to the global optima. Dekkers and Aarts [40] propose a third stochas-
tic approach to address global optimization based on simulated annealing, which
is similar to the formulation of simulated annealing applied to discrete optimiza-
tion problems. They extend the mathematical formulation of simulated annealing
to continuous optimization problems and prove asymptotic convergence to the set
of global optima based on the equilibrium distribution of Markov chains. They
also discuss an implementation of the proposed algorithm and compare its perfor-
mance with other well-known algorithms on a standard set of test functions from
the literature.

Tsallis and Stariolo [149] discuss and illustrate a new stochastic algorithm (gen-
eralized simulated annealing) for computationally finding the global minimum of a
given (not necessarily convex) energy/cost function defined on a continuous multi-
dimensional space. This algorithm covers, as particular cases, the so-called classical
(Boltzmann machine) and fast (Cauchy machine) simulated annealings and turns out
to be quicker than both. This method, which has been widely used in many fields
as a global optimization tool, is composed of three parts: visiting distribution, ac-
cepting rule, and cooling schedule. The most complicated of these is the visiting
distribution. Although Tsallis and Stariolo [149] did provide a heuristic algorithm
to generate a random number for the visiting distribution, empirical simulations
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have shown that it is inappropriate. Deng et al. [43] propose an alternative method
of generating random numbers based on the results from [99]. Nishimori and Inoue
[109] prove the weak ergodicity of the inhomogeneous Markov process generated
by the generalized transition probability of Tsallis and Stariolo [149] under power-
law decay of the temperature. Del Moral and Miclo [42] study the convergence of
the generalized simulated annealing with time-inhomogeneous communication cost
functions. This study is based on the use of log-Sobolev inequalities and semigroup
techniques in the spirit of a previous article by one of the authors.

1.5 Summary

Simulated annealing optimization algorithms have been well studied in the liter-
ature. These algorithms can be used to optimize single as well as multi-objective
optimization problems. They have been applied in various fields like process sys-
tem engineering, operations research, and smart materials. Recent work on simu-
lated annealing primarily involves ad hoc techniques, adaptive cooling schedules,
and the development of hybrid algorithms.

The popularity and flexibility of simulated annealing has spawned several new
annealing algorithms. Pepper et al. [117] introduce demon algorithms and test them
on the traveling salesman problem. Ohlmann et al. [114] introduce another variant of
simulated annealing termed compressed annealing. They incorporate the concepts
of pressure and volume, in addition to temperature, to address discrete optimization
problems with relaxed constraints. They also introduce a primal/dual metaheuristic
by simultaneously adjusting temperature and pressure in the algorithm.

In [76], Herault presents rescaled simulated annealing, which is designed for
combinatorial problems where the available computational effort is limited. This
generalization performs the rescaling of the energies of the states that are candidates
for a transition, before applying the Metropolis criterion. A direct consequence of
this rescaling is an acceleration of the algorithm’s convergence, by avoiding dives
and escaping from high-energy local minima. Mingjun and Huanwen [103] propose
chaos simulated annealing with chaotic initialization and chaotic sequences replac-
ing the Gaussian distribution. These features improve the rate of convergence and
are efficient and easy to implement.

Once a very popular approach to solving hard combinatorial problems, simulated
annealing is now taking a backseat and giving way to new algorithms and heuristics
designed to better exploit the unique properties and features of problems. However,
simulated annealing continues to be widely used, given its simplicity and ease of
implementation. Moreover, its simple structure is often incorporated and blended
with other metaheuristics. It also remains one of the most analyzed metaheuristics,
which underlines the importance and usefulness of its basic idea.
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